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Abstract

Epipolar geometry and relative camera pose computa-

tion are examples of tasks which can be formulated as min-

imal problems and solved from a minimal number of image

points. Finding the solution leads to solving systems of al-

gebraic equations. Often, these systems are not trivial and

therefore special algorithms have to be designed to achieve

numerical robustness and computational efficiency. In this

paper we provide a solution to the problem of estimating ra-

dial distortion and epipolar geometry from eight correspon-

dences in two images. Unlike previous algorithms, which

were able to solve the problem from nine correspondences

only, we enforce the determinant of the fundamental matrix

be zero. This leads to a system of eight quadratic and one

cubic equation in nine variables. We simplify the system by

eliminating six of these variables. Then, we solve the sys-

tem by finding eigenvectors of an action matrix of a suitably

chosen polynomial. We show how to construct the action

matrix without computing complete Gröbner basis, which

provides an efficient and robust solver. The quality of the

solver is demonstrated on synthetic and real data.

1. Introduction

Estimating1 camera models from image matches is an

important problem. It is one of the oldest computer vision

problems and even though much has already been solved

some questions remain still open.

For instance, a number of techniques for modeling and

estimating projection models of wide angle lenses ap-

peared recently [6, 17, 9, 26, 27]. Often in this case,

the projection is modeled as the perspective projection fol-

lowed by radial “distortion” in the image plane. Many

techniques for estimating radial distortion based on tar-

gets [29, 31], plumb lines [1, 4, 12, 25], and multiview

constraints [20, 30, 11, 6, 17, 27, 19, 14] have been sug-

1This work has been supported by grants EU FP6-IST-027787 DIRAC

and MSM6840770038 DMCM III.

Figure 1. (Left) Image with radial distortion. (Right) Corrected

image.

gested. The particularly interesting formulation, based on

the division model, has been introduced by Fitzgibbon [6].

His formulation leads to solving a system of algebraic equa-

tions. It is especially nice because the algebraic constraints

of the epipolar geometry, det(F) = 0 for an uncalibrated

and 2 E E⊤E − trace(E E⊤)E = 0 for a calibrated situa-

tion [10], can be “naturally” added to the constraints aris-

ing from correspondences to reduce the number of points

needed for estimating the distortion and the fundamental

matrix. In this paper we will solve the problem arising from

taking det(F) = 0 constraint into account. A smaller num-

ber of the points considerably reduces the number of sam-

ples in RANSAC [5, 10]. However, the resulting systems of

polynomial equations are more difficult than, e.g., the sys-

tems arising from similar problems for estimating epipolar

geometry of perspective cameras [23, 22].

Fitzgibbon [6] did not use the algebraic constraints on

the fundamental matrix. Thanks to neglecting the con-

straints, he worked with a very special system of alge-

braic equations which can be solved numerically by us-

ing a quadratic eigenvalue solver. Micusik and Pajdla [17]

also neglected the constraints when formulating the estima-

tion of paracatadioptric camera model from image matches

as a quartic eigenvalue problem. The work [19] extended

Fitzbiggon’s method for any number of views and any num-

ber of point correspondences using generalized quadratic

eigenvalue problem for rectangular matrices, again without

explicitly solving algebraic equations.



Li and Hartley [14] treated the original Fitzgibbon’s

problem as a system of algebraic equations and used the

hidden variable technique [2] to solve them. No algebraic

constraint on the fundamental matrix has been used. The

resulting technique solves exactly the same problem as [6]

but in a different way. Our experiments have shown that the

quality of the result was comparable but the technique [14]

was considerably slower than the original technique [6].

Work [14] mentioned the possibility of using the algebraic

constraint det(F) = 0 to solve for a two parametric model

from the same number of points but it did not use it to really

solve the problem. Using this constraint makes the problem

much harder because the degree of equations involved sig-

nificantly increases.

We formulate the problem of estimating the radial distor-

tion from image matches as a system of algebraic equations

and by using the constraint det(F) = 0 we get a minimal so-

lution to the autocalibration of radial distortion from eight

correspondences in two views. This brings three benefits.

