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Abstract. We propose a benchmark for 6D pose estimation of a rigid
object from a single RGB-D input image. The training data consists of
a texture-mapped 3D object model or images of the object in known 6D
poses. The benchmark comprises of: i) eight datasets in a unified format
that cover different practical scenarios, including two new datasets focus-
ing on varying lighting conditions, ii) an evaluation methodology with a
pose-error function that deals with pose ambiguities, iii) a comprehensive
evaluation of 15 diverse recent methods that captures the status quo of
the field, and iv) an online evaluation system that is open for continu-
ous submission of new results. The evaluation shows that methods based
on point-pair features currently perform best, outperforming template
matching methods, learning-based methods and methods based on 3D
local features. The project website is available at bop.felk.cvut.cz.

1 Introduction

Estimating the 6D pose, i.e. 3D translation and 3D rotation, of a rigid object
has become an accessible task with the introduction of consumer-grade RGB-D
sensors. An accurate, fast and robust method that solves this task will have a
big impact in application fields such as robotics or augmented reality.

Many methods for 6D object pose estimation have been published recently,
e.g. [34,24,18,2,36,21,27,25], but it is unclear which methods perform well and
in which scenarios. The most commonly used dataset for evaluation was created
by Hinterstoisser et al. [14], which was not intended as a general benchmark and
has several limitations: the lighting conditions are constant and the objects are
easy to distinguish, unoccluded and located around the image center. Since then,
some of the limitations have been addressed. Brachmann et al. [1] added ground-
truth annotation for occluded objects in the dataset of [14]. Hodaň et al. [16]
created a dataset that features industry-relevant objects with symmetries and
similarities, and Drost et al. [8] introduced a dataset containing objects with
reflective surfaces. However, the datasets have different formats and no standard
evaluation methodology has emerged. New methods are usually compared with
only a few competitors on a small subset of datasets.

∗Authors have been leading the project jointly.
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Fig. 1. A collection of benchmark datasets. Top: Example test RGB-D images where
the second row shows the images overlaid with 3D object models in the ground-truth
6D poses. Bottom: Texture-mapped 3D object models. At training time, a method is
given an object model or a set of training images with ground-truth object poses. At
test time, the method is provided with one test image and an identifier of the target
object. The task is to estimate the 6D pose of an instance of this object.

This work makes the following contributions:

1. Eight datasets in a unified format, including two new datasets focusing
on varying lighting conditions, are made available (Fig. 1). The datasets con-
tain: i) texture-mapped 3D models of 89 objects with a wide range of sizes,
shapes and reflectance properties, ii) 277K training RGB-D images showing
isolated objects from different viewpoints, and iii) 62K test RGB-D images
of scenes with graded complexity. High-quality ground-truth 6D poses of the
modeled objects are provided for all images.

2. An evaluation methodology based on [17] that includes the formulation
of an industry-relevant task, and a pose-error function which deals well with
pose ambiguity of symmetric or partially occluded objects, in contrast to the
commonly used function by Hinterstoisser et al. [14].

3. A comprehensive evaluation of 15 methods on the benchmark datasets
using the proposed evaluation methodology. We provide an analysis of the
results, report the state of the art, and identify open problems.

4. An online evaluation system at bop.felk.cvut.cz that allows for con-
tinuous submission of new results and provides up-to-date leaderboards.

http://bop.felk.cvut.cz


BOP: Benchmark for 6D Object Pose Estimation 3

1.1 Related Work

The progress of research in computer vision has been strongly influenced by
challenges and benchmarks, which enable to evaluate and compare methods and
better understand their limitations. The Middlebury benchmark [31,32] for depth
from stereo and optical flow estimation was one of the first that gained large
attention. The PASCAL VOC challenge [10], based on a photo collection from
the internet, was the first to standardize the evaluation of object detection and
image classification. It was followed by the ImageNet challenge [29], which has
been running for eight years, starting in 2010, and has pushed image classification
methods to new levels of accuracy. The key was a large-scale dataset that enabled
training of deep neural networks, which then quickly became a game-changer for
many other tasks [23]. With increasing maturity of computer vision methods,
recent benchmarks moved to real-world scenarios. A great example is the KITTI
benchmark [11] focusing on problems related to autonomous driving. It showed
that methods ranking high on established benchmarks, such as the Middlebury,
perform below average when moved outside the laboratory conditions.

Unlike the PASCAL VOC and ImageNet challenges, the task considered in
this work requires a specific set of calibrated modalities that cannot be easily
acquired from the internet. In contrast to KITTY, it was not necessary to record
large amounts of new data. By combining existing datasets, we have covered
many practical scenarios. Additionally, we created two datasets with varying
lighting conditions, which is an aspect not covered by the existing datasets.

2 Evaluation Methodology

The proposed evaluation methodology formulates the 6D object pose estimation
task and defines a pose-error function which is compared with the commonly
used function by Hinterstoisser et al. [13].

