
Automatic Generator of Minimal Problem Solvers

Zuzana Kukelova1, Martin Bujnak1,2 and Tomas Pajdla1

1 Center for Machine Perception
Czech Technical University, Prague

2 Microsoft Corporation
kukelova,bujnam1,pajdla@cmp.felk.cvut.cz

Abstract. Finding solutions to minimal problems for estimating epipolar geom-
etry and camera motion leads to solving systems of algebraic equations. Often,
these systems are not trivial and therefore special algorithms have to be designed
to achieve numerical robustness and computational efficiency. The state of the
art approach for constructing such algorithms is the Gröbner basis method for
solving systems of polynomial equations. Previously, the Gröbner basis solvers
were designed ad hoc for concrete problems and they could not be easily applied
to new problems. In this paper we propose an automatic procedure for gener-
ating Gröbner basis solvers which could be used even by non-experts to solve
technical problems. The input to our solver generator is a system of polynomial
equations with a finite number of solutions. The output of our solver generator
is the Matlab or C code which computes solutions to this system for concrete
coefficients. Generating solvers automatically opens possibilities to solve more
complicated problems which could not be handled manually or solving existing
problems in a better and more efficient way. We demonstrate that our automatic
generator constructs efficient and numerically stable solvers which are compara-
ble or outperform known manually constructed solvers. The automatic generator
is available at http://cmp.felk.cvut.cz/minimal 3.

1 Introduction

Many problems can be formulated using systems of algebraic equations. Examples are
the minimal problems in computer vision, i.e. problems solved from a minimal num-
ber of point correspondences, such as the five point relative pose problem [20], the
six point focal length problem [18], six point generalized camera problem [19], the
nine point problem for estimating para-catadioptric fundamental matrices [9], the eight
point problem for estimating fundamental matrix and single radial distortion parameter
for uncalibrated cameras [11], the six point problem for estimating essential matrix and
single radial distortion parameter for calibrated cameras [12, 4], the nine point prob-
lem for estimating fundamental matrix and two different radial distortion parameters
for uncalibrated cameras [12, 4]. These are important problems with a broad range of
applications [10].

3 This work has been supported by EC projects FP6-IST-027787 DIRAC and MRTN-CT-2004-
005439 VISIONTRAIN and grants MSM6840770038DMCMIII, STINT Dur IG2003-2 062
and MSMT KONTAKT 9-06-17.

Often, polynomial systems which arise are not trivial. They consist of many polyno-
mial equations in many unknowns and of higher degree. Therefore, special algorithms
have to be designed to achieve numerical robustness and computational efficiency. The
state of the art method for constructing such algorithms, the solvers, is the Gröbner basis
method for solving systems of polynomial equations. It was used to solve all previously
mentioned computer vision problems.

The Gröbner basis solvers in computer vision are mostly designed for concrete prob-
lems and in general consist of three key steps. In the first step, the problem is solved
using a computer algebra system, e.g. Macaulay 2 or Maple, for several (many) random
coefficients from a finite field. This is done using a general technique for solving poly-
nomial equations by finding a Gröbner basis for original equations [6]. In this phase,
the basic parameters of the problem are identified, such as whether there exists a finite
number of solutions for general coefficients and how “hard” is to obtain the Gröbner
basis, and which monomials it contains. This procedure is automatic and relies on gen-
eral algorithms of algebraic geometry such as Buchberger [1] or F4 [8] algorithm. The
computations are carried out in a finite field in order to avoid expensive growth of co-
efficients and to avoid numerical instability.

In the second step, a special elimination procedure, often called “elimination tem-
plate” is generated. This elimination template says which polynomials from the ideal
should be added to the initial polynomial equations to obtain a Gröbner basis or at least
all polynomials needed for constructing a special matrix, called “action matrix”, and
thus solving the initial equations. The goal of this step is to obtain a computationally
efficient and numerically robust procedure. Until now, this step has been mainly man-
ual requiring to trace the path of elimination for random coefficient form the finite field,
checking redundancies and possible numerical pitfalls, and writing down a program in
a procedural language such as Matlab or C.

In the last step, the action matrix is constructed from the resulting equations and
the solutions to the original problem are obtained numerically as the eigenvalues or
eigenvectors of the action matrix [7].

