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Abstract. In this paper we provide new simple closed-form solutions to
two minimal absolute pose problems for the case of known vertical direc-
tion. In the first problem we estimate absolute pose of a calibrated camera
from two 2D-3D correspondences and a given vertical direction. In the
second problem we assume camera with unknown focal length and radial
distortion and estimate its pose together with the focal length and the
radial distortion from three 2D-3D correspondences and a given vertical
direction. The vertical direction can be obtained either by direct physi-
cal measurement by, e.g., gyroscopes and inertial measurement units or
from vanishing points constructed in images. Both our problems result
in solving one polynomial equation of degree two in one variable and
one, respectively two, systems of linear equations and can be efficiently
solved in a closed-form. By evaluating our algorithms on synthetic and
real data we demonstrate that both our solutions are fast, efficient and
numerically stabled .

1 Introduction

Cheap consumer cameras become precise enough to be used in many computer
vision applications, e.g. structure from motion [2,22,23, 15], or recognition [13,
14]. The good precision of these cameras allows to simplify camera models and
therefore also algorithms used in these applications. For instance, for the pinhole
camera model it is common to set the camera skew to zero, the pixel aspect ratio
to one and the principal point to the center of the image. Moreover, since most
of the digital cameras put the information about the focal length into the image
header (EXIF), it is frequently assumed that this is a good approximation of the
whole internal calibration of the camera and therefore the camera is considered
calibrated. These assumptions allow to use simpler algorithms, e.g. the 5-point
relative pose algorithm for calibrated cameras [19, 24], and as it was shown in [22,
23,16, 12,15] they work well even when these assumptions are not completely
satisfied.

More and more cameras become also equipped with inertial measurement
units (IMUs) like gyroscopes and accelerometers, compasses, or GPS devices

3 This work has been supported by EC project FP7-SPACE-218814 PRoVisG and by
Czech Government under the research program MSM6840770038
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and add information from these devices into the image header too. This could
be even more observable in modern cellular phones and other smart devices.

Unfortunately, since GPS position precision is in order of meters, it is not
sufficient to provide external camera calibration, i.e. the absolute position of the
camera. Neither compass accuracy (which could provide cameras yaw) is good
enough to provide camera orientation since its sensor is highly influenced by
magnetic field disturbances.

On the other hand currently available IMUs (even the low cost ones) provide
very accurate roll and pitch angle, i.e. the vertical direction. The angular accu-
racy of roll and pith angle in low cost IMUs like [26] is about 0.5°, and in high
accuracy IMUs is less than 0.02°. While most today cameras use information
from gyroscopes and IMUs only to distinguish whether the image orientation
is landscape or portrait, we show that knowing the camera “up vector” can
radically simplify the camera absolute pose problem.

Determining the absolute pose of a camera given a set of n correspondences
between 3D points and their 2D projections is known as the Perspective-n-Point
(PnP) problem. This problem is one of the oldest problems in computer vision
with a broad range of applications in structure from motion [2,15] or recogni-
tion [13,14].

PnP problems for fully calibrated cameras for three and more than three
points have been extensively studied in the literature. One of the oldest papers
on this topic dates already to 1841 [7]. Recently a large number of solutions to
the calibrated PnP problems have been published [5, 18, 20, 21] including several
solutions to the PnP problems for partially calibrated cameras [1, 3,9, 25]. These
solutions assume unknown focal length [1, 3, 25], unknown focal length and radial
distortion [9] or unknown focal length and principal point [25].

In this paper we provide new simple closed-form solutions to two minimal
absolute pose problems for cameras with known rotation around two angles,
i.e. known vertical direction. In the first problem we estimate the absolute pose
of a calibrated camera from two 2D-3D correspondences and a given vertical
direction. In the second problem we assume camera with unknown focal length
and radial distortion and estimate its pose together with the focal length and the
radial distortion from three 2D-3D correspondence and a given vertical direction.
In both cases this is the minimal number of correspondences needed to solve these
problems.

Both these problems result in solving one polynomial equation of degree two
in one variable and one respectively two systems of linear equations and can be
efficiently solved in a closed-form way. By evaluating our algorithms on synthetic
and real data we show that both our solutions are fast, efficient and numerically
stable. Moreover, both presented algorithms are very useful in real applications
like structure from motion, surveillance camera calibration or applications of
registering photographs taken by a camera mounted on a car moving on a plane.