First, we directly obtain a valid fundamental matrix. Sec-

ondly, the number of samples in RANSAC is reduced 1.15

(1.45, 2.53) times for 10% (30%, 60%) outliers. Finally,

the solver is more stable than previously known 9-point al-

gorithms [6, 14].

Our work adds a new minimal problem solution to the

family of previously developed minimal problems, e.g. the

perspective three point problem [5, 8], the five point relative

pose problem [18, 22, 15], the six point focal length prob-

lem [23, 13], six point generalized camera problem [24].

2. Solving algebraic equations

In this section we will introduce the technique we use for

solving systems of algebraic equations. We use the nomen-

clature from excellent monographs [3, 2], where the neces-

sary concepts from polynomial algebra, algebraic geometry,

and solving systems of polynomial equations are explained.

Our goal is to solve a system of algebraic equations

f1 (x) = ... = fm (x) = 0 which are given by a set of

m polynomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]} in n
variables over the field C of complex numbers. We are only

interested in systems which have a finite number, say N ,

solutions and thus m ≥ n.

The ideal I generated by the polynomials F can be

written as I = {
∑m

i=1 fi pi | pi ∈ C [x1, ..., xn]} with

f1, ..., fm being generators of I. In general, an ideal can

be generated by many different sets of generators which all

share the same solutions. There is a special set of generators

though, the reduced Gröbner basis G = {g1, ..., gl} w.r.t.

the lexicographic ordering, which generates the ideal I but

is easy (often trivial) to solve. Computing this basis and

“reading off” the solutions from it is one standard method

for solving systems of polynomial equations. Unfortu-

nately, for most computer vision problems this “Gröbner

basis method w.r.t. the lexicographic ordering” is not feasi-

ble because it has double exponential computational com-

plexity in general.

Therefore for some problems, a Gröbner basis G un-

der another ordering, e.g. the graded reverse lexico-

graphic ordering, which is often easier to compute, is con-

structed. Then, the properties of the quotient ring A =
C [x1, ..., xn] /I , i.e. the set of equivalence classes repre-

sented by remainders modulo I , can be used to get the

solutions. The “action” matrix Mf of the linear operator

Tf : A → A of the multiplication by a suitably chosen poly-

nomial f w.r.t. the basis B =
{

x
α|xαG

= x
α
}

of A, where

x
α is a monomial x

α = xα1

1 xα2

2 ...xαn

n and xαG
is the re-

minder of x
α on the division by G, can be constructed. The

solutions to the set of equations can then be read off directly

from the eigenvalues and the eigenvectors of the action ma-

trix [2].

2.1. Constructing action matrix efficiently

The standard method for computing action matrices re-

quires to construct a complete Gröbner basis and the lin-

ear basis B of the algebra A and to compute Tf

(

x
α(i)

)

=

fxα(i)
G

for all x
α(i) ∈ B =

{

x
α(1), ...,xα(N)

}

[2].

Note that x
α(i) = x

α1(i)
1 x

α2(i)
2 ...x

αn(i)
n . For some prob-

lems, however, it may be very expensive to find a complete

Gröbner basis. Fortunately, to compute Mf , we do not al-

ways need a complete Gröbner basis. Here we propose a

method for constructing the action matrix assuming that the

monomial basis B of the algebra A is known or can be com-

puted for a class of problems in advance.

Many minimal problems in computer vision, including

this one, have the convenient property that the monomials

which appear in the set of initial generators F are always

same irrespectively from the concrete coefficients arising

from non-degenerate image measurements. For instance,

when computing the essential matrix from five points, we

need to have five linear, linearly independent, equations

in elements of E and ten higher order algebraic equations

2 E E⊤E − trace(E E⊤) E = 0 and det(E) = 0 which do not

depend on particular measurements. Therefore, the leading

monomials of the corresponding Gröbner basis, and thus the

monomials in the basis B are generally the same. They can

be found once in advance. To do so, we use the approach

originally suggested in [23, 21, 22] for computing Gröbner

bases but we retrieve the basis B and polynomials required

for constructing the action matrix instead.

