
Computer Vision Winter Workshop 2007, Michael Grabner, Helmut Grabner (eds.)
St. Lambrecht, Austria, February 6–8
Graz Technical University

Solving polynomial equations for minimal problems in computer vision

Zuzana Kúkelová and Tomáš Pajdla

CMP, Department of Cybernetics, Czech Technical University in Prague, Czech Republic
kukelova@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz

Abstract Many vision tasks require efficient solvers of sys-
tems of polynomial equations. Epipolar geometry and rela-
tive camera pose computation are tasks which can be formu-
lated as minimal problems which lead to solving systems of
algebraic equations. Often, these systems are not trivial and
therefore special algorithms have to be designed to achieve
numerical robustness and computational efficiency. In this
work we suggest improvements of current techniques for
solving systems of polynomial equations suitable for some
vision problems. We introduce two tricks. The first trick
helps to reduce the number of variables and degrees of the
equations. The second trick can be used to replace compu-
tationally complex construction of Gröbner basis by a sim-
pler procedure. We demonstrate benefits of our technique by
providing a solution to the problem of estimating radial dis-
tortion and epipolar geometry from eight correspondences
in two images. Unlike previous algorithms, which were able
to solve the problem from nine correspondences only, we
enforce the determinant of the fundamental matrix be zero.
This leads to a system of eight quadratic and one cubic
equation. We provide an efficient and robust solver of this
problem. The quality of the solver is demonstrated on syn-
thetic and real data.

1 Introduction

Estimating camera models from image matches is an im-
portant problem. It is one of the oldest computer vision
problems and even though much has already been solved
some questions remain still open. For instance, a number
of techniques for modeling and estimating projection mod-
els of wide angle lenses appeared recently [6, 17, 9, 26, 27].
Often in this case, the projection is modeled as the perspec-
tive projection followed by radial “distortion” in the image
plane.

Many techniques for estimating radial distortion based
on targets [28, 30], plumb lines [1, 4, 12, 25], and multi-
view constraints [20, 29, 11, 6, 17, 27, 19, 14] have been
suggested. The particularly interesting formulation, based
on the division model [6], has been introduced by Fitzgib-
bon. His formulation leads to solving a system of algebraic
equations. It is especially nice because the algebraic con-
straints of the epipolar geometry, det(F) = 0 for an uncali-
brated and 2 E E>E − trace(E E>)E = 0 for a calibrated sit-
uation [10], can be “naturally” added to the constraints aris-
ing from correspondences to reduce the number of points

Figure 1: (Left) Image with radial distortion. (Right) Corrected
image.

needed for estimating the distortion and the fundamental
matrix. A smaller number of the points considerably reduces
the number of samples in RANSAC [5, 10]. However, the
resulting systems of polynomial equations are more difficult
than, e.g., the systems arising from similar problems for es-
timating epipolar geometry of perspective cameras [23, 22].
In this paper we will solve the problem arising from taking
det(F) = 0 constraint into account.

Fitzgibbon [6] did not use the algebraic constraints on
the fundamental matrix. In fact, he did not explicitly pose
his problem as finding a solution to a system of algebraic
equations. Thanks to neglecting the constraints, he worked
with a very special system of algebraic equations which
can be solved numerically by using a quadratic eigenvalue
solver. Micusik and Pajdla [17] also neglected the con-
straints when formulating the estimation of paracatadioptric
camera model from image matches as a quartic eigenvalue
problem. The work [19] extended Fitzbiggon’s method for
any number of views and any number of point correspon-
dences using generalized quadratic eigenvalue problem for
rectangular matrices, again without explicitly solving alge-
braic equations.

Li and Hartley [14] treated the original Fitzgibbon’s
problem as a system of algebraic equations and used the
hidden variable technique [2] to solve them. No algebraic
constraint on the fundamental matrix has been used. The
resulting technique solves exactly the same problem as [6]
but in a different way. Our experiments have shown that the
quality of the result was comparable but the technique [14]
was considerably slower than the original technique [6].
Work [14] mentioned the possibility of using the algebraic
constraint det(F) = 0 to solve for a two parametric model
from the same number of points but it did not use it to really
solve the problem. Using this constraint makes the prob-
lem much harder because the degree of equations involved

1

mailto:kukelova@cmp.felk.cvut.cz�
mailto:pajdla@cmp.felk.cvut.cz�

Solving polynomial equations for minimal problems in computer vision [←]

significantly increases.
We formulate the problem of estimating the radial distor-

tion from image matches as a system of algebraic equations
and by using the constraint det(F) = 0 we get a minimal
solution to the autocalibration of radial distortion from eight
correspondences in two views.

Our work adds a new minimal problem solution to the
family of previously developed minimal problems, e.g. the
perspective three point problem [5, 8], the five point relative
pose problem [18, 22, 15], the six point focal length prob-
lem [23, 13], six point generalized camera problem [24].

We follow the general paradigm for solving minimal
problems in which a problem is formulated as a set of al-
gebraic equations which need to be solved. Our main con-
tribution is in improving the technique for solving the set
of algebraic equations and applying it to solve the minimal
problem for the autocalibration of radial distortion. We use
the algebraic constraint det(F) = 0 on the fundamental ma-
trix to get an 8-point algorithm. It reduces the number of
samples in RANSAC 1.15 (1.45, 2.53) times for 10% (30%,
60%) outliers and is more stable than previously known 9-
point algorithms [6, 14].