The first and the third step are standard and well understood. It is the second step
which still involves considerable amount of craft and which makes the process of solver
generating rather complex and virtually impenetrable for a non-specialist. Moreover, for
some problems it need not be clear how their elimination templates were generated and
therefore non-specialists often use them as black boxes, are not able to reimplement
them, improve them or create similar solvers for their own new problems.

In this paper we present an automatic generator of the elimination templates for
Gröbner basis solvers to an interesting class of systems of polynomial equations which
appear in computer vision problems. We have to accept that there is no hope to obtain an
efficient and robust solver for completely general systems of polynomial equations since
the general problem is known to be NP-complete and EXPSPAPCE-complete [15]. On
the other hand, all known computer vision problems share the property that the elimi-
nation path associated with their solution is the same for all interesting configurations
of coefficients of a given problem.

Consider, for instance, the classical 5 point problem for estimating the essential
matrix from 5 point correspondences [16, 20]. In general, the elimination path used to

solve the 5 point problem depends on actual image coordinates measured. Fortunately,
for non-degenerate image correspondences, i.e. for those which lead to a finite number
of essential matrices, the elimination path is always the same. Therefore, it is enough
to find the path for one particular non-degenerate configuration of coefficients and then
use the same path for all non-degenerate configuration of coefficients. The paths for
degenerate configurations of coefficients may be very different and there may be very
many of them but we need not consider them.

We propose an automatic generator that finds one elimination path. It can find any
path. The choice of the path is controlled by the particular coefficients we choose to
generate the elimination template. We demonstrate that our automatic generator con-
structs efficient and numerically stable solvers which are comparable or outperform
known manually constructed solvers.

The input into our automatic generator is the system of polynomial equations which
we want to solve with a particular choice of coefficients from Zp that choose the par-
ticular elimination path. For many problems, the interesting “regular” solutions can be
obtained with almost any random choice of coefficients. Therefore, we use random co-
efficients from Zp. The output from the generator is the Matlab or C code solver that
returns solutions to this system of polynomial equations for concrete coefficients from
R. In online computations, only this generated solver is called.

In the next two sections we review the Gröbner basis method for solving systems
of polynomial equations and the solvers based on this method. Section 5 is dedicated
to our automatic procedure for generating Gröbner basis solvers. Then, we demonstrate
the results of our automatic generator on some minimal problems.

2 Solving systems of polynomial equations

Our goal is to solve a system of algebraic equations

f1 (x) = ... = fm (x) = 0 (1)

which are given by a set of m polynomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]} in n
variables x = (x1, ..., xn) over the field of complex numbers.

Such system of algebraic equations can be written in a matrix form

MX = 0, (2)

where X is a vector of all monomials which appear in these equations and M is a coef-
ficient matrix. In the next we mostly consider this matrix representation of systems of
equations and, for example, by Gauss-Jordan (G-J) elimination of equations we under-
stand G-J elimination of the corresponding coefficient matrix M.

Solving systems of algebraic polynomial equations is a very challenging problem.
There doesn’t exist one robust, numerically stable and efficient method for solving such
systems in general case. Therefore, special algorithms have to be designed for specific
problems.

The general Gröbner basis method for solving systems of polynomial equations can
be quite inefficient in some cases but it was recently used successfully as the basis for
efficient solvers of computer vision minimal problems. We now describe this method
and the solvers based on this method.

3 Gröbner basis method

The polynomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]} define ideal I , which is the set of
all polynomials that can be generated as polynomial combinations of initial polynomials
F

I = {Σm
i=1fi pi | pi ∈ C [x1, ..., xn]} , (3)

where pi are arbitrary polynomials from C [x1, ..., xn].
We can define division by an ideal I in C [x1, ..., xn] as the division by the set F of

generators of I . There are special sets of generators, Gröbner bases, of the ideal I , for
which this division by the ideal I is well defined in the sense that the remainder on the
division doesn’t depend on the ordering of the polynomials in the Gröbner basis G. This
means that the remainder of an arbitrary polynomial f ∈ C [x1, ..., xn] on the division
by G in a given monomial ordering is uniquely determined. Furthermore, f ∈ I if and
only if the reminder of f on the division by G is zero (f

G
= 0). This implies that

f
G

+ gG = f + g
G

and f
G

gG
G

= fg
G

Gröebner bases generate the same ideal as the initial polynomial equations and
therefore have the same solutions. However, it is important that they are often easier
to solve (e.g. the reduced Gröbner basis w.r.t. the lexicographic ordering contains poly-
nomial in one variable only). Computing such basis and “reading off” the solutions
from it is one standard method for solving systems of polynomial equations. Although
this sounds really nice and easy the reality is much harder. The problem is that the com-
putation of Gröbner bases is in general an EXPSPACE-complete problem, i.e. that large
space is necessary for storing intermediate results. Fortunately in many specific cases,
the solution to a system of polynomial equations computed using Gröbner bases can be
obtained much faster.