Having B, the action matrix can be computed as follows.

If for some x
α(i) ∈ B and chosen f , fx

α(i) ∈ A, then

Tf

(

x
α(i)

)

= fxα(i)
G

= fx
α(i) and we are done. For all

other x
α(i) ∈ B for which fx

α(i) /∈ A consider polynomi-

als qi = fx
α(i) + hi from I with hi ∈ A. For these x

α(i),



Tf

(

x
α(i)

)

= fxα(i)
G

= qi − hi
G

= −hi ∈ A. Since

polynomials qi are from the ideal I , we can generate them

as algebraic combinations of the initial generators F . Write

hi =
∑N

j=1 cjix
α(j) for some cji ∈ C, i = 1, ..., N . To get

the action matrix Mf = (cij), it suffice to generate polyno-

mials qi = fx
α(i) +

∑N

j=1 cjix
α(j) for all these x

α(i) ∈ B
from the initial generators F . This in general seems to be

as difficult as generating the Gröbner basis but we shall see

that it is quite simple for the problem of calibrating radial

distortion which we describe in the next section. It is pos-

sible to generate qi’s by starting with F and systematically

generating new polynomials by multiplying already gener-

ated polynomials by individual variables and reducing them

by the Gauss-Jordan elimination. This technique is a varia-

tion of the F4 algorithm for constructing Gröbner bases [7]

and seems to be applicable to more vision problems.

2.2. The solver

The algorithmic description of our solver of polynomial

equations is as follows.

1. Assume a set F = {f1, ..., fm} of polynomial equa-

tions.

2. Simplify the original set of polynomial equations if

possible. Otherwise use the original set.

3. Fix a monomial ordering (The graded reverse lexico-

graphic ordering is often good).

4. Use Macaulay 2 [21] to find the basis B as the basis

which repeatedly appears for many different choices

of random coefficients. Do computations in a suitably

chosen finite field to speed them up.

5. Construct the polynomials qi for a suitably chosen

polynomial f by systematically generating higher or-

der polynomials from generators F . Stop when all qi’s

are found. Then construct the action matrix Mf .

6. Solve the equations by finding the eigenvectors of the

action matrix. If the initial system of equations was

transformed, extract the solutions to the original prob-

lem.

This method extends the Gröbner basis method proposed

in [23, 21] by constructing the action matrix without con-

structing a complete Gröbner basis. This brings an impor-

tant advantage for some problems. Next we show how we

use this method to solve the minimal problem for correcting

radial distortion from eight point correspondences in two

views.

3. A minimal solution for radial distortion

We want to correct radial lens distortion using the mini-

mal number of image point correspondences in two views.

We assume one-parameter division distortion model [6]. It

is well known that for standard uncalibrated case without

considering radial distortion, 7 point correspondences are

sufficient and necessary to estimate the epipolar geometry.

We have one more parameter, the radial distortion param-

eter λ. Therefore, we will need 8 point correspondences

to estimate λ and the epipolar geometry. To get this “8-

point algorithm”, we have to use the singularity of the fun-

damental matrix F. We obtain 9 equations in 10 unknowns

by taking equations from the epipolar constraint for 8 point

correspondences

p
⊤

ui
(λ) Fp

′

ui
(λ) = 0, i = 1, . . . , 8,

F =





f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3





and the singularity of F

det (F) = 0,

where p
′

u (λ) ,pu (λ) represent homogeneous coordinates

of a pair of undistorted image correspondences. Assuming

f3,3 6= 0, we can set f3,3 = 1.
The one-parameter division model is given by the for-

mula

pu ∼ pd/(1 + λr2
d),

where λ is the distortion parameter, pu = (xu, yu, 1), resp.

pd = (xd, yd, 1), are the corresponding undistorted, resp.

distorted, image points, and rd is the radius of pd w.r.t. the

distortion center. We assume that the distortion center has

been found, e.g., by [9]. We also assume square pixels, i.e.

r2
d = x2

d + y2
d.