2 Solving algebraic equations
In this section we will introduce the technique we use for
solving systems of algebraic equations. We use the nomen-
clature from excellent monographs [3, 2], where basic con-
cepts from polynomial algebra, algebraic geometry, and
solving systems of polynomial equations are explained.

Our goal is to solve a system of algebraic equations
f1 (x) = ... = fm (x) = 0 which are given by a set of
m polynomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]} in n
variables over the field C of complex numbers. We are only
interested in systems which have a finite number, say N ,
solutions and thus m ≥ n.

The ideal I generated by polynomials F can be written
as

I =

{
m∑

i=1

fi pi | pi ∈ C [x1, ..., xn]

}

with f1, ..., fm being generators of I. The ideal con-
tains all polynomials which can be generated as an
algebraic combination of its generators. Therefore, all
polynomials from the ideal are zero on the zero set
Z = {x|f1 (x) = ... = fm (x) = 0}. In general, an ideal
can be generated by many different sets of generators which
all share the same solutions. There is a special set of gen-
erators though, the reduced Gröbner basis G = {g1, ..., gl}
w.r.t. the lexicographic ordering, which generates the ideal I
but is easy (often trivial) to solve. Computing this basis and
“reading off” the solutions from it is the standard method
for solving systems of polynomial equations. Unfortunately,
for most computer vision problems this “Gröbner basis
method w.r.t. the lexicographic ordering” is not feasible
because it has double exponential computational complexity
in general.

To overcome this problem, a Gröbner basis G under an-
other ordering, e.g. the graded reverse lexicographical order-
ing, which is often easier to compute, is constructed. Then,

the properties of the quotient ring A = C [x1, ..., xn] /I ,
i.e. the set of equivalence classes represented by remain-
ders modulo I , can be used to get the solutions. The
linear basis of this quotient ring can be written as B =
{xα|xα /∈ 〈LM(I)〉} =

{
xα|xαG = xα

}
, where xα is

monomial xα = xα1
1 xα2

2 ...xαn
n , xαG is the reminder of xα

on the division by G, and 〈LM(I)〉 is ideal generated by
leading monomials of all polynomials form I. In many cases
(when I is radical [2]), the dimension of A is equal to the
number of solutions N . Then, the basis of A consists of N
monomials, say B =

{
xα(1), ...,xα(N)

}
. Denoting the ba-

sis as b (x) =
[
xα(1)...xα(N)

]T
, every polynomial q (x) ∈

A can be expressed as q (x) = b (x)T
c, where c is a coeffi-

cient vector. The multiplication by a fixed polynomial f (x)
(a polynomial in variables x =(x1, ..., xn)) in the quotient
ring A then corresponds to a linear operator Tf : A → A
which can be described by a N ×N action matrix Mf . The
solutions to the set of equations can be read off directly from
the eigenvalues and eigenvectors of the action matrices. We
have

f (x) q (x) = f (x)
(
b (x)T

c
)

=
(
f (x) b (x)T

)
c

Using properties of the action matrix Mf , we obtain(
f (x) b (x)T

)
c = b (x)T

Mfc,

Each polynomial t ∈ C [x1, ..., xn] can be written in the
form t =

∑l
i=1 higi + r, where gi are basis vectors gi ∈

G = {g1, ..., gl} , hi ∈ C [x1, ..., xn] and r is the reminder
of t on the division by G.

If p =(p1, ..., pn) is a solution to our system of equa-
tions, then we can write

f (p) q (p) =
(
f (p) b (p)T

)
c =

l∑

i=1

hi (p) gi (p) + r (p)

where r (p) is the reminder of f (p) q (p) on the division
by G. Because gi (p) = 0 for all i = 1, ..., l we have∑l

i=1 hi (p) gi (p) + r (p) = r (p) and therefore
(
f (p) b (p)T

)
c = r (p) =

(
f (p) b (p)T

)
c
G

.

Thus, for a solution p, we have
(
f (p) b (p)T

)
c
G

=
(
f (p) b (p)T

)
c = b (p)T

Mfc

for all c, and therefore

f (p) b (p)T = b (p)T
Mf .

Therefore, if p =(p1, ..., pn) is a solution to our system
of equations and f (x) is chosen such that the values f (p)
are distinct for all p, the N left eigenvectors of the action
matrix Mf are of the form

v = βb (p) = β
[
pα(1)...pα(N)

]T

,

for some β ∈ C , β 6= 0.
Thus action matrix Mf of the linear operator Tf : A → A

of the multiplication by a suitably chosen polynomial f w.r.t.
the basis B of A can be constructed and then the solutions to
the set of equations can be read off directly from the eigen-
values and eigenvectors of this action matrix [2].

2

file:../../cvww2007.pdf�

Zuzana Kúkelová and Tomáš Pajdla [←]

2.1 Simplifying equations by lifting
The complexity of computing an action matrix depends on
the complexity of polynomials (degree, number of variables,
form, etc.). It is better to have the degrees as well as the
number of variables low. Often, original generators F may
be transformed into new generators with lower degrees and
fewer variables. Next we describe a particular transforma-
tion method—lifting method—which proved to be useful.

Assume m polynomial equations in l monomials. The
main idea is to consider each monomial that appears in the
system of polynomial equations as an unknown. In this
way, the initial system of polynomial equations of arbitrary
degree becomes linear in the new “monomial unknowns”.
Such system can by written in a matrix form as

MX = 0

where X is a vector of l monomials and M is a m× l coeffi-
cient matrix.