For solving systems of polynomial equations, the most suitable ordering is the lex-
icographic one which results in a system of equations in a “triangular form” with one
equation in one variable only. Unfortunately, computation of such Gröbner basis w.r.t.
the lexicographic ordering is very time consuming and for most of the problems can
not be used. Therefore in many cases a Gröbner basis G under another ordering, e.g.
the graded reverse lexicographical ordering (grevlex), which is often easier to compute,
is constructed. Then, other properties of this basis are used to obtain solutions to the
initial system of polynomial equations.

Thanks to the property that the division by the ideal I is well defined for the Gröbner
basis G, we can consider the space of all possible remainders on the division by I . This
space is know as a quotient ring and we will denote it as A = C [x1, ..., xn] /I . It is
known that if I is a radical ideal [6] and the set of equations F has a finite number of
solutions N , then A is a finite dimensional space with dim(A) = N . Now we can use
nice properties of a special action matrix defined in this space, to find solutions to our
system of equations (1).

Consider the multiplication by some polynomial f ∈ C [x1, ..., xn] in the quotient
ring A. This multiplication defines a linear mapping Tf from A to itself. Since A is
a finite-dimensional vector space over C, we can represent this mapping by its matrix
Mf with respect to some monomial basis B =

{
xα|xαG = xα

}
of A, where xα is

a monomial xα = xα1
1 xα2

2 ...xαn
n and xαG is the reminder of xα on the division by

G. The action matrix Mf can be viewed as a generalization of the companion matrix
used in solving one polynomial equation in one unknown. It is because solutions to our
system of polynomial equations (1) can be easily obtained from the eigenvalues and
eigenvectors of this action matrix [7].

4 Gröbner basis solver

The Gröbner basis method for solving systems of polynomial equations based on ac-
tion matrices was recently used to solve many minimal problems in computer vision.
The solvers to all these minimal problems are very similar and are based on the same
concepts. Many minimal problems in computer vision, including all mentioned above,
have the convenient property that the monomials, appearing in the set of initial gen-
erators F are always same irrespectively from the concrete coefficients arising from
non-degenerate image measurements. Therefore, the leading monomials of the corre-
sponding Gröbner basis, and thus the monomials in the basis B of the quotient ring A,
are generally the same and can be found once in advance. This is an important observa-
tion which helps to solve all these problems efficiently.

The first step of these solvers is to analyze the particular problem, i.e. whether it
is solvable and how many solutions there are, in a randomly chosen finite prime field
Zp (Z/ 〈p〉) with p >> 7. Coefficients in Zp can be can be represented accurately and
efficiently. It speeds up computations, minimizes memory requirements and especially
avoids numerical instability. Computing with floating point approximations of the co-
efficients may lead to numerical instability since it may be difficult to determine when
the coefficients become zero.

Next, the Gröbner basis G, and the basis B are found for many random coefficients
from Zp. Thanks to algebraic geometry theorem [21], we know that if the bases G
and B remain stable for many different random coefficients, i.e. if B consists of the
same monomials, they are generically equivalent to the bases of the original system of
polynomial equations with rational coefficients.

With this information in hand the solver can be created. The solver typically con-
sists of hand made elimination templates [18, 19, 9, 11] (or one template [2–5]) that
determine which polynomials from the ideal I should be added to the initial equations
to obtain the Gröbner basis G or at least all polynomials needed for constructing the
action matrix Mf . These elimination templates are the crucial part of the solver.

An important observation has been made in [11]. It was observed that the action
matrix can be constructed without computing a complete Gröbner basis G. All we need
for creating the action matrix Mf is to construct polynomials from the ideal I with
leading monomials from the set (f ·B)\B and the remaining monomials from B. This
fact was in some way implicitly used in previous solvers [18, 19, 9] but hasn’t been
fully articulated.