Our work builds on recent results from [10] where the efficient algorithm for
relative pose estimation of a camera with known vertical direction from three
point correspondences was presented. It was demonstrated that in the presence
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of good vertical direction information this algorithm is more accurate than the
classical 5-point relative pose algorithm [19, 24] for calibrated cameras.

Next we provide the formulation of our two problems and show how they can
be solved

2 Problem formulation

In this section we formulate two problems of determining absolute pose of a
camera given 2D-3D correspondences and the vertical direction, respectively
rotation angles around two axes.

Problem 1. Given the rotation of the calibrated camera around two axes and
the images of two known 3D reference points, estimate the absolute position of
the camera and the rotation of the camera around the third axis (y-axis).

Problem 2. Given the rotation of the camera with unknown focal length around
two axes and the distorted images of three known 3D reference points, estimate
the absolute position of the camera, the rotation of the camera around the third
axis (y-axis), the unknown focal length and the parameter of radial distortion.

In both problems we use the standard pinhole camera model [8]. In this model
the image projection u of a 3D reference point X can be written as

Au=PX, (1)

where P is a 3 x 4 projection matrix, A is an unknown scalar value and points
u = [u,v, 1]T and X = [X,Y, Z, 1]T are represented by their homogeneous coor-
dinates.

The projection matrix P can be written as

P=K[R|t], @)
where R is a 3 x 3 rotation matrix, t = [ts, t,, tz]T contains the information about
camera position and K is the 3 x 3 calibration matrix of the camera.

In our problems we assume that we know the vertical direction, i.e. the
coordinates of the world vector [0, 1, 0]—r in the camera coordinate system. This
vector can be often obtained from the vanishing point or directly from the IMU
by a very simple calibration of the IMU w.r.t. the world coordinate system. It is
important that all what has to be known to calibrate the IMU w.r.t. the world
coordinate system, is the direction of the “up-vector”, i.e. the direction which is
perpendicular to the “ground plane”, i.e. the plane z = 0 in the world coordinate
system. This direction is easy to calibrate by reseting the IMU when lied down
on the “ground plane”. Note that this “ground plane” need not be horizontal.
Moreover, very often IMU’s are precalibrated to use the gravity vector as the up-
vector. Then, the IMU is calibrated when the plane z = 0 of the world coordinate
system corresponds to the ground plane, i.e. if the coordinates z = 0 are assigned
to the points on the ground plane.
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From the “up-vector” returned by the IMU rotation we can compute the
rotation of the camera around two axes, in this case the x-axis (¢,) and the
z-axis (¢, ). Note that IMU sometimes returns directly these two angles. We will
denote this rotation as

cos ¢, —sing, 0 1 0 0
R, = |sin¢g, cos¢, 0 0 cos ¢, —sing, | . (3)
0 0 1 0 sin ¢, cos ¢,

Therefore, the only unknown parameter in the camera rotation matrix R is the
rotation angle ¢, around the y-axis, i.e. the vertical axis and we can write

R:R(¢y) :RvRy (¢U)7 (4)

where Ry is the known rotation matrix (3) around the vertical axis and Ry (¢,)
is the unknown rotation matrix around the y-axis of the form

cos ¢, 0 —sin ¢y
Ry = 0o 1 0 . (5)
sing, 0 cos ¢y,

With this parametrization the projection equation (1) has the form
Au=K[R(¢y) [t]X =K[Rs Ry (¢y) [t]X, (6)

For our problems we “simplify” the projection equation (6) by eliminating
the scalar value A and trigonometric functions sin and cos.

To eliminate sin and cos we use the substitution ¢ = tan % for which it holds
that cos ¢, = 1-¢" and sin Oy = 1@ Therefore we can write

1+q? +q*-
1-¢> 0 —2¢
(14+4¢*)Ry(q) = 0 1+¢*> 0 ) (7)

The scalar value A from the projection equation (6) can be eliminated by
multiplying equation (6) with the skew symmetric matrix [u], . Since [u], u =0
we obtain the matrix equation

[u], K[RyRy (q) [t]X =0. (8)

This matrix equation results in three polynomial equations from which only two
are linearly independent. This is caused by the fact that the skew symmetric
matrix [u], has rank two.