If m < l, then a basis of m− l dimensional null space of
matrix M can be found and all monomial unknowns can be
expressed as linear combinations of basic vectors of the null
space. The coefficients of this linear combination of basic
vectors become new unknowns of the new system which is
formed by utilizing algebraic dependencies between mono-
mials. In this way we obtain a system of polynomial equa-
tions in new variables. The new set of variables consists of
unknown coefficients of linear combination of basic vectors
and of old unknowns which we need for utilizing dependen-
cies between monomials. The new system is equivalent to
the original system of polynomial equations but may be sim-
pler. This abstract description will be made more concrete
in Section 3.1.

2.2 Constructing action matrix efficiently
The standard method for computing action matrices requires
to construct a complete Gröbner basis and the linear basis
B of the algebra A and to compute Tf

(
xα(i)

)
= fxα(i)

G

for all xα(i) ∈ B =
{
xα(1), ...,xα(N)

}
[2]. Note that

xα(i) = x
α1(i)
1 x

α2(i)
2 ...x

αn(i)
n . For some problems, how-

ever, it may be very expensive to find a complete Gröbner
basis. Fortunately, to compute Mf we do not always need
a complete Gröbner basis. Here we propose a method for
constructing the action matrix assuming that the monomial
basis B of algebra A is known or can be computed for a
class of problems in advance.

Many minimal problems in computer vision have the
convenient property that the monomials which appear in the
set of initial generators F are always same irrespectively
from the concrete coefficients arising from non-degenerate
image measurements. For instance, when computing the
essential matrix from five points, we need to have five lin-
ear, linearly independent, equations in elements of E and ten
higher order algebraic equations 2 E E>E− trace(E E>) E =
0 and det(E) = 0 which do not depend on particular mea-
surements. Therefore, the leading monomials of the cor-
responding Gröbner basis, and thus the monomials in the
basis B are always the same. They can be found once in ad-
vance. To do so, we use the approach originally suggested

in [23, 21, 22] for computing Gröbner bases but we retrieve
the basis B and polynomials required for constructing the
action matrix instead.

Having B, the action matrix can be computed as follows.
If for some xα(i) ∈ B and chosen f , fxα(i) ∈ A, then
Tf

(
xα(i)

)
= fxα(i)

G
= fxα(i) and we are done. For all

other xα(i) ∈ B for which fxα(i) /∈ A consider polynomi-
als qi = fxα(i) + hi from I with hi ∈ A. For these xα(i),
Tf

(
xα(i)

)
= fxα(i)

G
= qi − hi

G
= −hi ∈ A. Since

polynomials qi are from the ideal I , we can generate them
as algebraic combinations of the initial generators F . Write
hi =

∑N
j=1 cjixα(j) for some cji ∈ C, i = 1, ..., N . Then

the action matrix Mf has the form

Mf =

0BBBBBB@
c11 c12 . . . c1N

c21 . .
. . .
. . .
. . .

cN1 cN2 cNN

1CCCCCCA .

To get this action matrix Mf , it suffice to generate polynomi-
als qi = fxα(i) +

∑N
j=1 cjixα(j) from the initial generators

F for all these xα(i) ∈ B. This in general seems to be as dif-
ficult as generating the Gröbner basis but we shall see that
it is quite simple for the problem of calibrating radial dis-
tortion which we describe in the next section. It is possible
to generate qi’s by starting with F and systematically gen-
erating new polynomials by multiplying them by individual
variables and reducing them by the Gauss-Jordan elimina-
tion. This technique is a variation of the F4 algorithm for
constructing Gröbner bases [7] and seems to be applicable
to more vision problems. We are currently investigating it
and will report more results elsewhere.

2.3 The solver
The algorithmic description of our solver of polynomial
equations is as follows.

1. Assume a set F = {f1, ..., fm} of polynomial equations.

2. Use the lifting to simplify the original set of polynomial
equations if possible. Otherwise use the original set.

3. Fix a monomial ordering (The graded reverse lexico-
graphical ordering is often good).

4. Use Macaulay 2 [21] to find the basis B as the basis
which repeatedly appears for many different choices of
random coefficients. Do computations in a suitably cho-
sen finite field to speed them up.

5. For suitably chosen polynomial f construct the polyno-
mials qi by systematically generating higher order poly-
nomials from generators F . Stop when all qi’s are found.
Then construct the action matrix Mf .

6. Solve the equations by finding eigenvectors of the ac-
tion matrix. If the initial system of equations was trans-
formed, extract the solutions to the original problem.

This method extends the Gröbner basis method proposed
in [23, 21] (i) by using lifting to simplify the problem and
(ii) by constructing the action matrix without constructing a

3

file:../../cvww2007.pdf�

Solving polynomial equations for minimal problems in computer vision [←]

complete Gröbner basis. This brings an important advantage
for some problems. Next we will demonstrate it by show-
ing how to solve the minimal problem for correcting radial
distortion from eight point correspondences in two views.

3 A minimal solution for radial distortion
We want to correct radial lens distortion using the minimal
number of image point correspondences in two views. We
assume one-parameter division distortion model [6]. It is
well known that for standard uncalibrated case without con-
sidering radial distortion, 7 point correspondences are suffi-
cient and necessary to estimate the epipolar geometry. We
have one more parameter, the radial distortion parameter λ.
Therefore, we will need 8 point correspondences to estimate
λ and the epipolar geometry. To get this “8-point algo-
rithm”, we have to use the singularity of the fundamental
matrix F. We obtain 9 equations in 10 unknowns by taking
equations from the epipolar constraint for 8 point correspon-
dences

p>ui
(λ) Fp′ui

(λ) = 0, i = 1, . . . , 8

and the singularity of F

det (F) = 0,

where p′u (λ) ,pu (λ) represent homogeneous coordinates
of a pair of undistorted image correspondences.