Consider that the basis B =
{
xα(1), . . . ,xα(N)

}
of A, which has been found once

in advance by computations in Zp. Then, the polynomials we need for constructing the
action Mf matrix are of the form

qi = fxα(i) + hi, (4)

with hi =
∑N

j=1 cjixα(j) ∈ A and xα(i) ∈ B. It is because to construct the action

matrix Mf we need to compute Tf

(
xα(i)

)
= fxα(i)

G
for all xα(i) ∈ B [7]. However,

if for some xα(i) ∈ B and chosen f , fxα(i) ∈ A, then Tf

(
xα(i)

)
= fxα(i)

G
=

fxα(i) =
∑N

j=1 djixα(j) and we are done. For all other xα(i) ∈ B, for which fxα(i) /∈
A, we consider the above mentioned polynomials qi. For these xα(i), Tf

(
xα(i)

)
=

fxα(i)
G

= qi − hi
G

= −hi ∈ A.
Then the action matrix Mf has the form

Mf =

0BBBBBB@
−c11 d12 −c13 . . . −c1N

−c21 d22 . .
.
.
.

−cN1 dN2 −cN3 . . . −cNN

1CCCCCCA , (5)

where columns containing cji correspond to the monomials xα(i) ∈ B for which
fxα(i) /∈ A and columns containing dji to the monomials xα(i) ∈ B for which
fxα(i) =

∑N
j=1 djixα(j) ∈ A.

Since the polynomials qi are from the ideal I , they can be generated as algebraic
combinations of the initial generators F . This can be done using several methods. One
possible way is to start with F and then systematically generate new polynomials from
I by multiplying already generated polynomials by individual variables and reducing
them each time by the G-J elimination. This method was, for example, used in [11] and
resulted in several G-J eliminations of coefficient matrices M1, . . . , Ml.

Another possible way is to generate all new polynomials in one step by multiplying
polynomials from F with selected monomials and reducing all generated polynomials
at once using single G-J elimination of one coefficient matrix M. This method was used
in [2] and it was observed to be numerically more stable.

Such systematic generation of polynomials qi results in many unnecessary polyno-
mials, many of which can be eliminated afterwards in a simple and intuitive way [5].
The method starts with the matrix M, which has the property that after its G-J elimination
all polynomials qi necessary for constructing the action matrix are obtained.

Since it is known which monomials appear in qi for a particular problem to be
solved, the number of generated polynomials can systematically be reduced in the fol-
lowing way:

1. For all rows from M starting with the last row r (i.e. with the highest degree poly-
nomial) do
(a) Perform G-J elimination on the matrix M without the row r
(b) If the eliminated matrix contains all necessary polynomials qi, then M := M\{r}

All the previous steps, i.e. finding the number of solutions, basis G, basis B, the
generation of elimination template(s) and the reduction of unnecessary polynomials,
are performed only once in the automatic generator. The generated online solver, which
the user come into contact with, takes the elimination template, the matrix M, fills it

Fig. 1. Block diagram of the automatic generator.

with concrete coefficients arising from image measurements and performs its G-J elim-
ination. The rows of M then correspond to the polynomials qi and are used to create
the action matrix. Finally, the eigenvalues or the eigenvectors of this action matrix give
solutions to the problem.

5 The automatic procedure for generatig Gröbner basis solvers

In this section we describe our approach to automatic generation of such Gröbner basis
solvers to general problems.

The input of this automatic generator is the system of polynomial equations with
coefficients from Zp and the output is the solver, the MATLAB or C code, which returns
solutions to this system of polynomial equations for concrete coefficients from R.

Our automatic generator consists of several independent modules (Figure 1). Since
all these parts are independent, they can be further improved or replaced by more effi-
cient implementations. Next we briefly describe each of these parts.

5.1 Polynomial equations parser

First, input equations are split into coefficient and monomials. For the automatic gen-
erator, we instantiate each known parameter occurring in coefficients with a random
number from the Zp. We assign a unique identifier to each coefficient used. This is
important for the code generation module to be able to track the elimination path.

5.2 Computation of the basis B and the number of solutions

This module starts with the system of polynomial equations F , which we want to solve,
with random coefficients from Zp. For many problems, the interesting “regular” solu-
tions can be obtained with almost any random choice of coefficients. The coefficients
from Zp speed up computations, minimize memory requirements and especially avoid
numerical instability.