Polynomial equations (8) are the basic equations which we use for solving our
two problems. Next we describe how these equations look for our two problems
and how they can be solved.
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3 Absolute pose of a calibrated camera with known up
direction

In the case of Problem 1 for calibrated camera the calibration matrix K is known
and therefore the projection equation (8) [u], K [Ry Ry (¢) | t]X = 0 has the form

0 =1 v | [r11(q) m12(q) 13 (q) Lo iz(
1 0 —u| |r21(q) 22 (q) r23(q) ty 71 =0 9)
v u 0 31 (q) r32 (q) r33 () - 1

where u is a calibrated image point and r;; (¢) are the elements of the rotation
matrix R = Ry Ry (¢)- Note that these elements are quadratic polynomials in q.

In this case we have four unknowns ¢,,t,,t.,q = tan % and since each 2D-
3D point correspondence gives us two constraints, two independent polynomial
equations of the form (9), the minimal number of point correspondences needed
to solve this problem is two.

Matrix equation (9) gives us two linearly independent equations for each
point and each from this equations contains monomials ¢2, ¢, t, t,, ., 1. Since we
have two points, we have four of these equations and therefore we can use three
from them to eliminate ¢,,t, and ¢, from the fourth one. In this way we obtain
one polynomial in one variable g of degree two. Such equation can be easily
solved in a closed-form and generally results in two solutions for ¢ = tan 5.
Backsubstituting these two solutions to the remaining three equations give us
three linear equations in three variables t,,t, and t.. By solving these linear
equations we obtain solutions to our problem.

4 Absolute pose of a camera with unknown focal length
and radial distortion and known camera up direction

In Problem 2 we assume that the skew in the calibration matrix K is zero, the
aspect ratio is one and the principal point is in the center of the image. Modern
cameras are close to these assumptions and as it will be shown in experiments
these assumptions give good results even when they are not exactly satisfied.
The only parameter from K which cannot be safely set to a known value is the
focal length f. Here we assume that the focal length f is unknown and therefore
the calibration matrix K has the form diag [f, f, 1]. Since the projection matrix
is given only up to a scale we can equivalently write K = [1, 1, w] for w = 1/f.
For this problem we further assume that the image points are affected by
some amount of radial distortion. Here we model this radial distortion by the
one-parameter division model proposed in [6]. This model is given by formula

pu ~pa/ (1+krj), (10)

where k is the distortion parameter, p, = [y, Uy, 1]T, resp. Pa = [Ud, Vd, 1]T,
are the corresponding undistorted, resp. distorted, image points, and ry is the
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radius of pg w.r.t. the distortion center. We assume that the distortion center is
in the center of the image and therefore r2 = u2 + v3.
Since the projection equation (8) contains undistorted image points u but
we measure distorted ones we need to put the relation (10) into equation (8).
Let @; = [t;, 5, 1] be the i*" measured distorted image point, projection of the
3D point X; = [X;,Y;, Z;, 1], and let #2 = a2 + 02. Then w; = [i;, &, 1 + k#2] '
and the projection equation (8) for the i** point has the form

2 A X

0 —1—Fkr? o 100 ri1 (q) r12(q) T3 (q) ta v
1+ kr? 0 —; | {010 |721(q) ma2 (q) m23 (@) ty Z? =0, (11)

—0; Ui 0 00w 731 (q) 732 (q) 33 (q) lz 11

where again r;; (¢) are the elements of the rotation matrix R = Ry Ry (q).

In this case we have six unknowns t,,%,,%,,q = tan %”, k,w=1/f and since
each 2D-3D point correspondence gives us two constraints the minimal number
of point correspondences needed to solve this problem is three.

For three point correspondences the matrix equation (11) gives us nine poly-
nomial equations from which only six are linearly independent. Let denote these
nine polynomial equations g;; = 0,g2; = 0 and g3; = 0 for i = 1,2, 3, where
g1 = 0 is the equation corresponding to the first row in the matrix equation (11),
g2; = 0 to the second and g3; = 0 to the third row.

Now consider the third polynomial equation from the matrix equation (11),
i.e. the equation gs; = 0. This equation has the form

g3i = 1"+ Caq+caty +caty +c5 =0, (12)

where ¢;, j = 1,...,5 are known coefficients. The polynomial equation (12)
doesn’t contain variables ¢, , k and w. Since we have three 2D-3D correspondences
we have three equations g3; = 0,7 = 1,2, 3. Therefore, we can use two from these
equations to eliminate ¢, and ¢, from the third one, e.g. from the g3; = 0.