The one-parameter division model is given by the for-
mula

pu ∼ pd/(1 + λr2
d)

where λ is the distortion parameter, pu = (xu, yu, 1), resp.
pd = (xd, yd, 1), are the corresponding undistorted, resp.
distorted, image points, and rd is the radius of pd w.r.t. the
distortion center. We assume that the distortion center has
been found, e.g., by [9]. We also assume square pixels, i.e.
r2
d = x2

d + y2
d. To use the standard notation, we write the

division model as

x + λz =




xd

yd

1


 + λ




0
0
r2
d


 ∼




xu

yu

1


 .

3.1 Reducing 9 to 7 unknowns by lifting
We simplify the original set of equations by lifting. The
epipolar constraint gives 8 equations with 15 monomials
(nine 1storder, five 2ndorder, one 3rd order)

(xi + λzi)
T F (x′i + λz′i) = 0, i = 1, ..., 8

xT
i Fx

′
i + λ

(
xT

i Fz
′
i + zT

i Fx
′
i

)
+ λ2zT

i Fz
′
i = 0, i = 1, ..., 8

F =




f1 f2 f3

f4 f5 f6

f7 f8 f9




We consider each monomial as an unknown and obtain 8
homogeneous equations linear in the new 15 monomial un-
knowns. These equation can be written in a matrix form

MX = 0

where X = (f1, f2, f3, f4, f5, f6, f7, f8, f9, λf3, λf6, λf7,
λf8, λf9, λ

2f9,)T and M is the coefficient matrix.
If we denote the i-th row of the matrix M as mi and write

xi + λzi =




xd

yd

1


 + λ




0
0
r2
d


 ,

then mi = (xdx
′
d, xdy

′
d, xd, ydx

′
d, ydy

′
d, yd, x′d, y′d, 1,

xdr
′2
d , xydr

′2
d , r2

dx′d, r2
dy′d, r2

d + r′2d , r2
dr′2d).

We obtain 8 linear equations in 15 unknowns. So, in gen-
eral we can find 7 dimensional null-space. We write

X = x1N1+x2N2+x3N3+x4N4+x5N5+x6N6+x7N7

where N1, ..., N7 ∈ R15×1 are basic vectors of the null
space and x1, . . . , x7 are coefficients of the linear combi-
nation of the basic vectors. Assuming x7 6= 0, we can set
x7 = 1. Then we can write

X =
7∑

i=1

xiNi =
6∑

i=1

xiNi + N7

Xj =
6∑

i=1

xiNij + N7j , j = 1, .., 15

Considering dependencies between monomials and
det (F) = 0 we get 7 equations for 7 unknowns x1, x2, x3,
x4, x5, x6, λ :

X10 = λ.X3 ⇒
6X

i=1

xiNi,10 + N7,10 = λ

6X
i=1

xiNi,3 + N7,3

X11 = λ.X6 ⇒
6X

i=1

xiNi,11 + N7,11 = λ

6X
i=1

xiNi,6 + N7,6

X12 = λ.X7 ⇒
6X

i=1

xiNi,12 + N7,12 = λ

6X
i=1

xiNi,7 + N7,7

X13 = λ.X8 ⇒
6X

i=1

xiNi,13 + N7,13 = λ

6X
i=1

xiNi,8 + N7,8

X14 = λ.X9 ⇒
6X

i=1

xiNi,14 + N7,14 = λ

6X
i=1

xiNi,9 + N7,9

X15 = λ.X14 ⇒
6X

i=1

xiNi,15 + N7,15 = λ

6X
i=1

xiNi,14 + N7,14

det (F) = 0 ⇒ det

0@ X1 X2 X3

X4 X5 X6

X7 X8 X9

1A = 0

This set of equations is equivalent to the initial system of
polynomial equations but it is simpler because instead of
eight quadratic and one cubic equation in 9 unknowns (as-
suming f9 = 1) we have only 7 equations (six quadratic and
one cubic) in 7 unknowns. We will use these 7 equations to
create the action matrix for the polynomial f = λ.

3.2 Computing B and the number of solutions
To compute B, we solve our problem in a random finite
prime field Zp (Z/ 〈p〉) with p >> 7, where exact arith-
metic can be used and numbers can be represented in a sim-
ple and efficient way. It speeds up computations and mini-
mizes memory requirements.

4

file:../../cvww2007.pdf�

Zuzana Kúkelová and Tomáš Pajdla [←]

We use algebraic geometric software Macaulay 2, which
can compute in finite fields, to solve the polynomial equa-
tions for many random coefficients from Zp, to compute the
number of solutions, the Gröbner basis, and the basis B. If
the basis B remains stable for many different random coeffi-
cients, it is generically equivalent to the basis of the original
system of polynomial equations.

We can use the Gröbner basis and the basis B computed
for random coefficients from Zp thanks to the fact that in
our class of problems the way of computing the Gröbner ba-
sis is always the same and for particular data these Gröbner
bases differ only in coefficients. This holds for B, which
consists of the same monomials, as well. Also, the way
of obtaining polynomials that are necessary to create the
action matrix is always the same and for a general data
the generated polynomials differ again only in their coef-
ficients. This way we have found that our problem has 16
solutions. To create the action matrix, we use the graded
reverse lexicographic ordering with x1 > x2 > x3 >
x4 > x5 > λ > x6. With this ordering, we get the basis
B = (x3

6, λ
2, x1x6, x2x6, x3x6, x4x6, x5x6, x

2
6, x1, x2, x3,

x4, x5, λ, x6, 1) of the algebra A = C [x1, x2, x3, x4, x5,
λ, x6]/I which, as we shall see later, is suitable for finding
the action matrix Mλ.