The generator first verifies if the input system of equations F has a finite number
of solution, i.e. the initial polynomial equations generate a zero dimensional ideal, and
how many solutions there is. If the system has a finite number of solutions, we compute

the Gröbner basis G w.r.t. the grevlex [6] monomial ordering and the basis B of the
quotient ring A. The output of this part of the generator is the basis B of the quotient
ring A.

To obtain this information we use the existing algorithms implemented in algebraic
geometry softwares Macaulay 2 or Maple. Both these softwares are able to compute in
finite prime fields and provide efficient implementations of all functions that we need
for our purpose. Moreover, these functions can be called directly from MATLAB and
their output can be further used in the generator. Modularity of the generator allows
replacing this part of the code by another existing module computing the Gröbner basis
G and the basis B [6].

5.3 Single elimination template construction

The input to this third, most important, step of our automatic generator is the basis B of
the quotient ring A and the polynomial f for which we want to create the action matrix.
We use an individual variable i.e. f = xk, called “action variable”, to create the action
matrix.

The goal is to generate now all necessary polynomials for constructing the action
matrix Mxk

. The method described in Section 4 calls for generating polynomials from
ideal I with leading monomials from the set (xk ·B)\B and the remaining monomials
from B, i.e. polynomials of the form qi = xkxα(i) +

∑N
j=1 cjixα(j) ∈ I .

As explained in Section 4, there are several ways how to generate these polynomials
from the initial polynomial equations F . We have decided to generate them in one step
by multiplying polynomials from F with selected monomials and reducing all generated
polynomials at once using a single G-J elimination of one coefficient matrix.

These monomial multiples of polynomials F , which should be added to the initial
equations to obtain all necessary polynomials qi, are generated in this part of the auto-
matic generator. This is done by systematically generating polynomials of I and testing
them. We stop when all necessary polynomials qi are obtained. The generator tries to
add polynomials starting with the polynomials with as low degree as possible. Thus, it
first multiplies input polynomials with the lowest degree monomials and then moves to
the higher degree monomials. The polynomial generator can be described as follows:

1. Generate all monomial multiples xαfi of degree ≤ d (sort them by leading term
w.r.t. grevlex ordering).

2. Write the polynomials xαfi in the form MX = 0, where M is the coefficient matrix
and X is the vector of all ordered monomials.

3. Simplify matrix M by the G-J elimination.
4. If all necessary polynomials qi have been generated, stop.
5. Else set d = d + 1. Go to 1.

In this way we generate polynomials, which, after G-J elimination of their correspond-
ing coefficient matrix M, contain all necessary polynomials qi. These polynomials, i.e.
the matrix M, is the so called elimination template. Unfortunately, we often generate
many unnecessary polynomials. In the next part of our automatic generator we try to
minimize the number of these unnecessary polynomials.

5.4 Reducing the size of the template

This part of the automatic generator starts with the polynomials generated in the pre-
vious step. We know that after the G-J elimination of these polynomials (i.e. of the
corresponding matrix M) we obtain all polynomials that we need for constructing of the
action matrix. Starting with the coefficient matrix M and with the information about the
form of the necessary polynomials qi, we systematically reduce the number of gener-
ated polynomials using the method described in Section 4. The algorithm in Section 4
removes polynomials one by one and each time calls expensive G-J elimination. This
is not efficient. It has almost o(n4) complexity in the number n of polynomials used.
We enhanced this algorithm in several ways: (1) we use sparse G-J elimination, since
elimination template is quite sparse matrix, (2) we remove more than one polynomials
at once with the heuristic - if we succeeded to remove k polynomial, then we remove
2 k polynomials in the next step. If we failed to remove k polynomials, we try to remove
only 1

4 k polynomials in the next step. These two steps considerably speed up the re-
duction process. Moreover, we can employ the fact that polynomials in the elimination
template are ordered by the degree of their leading monomials. In G-J elimination of
such ordered polynomials we can exploit results from previous G-J eliminations.

5.5 Construction the action matrix

To create the template for the action matrix Mxk
, we identify those rows of eliminated

matrix M (matrix M after the G-J elimination) which correspond to polynomials qi. The
action matrix will than contain coefficients from these rows which correspond to the
monomials from the basis B and will have the form (5).

For the generated online solver we just need to know which rows and columns we
need to extract. Note that the structure of the eliminated matrix is always the same for
all instances of the problem.