In this way we obtain one polynomial equation in one variable ¢ of degree
two. Such equation can be easily solved in a closed-form and generally results
in two solutions for ¢ = tan %y Backsubstituting these two solutions to the
remaining two equations corresponding to the third row of (11), i.e. g3s2 = 0 and
g33 = 0, gives us two linear equations in two variables ¢, and t, which can be
again easily solved.

After obtaining solutions to ¢,t, and t, we can substitute them to the equa-
tions corresponding to the first row of (11). These equations have after the
substitution the form

gri=cet,w+crw+cgk+cog=0 (13)

for ¢ = ¢,...,3 and known coefficients c¢;, j = 6,...,9. Equations 13 can be
again solved in a linear way. This is because we can consider the monomial ¢, w
as a new variable and solve a linear system of three equations in three variables.
Solving this linear system together with solutions to ¢,t, and t, gives us in
general two solutions to our absolute pose problem for camera with unknown
focal length and radial distortion given camera rotation around two axis.
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Fig. 1. Logio relative error of the focal length f (Left) and Logio absolute error of the
radial distortion parameter k (Right) obtained by selecting the real root closest to the
ground truth value fg: = 1.5 and kg = —0.2

5 Experiments

We have tested both our algorithms on synthetic data (with various levels of
noise, outliers, focal lengths and radial distortions and different angular deviation
of the vertical direction) and on real datasets and compared them with the P3P
algorithm for calibrated camera presented in [5], the P4P algorithm for camera
with unknown focal length from [3] and with the P4P algorithm for camera with
unknown focal length and radial distortion [9].

In all experiments we denote our new algorithms as up2p and up3p+f+Kk,
and compared algorithms as p3p [5], pdp+f [3] and pdp+f+k [9].

5.1 Synthetic data set

We initially studied our algorithms on synthetically generated ground-truth 3D
scenes. These scenes were generated randomly with the Gaussian distributions
in a 3D cube. Each 3D point was projected by a camera, where the camera
orientation and position were selected randomly but looking on the scene. Then
the radial distortion using the division model [6] was added to all image points
to generate noiseless distorted points. Finally, Gaussian noise with standard
deviation o was added to the distorted image points assuming a 1000 x 1000
pixel image.

Noise free data set In the first synthetic experiment, we have studied the nu-
merical stability of both proposed solvers on exact measurements and compared
them with the algorithms [5, 3, 9].

In this experiment 1000 random scenes and camera poses were generated.
The radial distortion parameter was set to ks = —0.2 and the focal length to
fqt = 1.5. In the case of our calibrated up2p algorithm, the p3p algorithm from [5]
and the pdp—+f algorithm [3] these values were used to precalibrate cameras.

The rotation error was measured as the rotation angle in the angle-axis rep-
resentation of the relative rotation RR;t1 and the translation error as the angle
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Fig. 2. The influence of the accuracy of the vertical direction on the estimation of
rotation (Left) and translation (Right) for our calibrated up2p algorithm.

between ground-truth and estimated translation vector. In this case the rotation
and translation errors for both our algorithms were under the machine precision
and therefore we were not able to properly display them here.

Figure 1 (Left) shows the logig relative error of the focal length f obtained
by selecting the real root closest to the ground truth value fy, = 1.5. The logio
absolute error of the radial distortion parameter is in Figure 1 (Right).

It can be seen that the new proposed up3p+f+k solver for camera with un-
known focal length and radial distortion and given vertical direction (Magenta)
provides more accurate estimates of both £ and f then the p4p+f+k solver
presented in [9] (Green) and the p4p-+f solver from [3] (Blue).

Vertical direction angular deviation In the real applications the vertical
direction obtained either by direct physical measurement by, e.g., gyroscopes
and IMUs or from vanishing points constructed in images is not accurate. The
angular accuracy of roll and pith angle in low cost IMUs like [26] is about 0.5°,
and in high accuracy IMUs is less than 0.02°.

Therefore, in the next experiment we have tested the influence of the accuracy
of the vertical direction on the estimation of rotation (Figure 2 (Left) and 3 (Top
left)), translation (Figure 2 (Right) and 3 (Top right)), focal length (Figure 3
(Bottom left)) and radial distortion (Figure 3 (Bottom right)). In this case the
ground truth focal length was f;; = 1.5 and the radial distortion kg, = —0.2.