3.2.1 Computing the number of solutions and basis B
Here we show the program for computing the number of
solutions and basis B of our problem in Macaulay 2. Similar
programs can be used to compute the number of solutions
and basis of the algebra A for other problems.

// polynomial ring with coeffs from Z30097

R = ZZ/30097[x 1..x 9, MonomialOrder=>Lex];

// Formulate the problem over Zp => the set
of equations eq (known variables -> random
numbers from Zp)

F = matrix({{x 1,x 2,x 3},{x 4,x 5,x 6},
{x 7,x 8,1 R}});

X1 = matrix{apply(8,i->(random(Rˆ2,Rˆ1)))}
||matrix({{1 R,1 R,1 R,1 R,1 R,1 R,1 R,1 R}});

Z1 = matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
||matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
||matrix{apply(8,i->X1 (0,i)ˆ2+X1 (1,i)ˆ2)};

X2 = matrix{apply(8,i->(random(Rˆ2,Rˆ1)))}
||matrix({{1 R,1 R,1 R,1 R,1 R,1 R,1 R,1 R}});

Z2 = matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
||matrix({{0 R,0 R,0 R,0 R,0 R,0 R,0 R,0 R}})
||matrix{apply(8,i->X2 (0,i)ˆ2+X2 (1,i)ˆ2)};

P1 = X1 + x 9*Z1;

P2 = X2 + x 9*Z2;

eq = apply(8, i->(transpose(P1 [i]))*F*(P2 [i]));

// Ideal generated by polynomials eq + the
polynomial det(F)

I1 = ideal(eq) + ideal det F;

// Compute the number of solutions

gbTrace 100

dim I1 //the dimension of ideal I
(zero-dimensional ideal ⇐⇒ V(I) is a
finite set

degree I1 //the number of solutions (the
number of points in V(I))

transpose gens gb I1 // Groebner basis

//the quotient ring A=ZZ/30097[x 1..x 9]/I1

A = R/I1

B = basis A //the basis of the quotient
ring A

The above program in Macaulay 2 gives not only the
number of solutions and the basis B of the algebra A, but
also the information like how difficult it is to compute the
Gröbner basis, and how many and which S-polynomials
have to be generated.

The level of verbosity is controlled with the command
gbTrace(n). For example for n=0 no extra informa-
tion is produced and for n=100 we get which S-polynomials
were computed, from which polynomials were these S-
polynomials created, which S-polynomial did not reduce to
0, which were inserted into the basis and so on.

3.3 Constructing action matrix
Here we construct the action matrix Mλ for multiplication
by polynomial f = λ. The method described in Sec-
tion 2.2 calls for generating polynomials qi = λxα(i) +∑N

j=1 cjixα(j) ∈ I .
In graded orderings, the leading monomials of qi are

λxα(i). Therefore, to find qi, it is enough to generate at least
one polynomial in the required form for each leading mono-
mial λxα(i). This can be, for instance, done by systemat-
ically generating polynomials of I with ascending leading
monomials and testing them. We stop when all necessary
polynomials qi are obtained. Let d be the degree of the high-
est degree polynomial from initial generators F . Then we
can generate polynomials qi from F in this way:

1. Generate all monomial multiples xαfi of degree ≤ d.

2. Write the polynomial equations in the form MX = 0,
where M is the coefficient matrix and X is the vector of
all monomials ordered by the used monomial ordering.

3. Simplify matrix M by the Gauss-Jordan (G-J) elimination.

4. If all necessary polynomials qi have been generated, stop.

5. If no new polynomials with degree < d were generated
by G-J elimination, set d = d + 1.

6. Go to 1.

In this way we can systematically generate all necessary
polynomials. Unfortunately, we also generate many unnec-
essary polynomials. We use Macaulay 2 to identify the un-
necessary polynomials and avoid generating them.

In the process of creating the action matrix Mλ, we repre-
sent polynomials by rows of the matrix of their coefficients.
Columns of this matrix are ordered according to the mono-
mial ordering. The basic steps of generating the polynomials
necessary for constructing the action matrix are as follows:

1. We begin with six 2nd degree polynomials f
(0)
1 , . . . , f

(0)
6

and one 3rd degree polynomial f
(0)
7 = det (F) = 0. We

perform G-J elimination of the matrix representing the
six 2nd degree polynomials and reconstruct the six re-
duced polynomials f

(1)
1 , . . . , f

(1)
6 .

5

file:../../cvww2007.pdf�

Solving polynomial equations for minimal problems in computer vision [←]

2. We multiply f
(1)
1 , . . . , f

(1)
6 by 1, x1, x2, x3, x4, x5, λ, x6

and add f
(0)
7 to get 49 2nd and 3rd degree polynomials

f
(2)
1 , . . . , f

(2)
49 . They can be represented by 119 monomi-

als and a 49×119 matrix with rank 49, which we simplify
by one G-J elimination again.

3. We obtain 15 new 2nd degree polynomials
(f (2)

29 . . . , f
(2)
43), six old 2nd degree polynomials (re-

duced polynomials f
(1)
1 , . . . , f

(1)
6 , now f

(2)
44 . . . , f

(2)
49)

and 28 polynomials of degree three. In order to avoid
adding 4th degree polynomials on this stage we add only
x1, x2, x3, x4, x5, λ, x6 multiples of these 15 new 2nd

degree polynomials to the polynomials f
(2)
1 , . . . , f

(2)
49 .