5.6 Generating efficient online solver

The generated online solver consist of the following steps:

1. construction of the coefficient matrix (from elimination template);
2. G-J elimination;
3. action matrix extraction;
4. solution extraction from eigenvectors of the action matrix.

To build the coefficient matrix we use unique identifiers associated with coefficients
of each of the input polynomials. Hence besides coefficient matrix in Zp we maintain
matrix with coefficient identifiers, the index matrix, and apply all operations performed
on actual coefficients, i.e. adding, removing rows and linear combination of rows, to the
index matrix.

Recall that in the construction of the elimination template we use the input equa-
tions and multiply them by monomials. This is nothing else than shifting identifiers
associated to input polynomials in the index matrix.

−20 −15 −10 −5 0 5
0

100

200

300

400

500

600

700

Log
10

 of relative error in focal length

F
re

qu
en

cy

Fig. 2. The log10 relative errors of the focal length for 10000 runs of two solvers. Original
solver [18] (Red, darker) and our generated solver (Green, lighter) on the synthetic dataset with-
out noise.

Reducing of the polynomials and further optimizations results only in removing
rows or columns in the index matrix. Hence, the code generator creates code which
simply puts coefficients of the input polynomials to correct places using coefficients
identifiers. Then, after G-J elimination, it reads values form precomupted rows and
columns and builds the action matrix.

6 Experiments

In this section we demonstrate that our automatic generator constructs efficient and
numerically stable solvers which are comparable or outperform known manually con-
structed solvers. For comparison, we consider five recently solved minimal problems
which have a broad range of applications and can be used in a RANSAC-based estima-
tion.

Since the automatic procedure described in this paper generates very similar Gröbner
basis solvers as those proposed in the original solutions, there is no point in testing the
behavior of generated solvers under noise, outliers or on real images.

Generated solvers solve the same system of polynomial equations using the same
algebraic method as the original solvers. The difference is only in the number of gen-
erated polynomials and therefore the size of matrices, elimination templates, which are
used to obtain solutions. For all considered problems we have obtained comparable or
quite smaller elimination templates than those used in the original solvers.

We choose two problems, the well known [18] and more complex “radial distortion
problem” [4], to evaluate and compare the intrinsic numerical stability of the existing
solvers with our solvers generated automatically. For the remaining three problems we
compare only the sizes of generated elimination templates.

The numerical stability of the solvers is compared on synthetically generated scenes
without noise. These generated scenes consist of 1000 points distributed randomly
within a cube. Points were projected on image planes of the two displaced cameras
with the same focal lengths. We use different radial distortions in the “radial distortion
problem”.

6.1 Six Point Focal Length Problem

The problem of estimating the relative camera position for two cameras with unknown
focal length is a classical and popular problem in computer vision. The minimal number
of point correspondences needed to solve this problem is six. This minimal problem was
solved by Stewénius et. al. [18] using the Gröbner basis techniques and has 15 solutions.

In this solution the linear equations from the epipolar constraint are first used to
parametrize the fundamental matrix with two unknowns, F = F0 + xF1 + yF2. Using
this parameterization, the rank constraint for the fundamental matrix and the trace con-
straint for the essential matrix result in ten third and fifth order polynomial equations in
the three unknowns x, y and w = f−2, where f is the unknown focal length.

The Gröbner basis solvers [18] starts with these ten polynomial equations which
can be represented in a 10× 33 matrix. In the first step two new polynomials are added
to the initial polynomial equations and eliminated by G-J elimination. After this four
new polynomials are added and eliminated. Finally two more polynomials are added
and eliminated. The resulting system then contains the Gröbner basis and can be used
to construct the action matrix. The resulting solver therefore consists of three G-J elim-
inations of three matrices of size 12× 33, 16× 33 and 18× 33.

More recently, another Gröbner basis solver to this problem was proposed in [2].
This solver uses only one G-J elimination of a 34×50 matrix and uses special technique
for improving the numerical stability of Gröbner basis solvers based on changing the
basis B. In this paper it was shown that this solver gives more accurate results than the
original solver [18].

Our automatic generator starts with the ten initial polynomial equations in three
unknowns. For this problem we have generated three different solvers for all three vari-
ables (action matrices for three different action variables x, y and w).

For the action variable w our generator first generates all monomial multiples of
initial ten polynomial equations up to total degree eight. This results in the 236 × 165
matrix which contains all necessary polynomials qi. After the reduction step only 41
polynomials in 60 monomials remained.