For each vertical direction angular deviation 1000 estimates of both our al-
gorithms, the calibrated up2p (Figure 2) and the up3p+{+k with unknown focal
length and radial distortion (Figure 3), were made. The vertical direction angu-
lar deviation varied from 0° to 2°. All results in Figures 2 and 3 are represented
by the MATLAB function boxplot which shows values 25% to 75% quantile as a
blue box with red horizontal line at median. The red crosses show data beyond
1.5 times the interquartile range.

The rotation error is again measured as the rotation angle in the angle-axis
representation of the relative rotation RRQ}1 and the translation error as the
angle between ground-truth and estimated translation vector. Focal length and
radial distortion figures show directly estimated values.
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Fig. 3. The influence of the accuracy of the vertical direction on the estimation of ro-
tation (Top left), translation (Top right), focal length (Bottom right), radial distortion
(Bottom right) for our up3p-+f+k algorithm.

It can be seen that even for relatively high error in the vertical direction
the median values of estimated focal lengths and radial distortion parameters
are very close to the ground truth values (Green horizontal line). Note that the
angular rotation and translation errors cannot be smaller than the angular error
of the vertical direction.

Data affected by noise Boxplots in Figure 4 show behavior of both our solvers,
the calibrated up2p solver (Cyan) and up3p+{+k solver (Magenta), together
with the p3p algorithm [5] (Red), the p4p+f algorithm from [3] (Blue) and the
pdp algorithm [9] (Green) in the presence of noise added to image points.

In this experiment for each noise level, from 0.0 to 2 pixels, 1000 estimates
for random scenes and camera positions and fg; = 1.5, kg¢ = —0.2, were made.

Here it can be seen that since our algorithms use less points than [5,3,9]
they are little bit more sensitive to a noise added to the image points than the
algorithms [5,3,9]. The difference is only in the rotation error (Figure 4 (Top
left)) where both our new solvers outperform existing algorithms [5,3,9]. This
might be due to the fact, that the rotation axis is fixed in both our algorithms.
However, our new algorithms still provide good estimates also for translation
(Figure 4 (Top right)), focal length (Bottom left) and radial distortion (Bottom
right) in the presence of noise.
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Fig. 4. Error of rotation (Top left), translation (Top right), focal length estimates
(Bottom left) and radial distortion estimates (Bottom right) in the presence of noise
for our calibrated up2p algorithm (Cyan), the calibrated p3p algorithm from [5] (Red),
our p3p+f+k algorithm (Magenta), the p4p+f algorithm presented in [3] (Blue) and
the p4p+f+k algorithm [9] (Green)

Ransac experiment The final synthetic experiment shows behaviour of our
algorithms within the RANSAC paradigm [5]. Figure 5 shows the mean value of
the number of inliers over 1000 runs of RANSAC as a function of the number
of samples of the RANSAC. We again compare our calibrated up2p algorithm
(Cyan) with the p3p algorithm for calibrated camera presented in [5] (Red),
and our up3p+f+k algorithm for camera with unknown focal length and radial
distortion (Magenta) with the p4p+f algorithm from [3] (Blue) and the p4p+f+k
algorithm [9] (Green). Figure 5 (Left) shows results for 50% outliers, pixel noise
0.5pz, fqe = 1.5, kg = —0.2 and the vertical direction angular deviation 0.02°
and Figure 5 (Right) results for the same configuration but the vertical direction
angular deviation 1°. These vertical direction angle deviations reflect accessible
precisions using low cost and high cost IMUs. Vertical direction precision about
1° can be received by taking pictures from hand using standard smartphone.
As it can be seen both our new algorithms little bit outperform the remaining
algorithms [5,3,9].

Computation times Since both our problems result in solving one polyno-
mial equation of degree two in one variable and one, respectively two, systems
of linear equations and can be solved in a closed-form, they are extremely fast.
The Matlab implementation of both our solvers runs about 0.1ms. For compari-
son, our Matlab implementation of the p3p algorithm [5] runs about 0.6ms, the
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Fig. 6. Results of real experiment for vertical direction randomly rotated with standard
deviation 0.5°.

Matlab implementation of the pdp+f algorithm [3] downloaded from [17] about
2ms and the original implementation of the p4p+f+k algorithm [9] even about
70ms.