The complexity of computing an action matrix depends

on the complexity of polynomials (degree, number of vari-

ables, form, etc.). It is better to have the degrees as well as

the number of variables low. Therefore, in the first step we

simplify the original set of equations by eliminating some

variables.

3.1. Eliminating variables

The epipolar constraint gives 8 equations with 15 mono-

mials (f1,3λ, f2,3λ, f3,1λ, f3,2λ, λ2, f1,1, f1,2, f1,3, f2,1,
f2,2, f2,3, f3,1, f3,2, λ, 1) and 9 variables (f1,1, f1,2, f1,3,
f2,1, f2,2, f2,3, f3,1, f3,2, λ).

We have four variables which appear in one monomial

only (f1,1, f1,2, f2,1, f2,2) and four variables which appear

in two monomials (f1,3, f2,3, f3,1, f3,2). Since we have 8

equations from which each contains all 15 monomials, we

can eliminate 6 variables, four variables which appear in

one monomial only and two from variables which appear in

two monomials. We have selected f1,3 and f2,3.



We reorder monomials contained in 8 equations such that

monomials containing f1,1, f1,2, f2,1, f2,2, f1,3 and f2,3 are

at the beginning. Reordered monomial vector will be X =
(f1,1, f1,2, f2,1, f2,2, f1,3λ, f1,3, f2,3λ, f2,3, f3,1λ, f3,2λ, λ2,
f3,1, f3,2, λ, 1)T .

Then, 8 equations from the epipolar constraint can be

written in a matrix form MX = 0, where M is the coefficient

matrix. After performing Gauss-Jordan (G-J) elimination

we obtain 8 equations of the form

fi = LT (fi) + gi(f3,1, f3,2, λ) = 0,

where LT (fi) = f1,1, f1,2, f2,1, f2,2, f1,3λ, f1,3, f2,3λ
resp. f2,3 for i = 1, 2, 3, 4, 5, 6, 7 resp. 8 and

gi(f3,1, f3,2, λ) are 2ndorder polynomials in three variables

f3,1, f3,2, λ. So we can express 6 variables, f1,1, f1,2, f1,3,
f2,1, f2,2, f2,3 as the functions of the remaining three vari-

ables f3,1, f3,2, λ

f1,1 = −g1(f3,1, f3,2, λ)

f1,2 = −g2(f3,1, f3,2, λ)

f1,3 = −g6(f3,1, f3,2, λ)

f2,1 = −g3(f3,1, f3,2, λ)

f2,2 = −g4(f3,1, f3,2, λ)

f2,3 = −g8(f3,1, f3,2, λ).

We can substitute these expressions to the remaining two

equations from the epipolar constraint and also to the sin-

gularity constraint for F . In this way we obtain 3 polyno-

mial equations in 3 unknowns (two 3rdorder polynomials

and one 5thorder polynomial)

λ(−g6(f3,1, f3,2, λ)) + g5(f3,1, f3,2, λ) = 0

λ(−g8(f3,1, f3,2, λ)) + g7(f3,1, f3,2, λ) = 0

det





−g1 −g2 −g6

−g3 −g4 −g8

f3,1 f3,2 1



 = 0.

We will use these 3 equations to create the action matrix for

the polynomial f = λ. Without this elimination of vari-

ables, the creation of the action matrix for this problem will

be almost impossible in a reasonable time.

3.2. Computing B and the number of solutions

To compute B, we solve our problem in a random chosen

finite prime field Zp (Z/ 〈p〉) with p >> 7, where exact

arithmetic can be used and numbers can be represented in

a simple and efficient way. It speeds up computations and

minimizes memory requirements.

We use algebraic geometry software Macaulay 2, which

can compute in finite fields, to solve the polynomial equa-

tions for many random coefficients from Zp, to compute the

number of solutions, the Gröbner basis, and the basis B. If

the basis B remains stable for many different random coeffi-

cients, it is generically equivalent to the basis of the original

system of polynomial equations [28].