For the action variables x and y our generator generates all monomial multiples of
initial ten polynomial equations up to total degree seven. This results in the 125× 120
matrix. In the reduction step 94 polynomials out of these 125 are removed resulting
in 31 polynomials in 50 monomials. After the G-J elimination of the corresponding
31× 50 matrix (in fact 31× 46 matrix is sufficient thanks to removing columns that do
not affect G-J elimination) all necessary polynomial are obtained and the action matrix
Mx (My) is created. Our generated solver results in a little bit smaller matrix than the
solver proposed in [2].

Since we did not have the source code of the solver proposed in [2], we have com-
pared our generated solver with the original solver proposed by Stewénius [18].

The log10 relative errors of the focal length for 10000 runs of both solvers (original
Stewénius solver (Red) and our automatically generated solver (Green)) are shown in
Figure 2. Our generated solver gives a little bit more accurate results than Stewéniuse’s
original solver.

As we have already mentioned, we have no source code to the solver proposed
in [2], but according to the results presented in this paper our generated solver gives

−20 −15 −10 −5 0 5
0

20

40

60

80

100

120

Log
10

 relative error of λ
1

F
re

qu
en

cy

−20 −15 −10 −5 0 5
0

20

40

60

80

100

120

Log
10

 relative error of λ
2

F
re

qu
en

cy

Fig. 3. The log10 relative errors of the radial distortion parameters λ1 (Left) and λ2 (Right) for
1000 runs of three different solvers. Original solver with the basis selection [4] (Red, darker),
original solver without the basis selection (Blue, dotted) and our generated solver (Green, lighter)
on the synthetic dataset without noise .

very similar results (log10 relative errors around 10−13 − 10−14) as this solver which
uses further special technique for improving the numerical stability.

6.2 Nine Point Radial Distortion Problem

The minimal problem of simultaneous estimation of fundamental matrix and two differ-
ent radial distortion parameters for two uncalibrated cameras and nine image point cor-
respondences has been successfully solved in floating point arithmetic only recently [4].
This problem has 24 solutions and results in ten polynomial equations in ten unknowns.
These equations can be simplified to four equations in four unknowns. The existing
Gröbner basis solver [4] starts with these four equations and to obtain the action matrix
first generates all monomial multiples of these initial equations up to total degree eight.
This gives 497 equations. Using “fine tuning” authors reduce the number of used equa-
tions to 393 equations in 390 monomials. After the G-J of the corresponding 393× 390
matrix all necessary polynomials for constructing the action matrix Mf31 are obtained.

Our automatic procedure starts with simplified four polynomial equations in four
unknowns. First, the generator also generates all monomial multiples of the initial poly-
nomial equations up to total degree eight. In the reduction step, 318 out of these 497
polynomials are removed, resulting in 179 polynomials in 212 monomials for action
variables f31 and also for λ2. After the G-J elimination of the corresponding 179× 212
matrix (in fact 179× 203 matrix is sufficient) all necessary polynomial qi are obtained
and the action matrix Mf31 (Mλ2) is constructed.

We have compared our generated solver with the original solver proposed in [4]
which uses special technique for improving the numerical stability based on changing
the basis B and also with the “one elimination solver” (the same solver as in [4]) but
without this basis selection.

The log10 relative errors of the two radial distortion parameters λ1 and λ2 for 1000
runs of these solvers, i.e. the solver [4] with the basis selection (Red, darker), the
solver [4] without the basis selection (Blue, dotted) and our generated solver (Green,
lighter), are shown in Figure 3.

Original solver Our generated solver

5pt relative pose problem [20]
1 elimination 1 elimination

10× 20 10× 20

6pt focal length problem [18, 2]

3 eliminations [18]
12× 33, 16× 33 and 18× 33 1 elimination

1 elimination [2] 31× 46
34× 50

6pt radial distortion problem [4]
1 elimination 1 elimination
320× 363 238× 290

8pt radial distortion problem [11]
3 eliminations 1 elimination

8× 22,11× 30, 36× 50 32× 48

9pt radial distortion problem [4]
1 elimination 1 elimination
393× 390 179× 203

Table 1. The comparison of the size of the elimination templates used in our generated solvers
with the size of the elimination templates used in the original solvers.

The best results gives the original solver [4] with basis selection. A classical Gröbner
basis solver (without this basis selection) gives very similar results as our automatically
generated solver. Although these results are still very good (log10 relative errors around
10−6) they can be further enhanced using the same technique for improving the numer-
ical stability as it was used in [4].