5.2 Real data

Synthetically generated vertical direction In the real experiment we cre-
ated 3D reconstruction from a set of images captured by an off-the-shelf camera.
We used reconstruction pipeline similar to one described in [23]. We take this re-
construction as a ground truth reference for further comparison even if it might
not be perfect. To simulate a measurement from gyroscope we have extracted
“vertical direction” from reconstructed cameras and randomly rotated them by
a certain angle. This way we have created 1000 random vertical direction with
normal distribution for maximal deviation of 0.02, 0.05 and 0.5 and 1 degrees to
simulate industry quality, standard and low cost gyroscope measurement. Note
that from the 3D reconstruction we have a set of 2D-3D tentative correspon-
dences as well as correct correspondences. To make registration more compli-
cated we added more outliers to the set of tentative correspondences for those
cameras where fraction of correct features was greater than 50%. We randomly
connected 2D measurements and 3D points to make 50% of tentative correspon-
dences wrong (outliers). Next, for each random vertical direction we executed
locally optimized RANSAC [4] with both our new algorithms. Further we also
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Fig. 7. Real experiment: Example of input images (Left). Results from RANSAC on
the image with small radial distortion (Center) and on the image with significant radial
distortion (Right)

Fig. 8. Results of real experiment for real IMU sensor from HTC HD2.

evaluated 1000 runs of locally optimized ransacs with the calibrated p3p algo-
rithm [5], the p4p+f algorithm presented in [3] and the pdp+{+k solver from [9]
and compared all results with ground truth rotation, translation and the fo-
cal length. Note that our calibrated up2p algorithm and the p3p algorithm for
calibrated camera from [5] require internal camera calibration. Hence we used
calibration obtained from the 3D reconstruction.

Results for vertical direction randomly rotated with standard deviation 0.5°
are in Figure 6. It can be seen that our new algorithms (up2p and up3p-+f+k)
provide comparable estimates of rotation (Left), translation (Center) and focal
length (Right) as algorithms p3p [5], pdp+f [3] and pdp+{+k [9] even for this
higher vertical direction deviation. Moreover, our algorithms use less points,
give only up to two solutions which have to be verified inside ransac loop and
are considerably faster than the algorithms [5,3,9]. All these aspects are very
important in RANSAC and real applications. The mean value of the number
of inliers over 1000 runs of RANSAC as a function of the number of samples
of the RANSAC for two cameras and vertical direction deviation 0.5° can be
seen in Figure 7. It can be seen that both our algorithms outperform existing
algorithms [5, 3, 9].
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Vertical direction obtained from real IMU In this experiment we used
HTC HD2 phone device to obtain real images with IMU data. We took by hand
several images of a book placed on a A4 paper. The image size was 800 x 600 pix-
els. We assigned 3D coordinates to the paper corners and manually clicked corre-
sponding 2D points in all input images. First, RANSAC with the new solvers was
used. Then, a non-linear refinement [8] optimizing focal length, radial distortion,
rotation and translation was performed. For our calibrated up2p algorithm we
used radial distortion and focal length calculated using non-linearly improved
result obtained from up3p+f+k.

Figure 8 shows 3D model of the paper and book back projected to images
using calculated camera poses. Green wire-frame model of the book shows esti-
mated camera from minimal sample using our algorithms (up2p (Left), up3p+f+k
(Center+Right)), red color represent model after non-linear refinement. Magenta
lines represent gravity vector obtained from phone device. As it can be seen we
have obtained quite precise results (reprojection error about 1.5px) even for
standard images taken by hand and without calibration of relative position of
IMU sensor and camera inside the phone.

6 Conclusion

In this paper we have presented new closed-form solutions to two minimal abso-
lute pose problems for the case of known vertical direction, i.e. known rotation
of the camera around two axes. In the first problem we estimate absolute pose
of a calibrated camera and in the second of a camera with unknown focal length
and radial distortion.

We show that information about the vertical direction obtained by direct
physical measurement by, e.g. gyroscopes and inertial measurement units (IMUs)
or from vanishing points constructed in images, can radically simplify the camera
absolute pose problem. In the case of two presented problems the information
about the vertical direction leads to very fast, efficient and numerically stable
closed-form solutions. For comparison the only existing algorithm for estimating
absolute pose of a camera with unknown focal length and radial distortion [9]
without the vertical direction leads to LU decomposition of 1134 x 720 matrix
and further eigenvalue computations and is very impractical in real applications.

Experiments show that both our algorithms are very useful in real applica-
tion like structure from motion. Moreover, since still more and more cameras
and smart devices are equipped with IMUs and can save information about the
vertical direction, i.e. roll and pitch angles, to the image header, we see the great
future potential of presented solvers.
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