We can use the Gröbner basis and the basis B computed

for random coefficients from Zp thanks to the fact that in

our class of problems the way of computing the Gröbner

basis is always the same and for particular data these

Gröbner bases differ only in coefficients. This holds for B,

which consists of the same monomials, as well. Also, the

way of obtaining polynomials that are necessary to create

the action matrix is always the same and for a general

data the generated polynomials differ again only in their

coefficients. This way we have found that our problem has

16 solutions. To create the action matrix, we use the graded

reverse lexicographic ordering f3,1 > f3,2 > λ. With this

ordering, we get the basis B = (f3
3,1, f

2
3,1f3,2, f3,1f

2
3,2,

f3
3,2, f

2
3,2λ, λ3, f2

3,1, f3,1f3,2, f
2
3,2, f3,1λ, f3,2λ, λ2, f3,1, f3,2,

λ, 1) of the algebra A = C [f3,1, f3,2, λ] /I .

3.3. Constructing action matrix

Here we construct the action matrix Mλ for multiplica-

tion by polynomial f = λ. The method described in Sec-

tion 2.1 calls for generating polynomials qi = λx
α(i) +

∑N

j=1 cjix
α(j) ∈ I for x

α(i) ∈ B.

In graded orderings, the leading monomials of qi are

λx
α(i). Therefore, to find qi, it is enough to generate at

least one polynomial in the required form for each lead-

ing monomial λx
α(i). This can be, for instance, done by

systematically generating polynomials of I with ascending

leading monomials and testing them. We stop when all nec-

essary polynomials qi are obtained. Let d be the degree

of the highest degree polynomial from initial generators F .

Then we can generate polynomials qi from F in this way:

1. Generate all monomial multiples x
αfi of degree ≤ d.

2. Write the polynomial equations in the form MX = 0,

where M is the coefficient matrix and X is the vector of

all monomials ordered by the used monomial ordering.

3. Simplify matrix M by the G-J elimination.

4. If all polynomials qi have been generated, stop.

5. Otherwise:

(a) If a new polynomial with degree < d has been

generated by G-J elimination (this polynomial

wasn’t between polynomials before G-J elimina-

tion), return to the step 1.

(b) If no new polynomials with degree < d were gen-

erated by G-J elimination, set d = d + 1 and re-

turn to the step 1.

In this way we can systematically generate all necessary

polynomials.



In the process of creating the action matrix Mλ, we repre-

sent polynomials by rows of the matrix of their coefficients.

Columns of this matrix are ordered according to the mono-

mial ordering. The steps of generating the polynomials nec-

essary for constructing the action matrix for the minimal

radial distortion problem are as follows:

1. We begin with two 3rd degree polynomials and one

5th degree polynomial. In the first step we multiply

these two 3rd degree polynomials with all three vari-

ables f3,1, f3,2, λ. These two 3rd degree polynomials

and their multiples can be represented by 22 monomi-

als and a 8×22 matrix of rank 8 which we simplify by

G-J elimination.

2. We obtain one new 3rd degree polynomial and 5

new 4th degree polynomials. In this step we add

f3,1, f3,2, λ multiples of this new 3rd degree polyno-

mial to already generated 8 polynomials. Thus we ob-

tain 11 polynomials representable by a 11× 30 matrix

which has rank 11. We simplify it by G-J elimination.

3. We obtain one new 3rd degree polynomial and 2 new

4th degree polynomials. In this last step we add

f3,1, f3,2, λ multiples of this new 3rd degree polyno-

mial and all seven 4th degree polynomials (2 new and

the 5 generated in Step 1) to already generated 11 poly-

nomials. Together with 5th degree polynomial from

det(F ), we obtain 36 polynomials representable by a

36 × 50 matrix. It has rank 26. We perform another

G-J elimination on this matrix.

4. All polynomials needed for constructing the action

matrix are obtained. Action matrix Mλ is constructed.

3.4. Solving equations using eigenvectors

The eigenvectors of Mλ give solutions for f3,1, f3,2, λ.

Using a backsubstitution, we obtain solutions also for f1,1,
f1,2, f1,3, f2,1, f2,2, f2,3. In this way we obtain 16 (com-

plex) solutions. Generally less than 10 solutions are real.