Thus obtaining 154 polynomials f
(3)
1 , . . . , f

(3)
154 repre-

sentable by a 154 × 119 matrix, which has rank 99. We
simplify it by G-J elimination and obtain f

(4)
1 , . . . , f

(4)
99 .

4. The only 4th degree polynomial that we need is a poly-
nomial in the form λx3

6 + h, h ∈ A. To obtain this
polynomial, we only need to add monomial multiples of
one polynomial g from f

(4)
1 , ..., f

(4)
99 which has leading

monomial LM(g) = λx2
6. This is possible thanks to

our monomial ordering. All polynomials f
(4)
1 , ..., f

(4)
99

and x1, x2, x3, x4, x5, λ, x6 multiples of the 3rd degree
polynomial g with LM(g) = λx2

6 give 106 polynomials
f

(5)
1 , ..., f

(5)
106 which can be represented by a 106 × 126

matrix of rank 106. After another G-J elimination, we
get 106 reduced polynomials f

(6)
1 , ..., f

(6)
106. Because the

polynomial g with LM(g) = λx2
6 has already been

between the polynomials f
(2)
1 , ..., f

(2)
49 , we can add its

monomial multiples already in the 3rd step. After one
G-J elimination we get the same 106 polynomials. In
this way, we obtain polynomial q with LM(q) = λx3

6 as
q = λx3

6 + c1x2x
2
6 + c2x3x

2
6 + c3x4x

2
6 + c4x5x

2
6 + h′,

for some c1, ..., c4 ∈ C and h′ ∈ A instead of the desired
λ x3

6 + h, h ∈ A.

5. Among the polynomials f
(6)
1 , ..., f

(6)
106, there are 12 out

of the 14 polynomials that are required for constructing
the action matrix. The first polynomial which is miss-
ing is the above mentioned polynomial q1 = λx3

6 + h1,
h1 ∈ A. To obtain this polynomial from q, we need to
generate polynomials from the ideal with leading mono-
mials x2x

2
6, x3x

2
6, x4x

2
6, and x5x

2
6. The second missing

polynomial is q2 = λ3 + h2, h2 ∈ A. All these 3rd de-
gree polynomials from the ideal I can be, unfortunately,
obtained only by eliminating the 4th degree polynomi-
als. To get these 4th degree polynomials, the polynomial
with leading monomial x1x

2
6, resp. x2x

2
6, x3x

2
6, x4x

2
6,

x5x
2
6 is multiplied by λ and subtracted from the poly-

nomial with leading monomial λx6 multiplied by x1x6,
resp. by x2x6, x3x6, x4x6, x5x6. After G-J elimina-
tion, a polynomial with the leading monomial x2x

2
6, resp.

x3x
2
6, x4x

2
6, x5x

2
6, λ3 is obtained.

6. All polynomials needed for constructing the action ma-
trix are obtained. Action matrix Mλ is constructed.

3.4 Solving equations using eigenvectors
The eigenvectors of Mλ give solutions for x1, x2, x3,
x4, x5, λ, x6. Using a backsubstitution, we obtain solutions

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

−10 −5 0 5 10
0

0.5

1

1.5

2

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

Figure 2: Distribution of real roots in [−10, 10] using kernel vot-
ing for 500 noiseless point matches, 200 estimations and λtrue =
−0.2. (Left) Parasitic roots (green) vs. roots for mismatches (blue).
(Center) Genuine roots. (Right) All roots, 100% of inliers.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

−10 −5 0 5 10
−0.2

−0.1

0

0.1

0.2

0.3

−1 −0.5 0 0.5 1
0

1

2

3

Figure 3: Distribution of real roots using kernel voting for 500
noiseless point matches, 100% inliers, 200 groups and λtrue =
−0.2. (Left) Distribution of all roots in [−10, 10]. (Center) Distri-
bution of all roots minus the distribution of roots from mismatches
in [−10, 10]. (Right) Distribution of all roots in [−1, 1].

for f1, f2, f3, f4, f5, f6, f7, f8, f9, λ. In this way we obtain
16 (complex) solutions. Generally less than 10 solutions are
real.

4 Experiments
We test our algorithm on both synthetic (with various levels
of noise, outliers and radial distortions) and real images and
compare it to the existing 9-point algorithms for correcting
radial distortion [6, 14]. We can get up to 16 complex roots.
In general, more than one and less than 10 roots are real. If
there is more than one real root, we need to select the best
root, the root which is consistent with most measurements.
To do so, we treat the real roots of the 16 (in general com-
plex) roots obtained by solving the equations for one input as
real roots from different inputs and use RANSAC [5, 10] or
kernel voting [14] for several (many) inputs to select the best
root among all generated roots. The kernel voting is done by
a Gaussian kernel with fixed variance and the estimate of λ is
found as the position of the largest peak. See [14] for more
on kernel voting for this problem. To evaluate the perfor-
mance of our algorithm, we distinguish three sets of roots.
“All roots” is the set of all real roots obtained by solving
the equations for K (different) inputs. “Genuine roots” de-
note the subset of all roots obtained by selecting the real root
closest to the true λ for each input containing only correct
matches. The set of genuine roots can be identified only in
simulated experiments. “Parasitic roots” is the subset of all
roots obtained by removing the genuine roots from all roots
when everything is evaluated on inputs containing only cor-
rect matches. The results of our experiments for the kernel
voting are shown in Figure 2. Figure 2 (Left) shows that the
distribution of all real roots for mismatches is similar to the
distribution of the parasitic roots. This allows to treat par-
asitic roots in the same way as the roots for mismatches.
Figures 2 (Left and Center) show that the distribution of
genuine roots is very sharp compared to the distribution of
parasitic roots and roots for mismatches. Therefore, it is