6.3 Elimination template(s) size

We have compared the size of the elimination templates used in our generated solvers
with the size of the elimination templates used in the original solvers for three other
minimal problems, (i) five point relative pose problem [20], (ii) problem of estimating
epipolar geometry and single distortion parameter for two uncalibrated cameras and
eight point correspondences [11], and (iii) problem of estimating epipolar geometry
and single distortion parameter for two calibrated cameras and six point correspon-
dences [4]. The results for these three minimal problems together with the results for
the two previously discussed problems are shown in Table 1. For all these problems we
have obtained smaller or the same size elimination templates than those used in original
solvers. Smaller templates in faster solvers.

6.4 Computation time

We have implemented the generator in MATLAB. Computation times demand on the
problem. For several problems we have tested, the generator running time was from
nine seconds to two minutes. Running times of the resulting automatically generated
online solvers were in milliseconds.

7 Conclusion

We have proposed an automatic procedure for generating Gröbner basis solvers for an
interesting problems which appear in computer vision and elsewhere. This automatic

generator can be easily used even by non-experts to solve their own new problems.
The input to the generator is a system of polynomial equations with a finite number of
solutions and the output is the Matlab or C code which computes solutions to this sys-
tem for concrete coefficients. We have demonstrated the functionality of our generator
on several minimal problems. Our generator constructs efficient and numerically stable
solvers which are comparable or outperform known manually constructed solvers in ac-
ceptable time. The automatic generator is available at http://cmp.felk.cvut.cz/minimal.

References

1. B. Buchberger Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal PhD Thesis, Mathematical Institute, University
of Innsbruck, Austria, 1965.

2. M. Byröd, K. Josephson, and K. Aström. Improving numerical accuracy of gröbner basis
polynomial equation solver. In International Conference on Computer Vision, 2007.

3. M. Byröd, K. Josephson, and K. Aström. Fast Optimal Three View Triangulation. ACCV
2007, (2) pp. 549-559, 2007.

4. M. Byröd, Z. Kukelova, K. Josephson, T. Pajdla, K. Åström, Fast and robust numerical solu-
tions to minimal problems for cameras with radial distortion, CVPR 2008.

5. M. Bujnak, Z. Kukelova, T. Pajdla, A general solution to the P4P problem for camera with
unknown focal length, CVPR 2008.

6. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer-Verlag, 1992.
7. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer-Verlag, 2005.
8. J.-C. Faugere. A new efficient algorithm for computing gröbner bases (F4). Journal of Pure

and Applied Algebra, 139(1-3):61–88, 1999.
9. C. Geyer, and H. Stewenius. A nine-point algorithm for estimating para-catadioptric funda-

mental matrices. CVPR 2007, Minneapolis, 2007
10. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, 2003.
11. Z. Kukelova and T. Pajdla. A minimal solution to the autocalibration of radial distortion.

CVPR 2007, Minneapolis, 2007
12. Z. Kukelova and T. Pajdla. Two minimal problems for cameras with radial distortion. In

OMNIVIS 2007, Rio de Janeiro, 2007
13. H. Li. A simple solution to the six-point two-view focal-length problem. ECCV 2006.
14. H. Li and R. Hartley. Five-point motion estimation made easy. ICPR 2006.
15. E. W. Mayr. Some complexity results for polynomial ideals. Journal of Complexity, vol. 13,

n. 3, pp. 303–325, 1997
16. D. Nister. An efficient solution to the five-point relative pose. IEEE PAMI, 26(6):756–770,

2004.
17. H. Stewénius. Gröbner basis methods for minimal problems in computer vision. PhD thesis,

Lund University, 2005.
18. H. Stewénius, D. Nister, F. Kahl, and F. Schaffalitzky. A minimal solution for relative pose

with unknown focal length. In CVPR 2005, pp. 789–794.
19. H. Stewénius, D. Nister, M. Oskarsson, and K. Astrom. Solutions to minimal generalized

relative pose problems. OMNIVIS 2005.
20. H. Stewénius, C. Engels, and D. Nister. Recent developments on direct relative orientation.

ISPRS J. of Photogrammetry and Remote Sensing, 60:284–294, 2006.
21. C. Traverso. Gröbner trace algorithms. In ISSAC, pages 125–138, 1988.