4. Experiments

We test our algorithm on both synthetic (with various

levels of noise, outliers and radial distortions) and real im-

ages and compare it to the existing 9-point algorithms for

correcting radial distortion [6, 14]. We get 16 complex

roots. In general, more than one and less than 10 roots are

real. If there is more than one real root, we need to select the

best root, the root which is consistent with most measure-

ments. To do so, we treat the real roots of the 16, in general

complex, roots obtained by solving the equations for one in-

put as real roots from different inputs and use RANSAC [5]

or kernel voting [14] for several inputs to select the best root

among all generated roots. The kernel voting is done by a

Gaussian kernel with fixed variance and the estimate of λ is
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Figure 2. Distribution of real roots in [−10, 10] using kernel vot-

ing for 500 noiseless point matches, 200 estimations and λtrue =
−0.2. (Left) Parasitic roots (green) vs. roots for mismatches

(blue). (Center) Genuine roots. (Right) All roots, 100% of inliers.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

−10 −5 0 5 10
−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.5 0 0.5 1
0

1

2

3

Figure 3. Distribution of real roots using kernel voting for 500

noiseless point matches, 100% inliers, 200 groups and λtrue =
−0.2. (Left) Distribution of all roots in [−10, 10]. (Center) Distri-

bution of all roots minus the distribution of roots from mismatches

in [−10, 10]. (Right) Distribution of all roots for voting in [−1, 1].

found as the position of the largest peak. See [14] for more

on kernel voting for this problem.

To evaluate the performance of our algorithm, we distin-

guish three sets of roots. “All roots” is the set of all real

roots obtained by solving the equations for K (different) in-

puts. “Genuine roots” denote the subset of all roots obtained

by selecting the real root closest to the true λ for each input

containing only correct matches. The set of genuine roots

can be identified only in simulated experiments. “Parasitic

roots” is the subset of all roots obtained by removing the

genuine roots from all roots when everything is evaluated

on inputs containing only correct matches.

Figure 2 shows the result of a simulation demonstrating

that parasitic roots beware quite randomly. The distribution

of all real roots for mismatches is similar to the distribution

of the parasitic roots Figure 2 (Left). This allows to treat

parasitic roots in the same way as the roots for mismatches.

Figures 2 (Left and Center) show that the distribution of

genuine roots is very sharp compared to the distribution of

parasitic roots and roots for mismatches. Therefore, it is

possible to estimate λ as the position of the largest peak,

Figure 2 (Right).

These experiments show that it is suitable to use kernel

voting and that it makes sense to select the best root by cast-

ing votes from all computed roots. It is clear from results

shown in Figure 3 that it is meaningful to vote for λ’s either

(i) within the range where the most of the computed roots

fall (in our case [-10,10]), Figure 3 (Left), or (ii) within the

smallest range in which we are sure that the ground truth lie

(in our case [-1,1]), Figure 3 (Right). For large number of

input data, it might also makes sense to subtract the apriory

computed distribution of all real roots for mismatches from

the distribution of all roots.
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Figure 4. Kernel voting results, for λtrue = −0.25, noise level

σ = 0.2 (1 pixel), image size 768 × 576 and (Left) 100% inliers,

(Center) 90% inliers (Right) 80% inliers. Estimated radial distor-

tion parameters were (Left) λ = −0.2485 (Center) λ = −0.2522
(Right) λ = −0.2445.

4.1. Tests on synthetic images

We initially studied our algorithm using synthetic

datasets. Our testing procedure was as follows:

1. Generate a 3D scene consisting of N (= 500) random

points distributed uniformly within a cuboid. Project

M% of the points on image planes of the two displaced

cameras. These are matches. Generate (100 − M)%
random points distributed uniformly in both images.

These are mismatches. Altogether, they become undis-

torted correspondences.

2. Apply the radial distortion to the undistorted corre-

spondences to generate noiseless distorted points.

3. Add Gaussian noise of standard deviation σ to the dis-

torted points.

4. Repeat K times (We use K = 100 here, but in many

cases K from 30 to 50 is sufficient).