6

file:../../cvww2007.pdf�

Zuzana Kúkelová and Tomáš Pajdla [←]

−1 −0.5 0 0.5 1
0

2

4

6

−1 −0.5 0 0.5 1
0

1

2

3

4

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

Figure 4: Kernel voting results, for λtrue = −0.25, noise level
σ = 0.2 (1 pixel), image size 768 × 576 and (Left) 100% inliers,
(Center) 90% inliers (Right) 80% inliers. Estimated radial distor-
tion parameters were (Left) λ = −0.2510 (Center) λ = −0.2546
(Right) λ = −0.2495.

possible to estimate the true λ as the position of the largest
peak, Figure 2 (Right). These experiments show that it is
suitable to use kernel voting and that it make sense to select
the best root by casting votes from all computed roots. It is
clear from results shown in Figure 3 that it is meaningful to
vote for λ’s either (i) within the range where the most of the
computed roots fall (in our case [-10,10]), Figure 3 (Left),
or (ii) within the smallest range in which we are sure that
the ground truth lie (in our case [-1,1]), Figure 3 (Right).
For large number of input data, it might also makes sense to
subtract the apriory computed distribution of all real roots
for mismatches from the distribution of all roots.

4.1 Tests on synthetic images
We initially studied our algorithm using synthetic datasets.
Our testing procedure was as follows:

1. Generate a 3D scene consisting of N (= 500) random
points distributed uniformly within a cuboid. Project
M% of the points on image planes of the two displaced
cameras. These are matches. In both image planes, gen-
erate (100 − M)% random points distributed uniformly
in the image. These are mismatches. Altogether, they
become undistorted correspondences.

2. Apply the radial distortion to the undistorted correspon-
dences to generate noiseless distorted points.

3. Add Gaussian noise of standard deviation σ to the dis-
torted points.

4. Repeat K times (We use K = 100 here, but in many
cases K from 30 to 50 is sufficient).

(a) Randomly choose 8 point correspondences from given
N correspondences.

(b) Normalize image point coordinates to [−1, 1]

(c) Find up to 16 roots of the minimal solution to the au-
tocalibration of radial distortion.

(d) Select the real roots in the feasible interval, e.g.,−1 <
λ < 1 and the corresponding F’s.

5. Use kernel voting to select the best root.

The resulting density functions for different outlier contam-
inations and for the noise level 1 pixel are shown in Fig-
ure 4. Here, K = 100, image size was 768 × 576 and
λtrue = −0.25. In all cases, a good estimate, very close
to the true λ, was found as the position of the maximum of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

co
m

pu
te

d
λ

σ

λ
true

 = −0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

co
m

pu
te

d
λ

σ

λ
true

 = −0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

co
m

pu
te

d
λ

σ

λ
true

 = −0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

co
m

pu
te

d
λ

σ

λ
true

 = −0.5

Figure 5: Estimated λ as a function of noise σ, ground truth
λtrue = −0.5 and (Top) inliers = 90%, (Bottom) inliers =
80%. Blue boxes contain values from 25% to 75% quantile. (Left)
8-point algorithm. (Right) 9-point algorithm.

the root density function. We conclude, that the method is
robust to mismatches and noise.

In the next experiment we study the robustness of our
algorithm to increasing levels of Gaussian noise added to
the distorted points. We compare our results to the results
of two existing 9-point algorithms [6, 14]. The ground truth
radial distortion λtrue was−0.5 and the level of noise varied
from σ = 0 to σ = 1, i.e. from 0 to 5 pixels. Noise level 5
pixels is relatively large but we get good results even for this
noise level and 20% of outliers.

Figure 5 (Left) shows λ computed by our 8-point algo-
rithm as a function of noise level σ. Fifty lambdas were
estimated from fifty 8-tuples of correspondences randomly
drawn for each noise level and (Top) 90% and (Bottom) 80%
of inliers. The results are presented by the Matlab func-
tion boxplot which shows values 25% to 75% quantile as a
blue box with red horizontal line at median. The red crosses
show data beyond 1.5 times the interquartile range. The re-
sults for 9-point algorithms [6, 14], which gave exactly iden-
tical results, are shown for the same input, Figure 5 (Right).

The median values (from -0.50 to -0.523) for 8-point as
well as 9-point algorithms are very close to the ground truth
value λtrue = −0.5 for all noise levels. The variances of the
9-point algorithms, Figure 5 (Right), are considerably larger,
especially for higher noise levels, than the variances of the
8-point algorithm Figure 5 (Left). The 8-point algorithm
thus produces higher number of good estimates for the fixed
number of samples. This is good both for RANSAC as well
as for kernel voting.