2.1 Formulation of the Task

Methods for 6D object pose estimation report their predictions on the basis
of two sources of information. Firstly, at training time, a method is given a
training set T = {To}

n
o=1, where o is an object identifier. Training data To may

have different forms, e.g. a 3D mesh model of the object or a set of RGB-D
images showing object instances in known 6D poses. Secondly, at test time, the
method is provided with a test target defined by a pair (I, o), where I is an
image showing at least one instance of object o. The goal is to estimate the 6D
pose of one of the instances of object o visible in image I.

If multiple instances of the same object model are present, then the pose
of an arbitrary instance may be reported. If multiple object models are shown
in a test image, and annotated with their ground truth poses, then each object
model may define a different test target. For example, if a test image shows three
object models, each in two instances, then we define three test targets. For each
test target, the pose of one of the two object instances has to be estimated.
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This task reflects the industry-relevant bin-picking scenario where a robot
needs to grasp a single arbitrary instance of the required object, e.g. a component
such as a bolt or nut, and perform some operation with it. It is the simplest
variant of the 6D localization task [17] and a common denominator of its other
variants, which deal with a single instance of multiple objects, multiple instances
of a single object, or multiple instances of multiple objects. It is also the core of
the 6D detection task, where no prior information about the object presence in
the test image is provided [17].

2.2 Measuring Error

A 3D object model is defined as a set of vertices in R
3 and a set of polygons that

describe the object surface. The object pose is represented by a 4 × 4 matrix
P = [R, t;0, 1], where R is a 3× 3 rotation matrix and t is a 3× 1 translation
vector. The matrix P transforms a 3D homogeneous point xm in the model
coordinate system to a 3D point xc in the camera coordinate system: xc = Pxm.

Visible Surface Discrepancy. To calculate the error of an estimated pose P̂
w.r.t. the ground-truth pose P̄ in a test image I, an object model M is first
rendered in the two poses. The result of the rendering is two distance maps1 Ŝ

and S̄. As in [17], the distance maps are compared with the distance map SI of
the test image I to obtain the visibility masks V̂ and V̄ , i.e. the sets of pixels
where the model M is visible in the image I (Fig. 2). Given a misalignment
tolerance τ , the error is calculated as:

eVSD(Ŝ, S̄, SI , V̂ , V̄ , τ) = avg
p∈V̂ ∪V̄

{

0 if p ∈ V̂ ∩ V̄ ∧ |Ŝ(p)− S̄(p)| < τ

1 otherwise.
(1)

Properties of eVSD. The object pose can be ambiguous, i.e. there can be
multiple poses that are indistinguishable. This is caused by the existence of
multiple fits of the visible part of the object surface to the entire object surface.
The visible part is determined by self-occlusion and occlusion by other objects
and the multiple surface fits are induced by global or partial object symmetries.

Pose error eVSD is calculated only over the visible part of the model surface
and thus the indistinguishable poses are treated as equivalent. This is a desirable
property which is not provided by pose-error functions commonly used in the
literature [17], including eADD and eADI discussed below. As the commonly used
pose-error functions, eVSD does not consider color information.

Definition (1) is different from the original definition in [17] where the pixel-
wise cost linearly increases to 1 as |Ŝ(p)−S̄(p)| increases to τ . The new definition
is easier to interpret and does not penalize small distance differences that may
be caused by imprecisions of the depth sensor or of the ground-truth pose.

1 A distance map stores at a pixel p the distance from the camera center to a 3D point
xp that projects to p. It can be readily computed from the depth map which stores
at p the Z coordinate of xp and which can be obtained by a Kinect-like sensor.
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RGB I SI Ŝ V̂ �S �V S�

Fig. 2. Quantities used in the calculation of eVSD . Left: Color channels RGB I (only for
illustration) and distance map SI of a test image I . Right: Distance maps Ŝ and �S are
obtained by rendering the object model M at the estimated pose P̂ and the ground-
truth pose �P respectively. V̂ and �V are masks of the model surface that is visible in I ,
obtained by comparing Ŝ and �S with SI . Distance di�erences S� (p) = Ŝ(p) � �S(p),
8p 2 V̂ \ �V , are used for the pixel-wise evaluation of the surface alignment.
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Fig. 3. Comparison of eVSD (bold, � = 20 mm) with eADI =� AD (mm) on example pose
estimates sorted by increasingeVSD . Top: Cropped and brightened test images overlaid
with renderings of the model at i) the estimated pose P̂ in blue, and ii) the ground-
truth pose �P in green. Only the part of the model surface that falls into the respe ctive
visibility mask is shown. Bottom: Di�erence maps S� . Case (b) is analyzed in Fig. 2.

Criterion of Correctness. An estimated poseP̂ is considered correct w.r.t.
the ground-truth pose �P if the error eVSD < � . If multiple instances of the
target object are visible in the test image, the estimated pose is compared to the
ground-truth instance that minimizes the error. The choice of the misalignment
tolerance � and the correctness threshold� depends on the target application.
For robotic manipulation, where a robotic arm operates in 3D space, both� and
� need to be low, e.g.� = 20 mm, � = 0 :3, which is the default setting in the
evaluation presented in Sec. 5. The requirement is di�erent for augmented reality
applications. Here the surface alignment in theZ dimension, i.e. the optical axis
of the camera, is less important than the alignment in theX and Y dimension.
The tolerance � can be therefore relaxed, but� needs to stay low.
