(a) Randomly choose 8 point correspondences from

given N correspondences.

(b) Normalize image point coordinates to [−1, 1].

(c) Find 16 roots of the minimal solution to the au-

tocalibration of radial distortion.

(d) Select the real roots in the feasible interval, e.g.,

−1 < λ < 1 and the corresponding F’s.

5. Use kernel voting to select the best root.

The resulting density functions for different outlier contam-

inations and for the noise level 1 pixel are shown in Fig-

ure 4. Here, K = 100, image size was 768 × 576 and

λtrue = −0.25. In all cases, a good estimate, very close

to the true λ, was found as the position of the maximum of

the root density function. We conclude, that the method is

robust to mismatches and noise.

In the next experiment we study the robustness of our al-

gorithm to increasing levels of Gaussian noise added to the

distorted points. We compare our results to the results of

two existing 9-point algorithms [6, 14]. The ground truth

radial distortion λtrue was −0.5 and the level of noise var-

ied from σ = 0 to σ = 1, i.e. from 0 to 5 pixels. Noise level
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Figure 5. Estimated λ as a function of noise σ, ground truth

λtrue = −0.5 and (Top) inliers = 90%, (Bottom) inliers =
80%. Blue boxes contain values from 25% to 75% quantile. (Left)

8-point algorithm. (Right) 9-point algorithm.

5 pixels is relatively large but we get good results even for

this noise level and 20% of outliers.

Figure 5 (Left) shows λ’s computed by our 8-point al-

gorithm as a function of noise level σ. Fifty lambdas were

estimated from fifty 8-tuples of correspondences randomly

drawn for each noise level for (Top) 90% and (Bottom) 80%
of inliers. The results are presented by the Matlab func-

tion boxplot which shows values 25% to 75% quantile as

a blue box with red horizontal line at median. The red

crosses show data beyond 1.5 times the interquartile range.

The results for 9-point algorithms [6, 14], which gave ex-

actly identical results, are shown for the same input, Fig-

ure 5 (Right).

The median values (from -0.50 to -0.523) for the 8-

point as well as the 9-point algorithms are very close to the

ground truth value λtrue = −0.5 for all noise levels. The

variances of the 9-point algorithms, Figure 5 (Right), are

considerably larger, especially for higher noise levels, than

the variances of the 8-point algorithm Figure 5 (Left). The

8-point algorithm thus produces higher number of good es-

timates for the fixed number of samples. This is good both

for RANSAC as well as for kernel voting.

4.2. Tests on real images

The input images with relatively large distortion, Fig-

ures 1 (Left) and 6 (Left), were obtained as cutouts from

180◦ angle of view fish-eye images. Tentative point cor-

respondences were found by the wide base-line matching

algorithm [16]. They contained correct as well as incorrect

matches. Distortion parameter λ was estimated by our 8-

point algorithm and the kernel voting method. The input

and corrected images are presented in Figures 1 and 6. Fig-

ure 6 (Right) shows the distribution of real roots, for image

from Figure 6 (Left), from which λ = −0.22 was estimated
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Figure 6. Real data. (Left) Input image with significant radial

distortion. (Center) Corrected image. (Right) Distribution of

real roots obtained by kernel voting for this image and estimated

λ = −0.22.

as the argument of the maximum.

5. Conclusion

We presented a robust and efficient solution to the min-

imal problem for the autocalibration of radial distortion. It

was obtained by a careful specialization of a general tech-

nique for solving polynomial equations. Our algorithm

provides singular fundamental matrices, reduces the num-

ber of samples in RANSAC and is more stable than pre-

viously known 9-point algorithms. Our current MATLAB

implementation of the algorithm runs about 0.01 s on a

P4/2.8GHz CPU. Most of this time is spent in the Gauss-

Jordan elimination. This time can still be reduced by further

optimization. For comparison, our MATLAB implementa-

tion of Fitzgibbon’s algorithm runs about 0.004 s and the

original implementation of Hongdong Li’s algorithm [14]

based on MATLAB Symbolic-Math Toolbox runs about

0.86 s.
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