4.2 Tests on real images
The input images with relatively large distortion, Fig-
ures 1 (Left) and 6 (Left), were obtained as cutouts from
180◦ angle of view fish-eye images. Tentative point cor-
respondences were found by the wide base-line matching
algorithm [16]. They contained correct as well as incorrect
matches. Distortion parameter λ was estimated by our
8-point algorithm and the kernel voting method. The input
(Left) and corrected (Right) images are presented in Fig-

7

file:../../cvww2007.pdf�

Solving polynomial equations for minimal problems in computer vision [←]

Figure 6: Real data. (Left) Input image with significant radial
distortion. (Right) Corrected image.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 7: Distribution of real roots obtained by kernel voting for
image in Figure 6. Estimated λ = −0.22.

ures 1 and 6. Figure 7 shows the distribution of real roots,
for image from figure 6 (Left), from which λ = −0.22 was
estimated as the argument of the maximum.

5 Conclusion
In this work we suggest improvements of current techniques
for solving systems of polynomial equations and apply them
to the minimal problem for the autocalibration of radial dis-
tortion. Our algorithm reduces the number of samples in
RANSAC and is more stable than previously known 9-point
algorithms. Our current MATLAB implementation of this
algorithm runs about 0.05s on a P4/2.8GHz CPU. Most of
this time is spent in the Gauss-Jordan elimination. However
this time can be still reduced by further optimization. For
comparison our MATLAB implementation of Fitzgibbon’s
algorithm runs about 0.004s and the original implementa-
tion of Hongdong Li’s algorithm [14] based on MATLAB
Symbolic-Math Toolbox runs about 0.86s.

Acknowledgement
This work was supported by MSM6840770038 and the EC
project FP6-IST-027787 DIRAC. Any opinions expressed in
this paper do not necessarily reflect the views of the Euro-
pean Community. The Community is not liable for any use
that may be made of the information contained herein.

References
[1] C. Bräuer-Burchardt and K. Voss. A new algorithm to

correct fish-eye and strong wide-angle-lens-distortion from
single images. ICIP 2001, pp. 225–228.

[2] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry.
Springer-Verlag, 2005.

[3] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and
Algorithms. Springer-Verlag, 1992.

[4] D. Devernay and O. Faugeras. Straight lines have to be
straight. MVA, 13(1):14–24, 2001.

[5] M. A. Fischler and R. C. Bolles. Random Sample
Consensus: A paradigm for model fitting with applications
to image analysis and automated cartography. Comm. ACM,
24(6):381–395, 1981.

[6] A. Fitzgibbon. Simultaneous linear estimation of multiple
view geometry and lens distortion. CVPR 2001, pp. 125–132.

[7] J.-C. Faugere. A new efficient algorithm for computing
gröbner bases (f4). Journal of Pure and Applied Algebra,
139(1-3):61–88, 1999.

[8] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete
solution classification for the perspective-three-point
problem. IEEE PAMI, 25(8):930–943, 2003.

[9] R. Hartley and S. Kang. Parameter-free radial distortion
correction with centre of distortion estimation. ICCV 2005,
pp. 1834–1841.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

[11] S. Kang. Catadioptric self-calibration. CVPR 2000,
[12] S. Kang. Radial distortion snakes. IAPR MVA Workshop 2000,

pp. 603–606, Tokyo.
[13] H. Li. A simple solution to the six-point two-view

focal-length problem. ECCV 2006, pp. 200–213.
[14] H. Li and R. Hartley. A non-iterative method for correcting

lens distortion from nine-point correspondences. OMNIVIS
2005.

[15] H. Li and R. Hartley. Five-point motion estimation made
easy. ICPR 2006, pp. 630–633.

[16] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide-baseline stereo from maximally stable extremal
regions. Image and Vision Computing, 22(10):761–767, 2004.

[17] B. Micusik and T. Pajdla. Estimation of omnidirectional
camera model from epipolar geometry. CVPR 2003,

[18] D. Nister. An efficient solution to the five-point relative
pose. IEEE PAMI, 26(6):756–770, 2004.

[19] R. Steele and C. Jaynes. Overconstrained linear estimation
of radial distortion and multi-view geometry. ECCV 2006,

[20] G. Stein. Lens distortion calibration using point
correspondences. CVPR 1997, pp. 600:602.

[21] H. Stewenius. Gröbner basis methods for minimal problems in
computer vision. PhD thesis, Lund University, 2005.

[22] H. Stewenius, C. Engels, and D. Nister. Recent
developments on direct relative orientation. ISPRS J. of
Photogrammetry and Remote Sensing, 60:284–294, 2006.

[23] H. Stewenius, D. Nister, F. Kahl, and F. Schaffalitzky. A
minimal solution for relative pose with unknown focal
length. In CVPR 2005, pp. 789–794.

[24] H. Stewenius, D. Nister, M. Oskarsson, and K. Astrom.
Solutions to minimal generalized relative pose problems.
OMNIVIS 2005.

[25] R. Strand and E. Hayman. Correcting radial distortion by
circle fitting. BMVC 2005.

[26] S. Thirthala and M. Pollefeys. Multi-view geometry of 1d
radial cameras and its application to omnidirectional camera
calibration. ICCV 2005, pp. 1539–1546.

[27] S. Thirthala and M. Pollefeys. The radial trifocal tensor: A
tool for calibrating the radial distortion of wide-angle
cameras. CVPR 2005 pp. 321–328.

[28] R. Tsai. A versatile camera calibration technique for
high-accuracy 3d machine vision metrology using
off-the-shelf tv cameras and lenses. IEEE J. of Robotics and
Automation, 3(4):323344, 1987.

[29] Z. Zhang. On the epipolar geometry between two images
with lens distortion. In ICPR 1996.

[30] Z. Zhang. A flexible new technique for camera calibration.
IEEE PAMI, 22(11):1330–1334, 2000.

8

file:../../cvww2007.pdf�

