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Abstract

In this paper we provide new fast and simple solutions to two important min-
imal problems in computer vision, the five-point relative pose problem and
the six-point focal length problem. We show that these two problems can eas-
ily be formulated as polynomial eigenvalue problems of degree three and two
and solved using standard efficient numerical algorithms. Our solutions are
somewhat more stable than state-of-the-art solutions by Nister and Stewe-
nius and are in some sense more straightforward and easier to implement
since polynomial eigenvalue problems are well studied with many efficient
and robust algorithms available. The quality of the solvers is demonstrated
in experiments 1.

1 Introduction
Estimating relative camera pose [11] from image correspondences can be formulated as
a minimal problem and solved from a minimal number of image points [8]. It is known
that for estimating relative pose of two fully-calibrated cameras, the minimal number of
image points is five and for two cameras with unknown focal length it is six. Therefore,
these two minimal problems are often called the five-point relative pose problem (5-pt)
and the six-point focal length problem (6-pt).

Efficient algorithms for solving these two important minimal problems appeared only
recently [19, 26, 23] and are widely used in many applications such as 3D reconstruction
and structure from motion. It is because they are very effective as hypothesis generators in
popular RANSAC paradigm [8] or can be used for initializing the bundle adjustment [11].

Using a small data set considerably reduces the number of samples in RANSAC.
Therefore, new minimal problems [23, 25, 26, 10, 13, 14, 2, 4] have been solved recently.
Many of them led to nontrivial systems of polynomial equations. A popular method
for solving such systems is based on polynomial ideal theory and Gröbner bases [5].
The Gröbner basis method was used to solve almost all previously mentioned minimal
problems including the 5-pt [26] and 6-pt problems [23]. This approach is general but not
always straightforward and without a special care [3] it may lead to procedures that are
not numerically robust [24, 14]. Automatic generator of such Gröbner basis solvers has
been presented in [15].

1This work has been supported by EC projects FP6-IST-027787 DIRAC and MRTN-CT-2004-005439 VI-
SIONTRAIN and grants MSM6840770038 DMCM III, STINT Dur IG2003-2 062, MSMT KONTAKT 9-06-17.



In this paper we show that the 5-pt and the 6-pt problems lead to special polyno-
mial equations that can be solved robustly and efficiently as a cubic and a quadratic
eigenvalue problems. This solution is fast and somewhat more stable than existing so-
lutions [19, 26, 23]. It is in some sense also more straightforward and easier to imple-
ment since polynomial eigenvalue problems are well studied and their efficient numer-
ical solvers are available. Polynomial eigenvalue solvers were previously used to solve
the problem of autocalibration of one-parameter radial distortion from nine point corre-
spondences [9] or to estimate paracatadioptric camera model from image matches [18].
Motivated by all these examples, we also characterize problems that can be solved by
polynomial eigenvalue solvers.

2 The five and six point relative pose problems
Consider a pair of pin-hole cameras P and P′. The constraints on corresponding image
points in two calibrated views can be written down as [11]:

x′Tj Ex j = 0, (1)

where E is a 3×3 rank-2 essential matrix, and it is known that

det(E) = 0, (2)
2EE>E− trace(EE>)E = 0. (3)

The usual way to compute essential matrix is to linearize relation (1) into form MX =
0, where vector X contains nine elements of the matrix E and M contains image measure-
ments. Essential matrix E is then constructed as a linear combination of the null space
vectors of the matrix M. The dimension of the null space depends on the number of point
correspondences used. Additional constraints (2) and (3) are used to determine the coef-
ficients in the linear combination of the null space vectors or to project an approximate
solution to the space of correct essential matrices.

In this paper we also consider a camera pair with unknown but constant focal lengths
f . Other calibration parameters are known. Calibration matrix K is then a diagonal matrix
diag([ f f 1]). It is known that for such configuration E= KFK. Since K is regular we have

det(F) = 0, (4)
2FQF>QF− trace(FQF>Q)F = 0. (5)

The equation (5) is obtained by substituting the expression for the essential matrix into
the trace constraint (3), applying the substitution Q= KK, and multiplying (3) by K−1 from
left and right. Note that the calibration matrix can be written as K' diag([1 1 1/ f ]), what
simplifies equations.

3 Previous solutions

3.1 Five point problem
The 5-pt relative pose problem was studied already by Kruppa [12] who has shown that it
has at most eleven solutions. Maybank and Faugeras [7] then sharpened Kruppa’s result



by showing that there are at most ten solutions. Recently, Nister et al. [20] have shown
that the problem really requires solving a ten degree polynomial.

Kruppa [12] also gave an algebraic algorithm for solving the 5-pt problem. It was
implemented by Maybank and Faugearas [7] but turned out not to be particularly efficient
and practical. More efficient and practical solution has been invented by Philip [21].
He designed a method finding the solutions by extracting the roots of a thirteen degree
polynomial. The state of the art methods of Nister [19] and Stewénius et al. [26], which
obtain the solutions as the roots of a tenth-degree polynomial, are currently the most
efficient and robust implementations for solving the 5-pt relative pose problem.

In both these methods, the five linear epipolar constraints were used to parametrize
the essential matrix as a linear combination of a basis E1,E2,E3,E4 of the space of all
compatible essential matrices

E = xE1 + yE2 + zE3 + E4. (6)

Then, the rank constraint (2) and the trace constraint (3) were used to build ten third-
order polynomial equations in three unknowns and 20 monomials. These equations can
be written in a matrix form

MX = 0, (7)

with a coefficient matrix M reduced by the Gauss-Jordan (G-J) elimination and the vector
of all monomials X .

The method [19] used relations between polynomials (7) to create three additional
equations. The new equations were arranged into a 3×3 matrix equation A(z)Z = 0 with
matrix A(z) containing polynomial coefficients in z and Z containing the monomials in
x and y. The solutions were obtained by solving the tenth degree polynomial det(A(z)),
finding Z as a solution to a homogeneous linear system, and constructing E from (6).

The method [26] follows a classical approach to solving systems of polynomial equa-
tions. First, a Gröbner basis [5] of the ideal generated by equations (7) is found. Then, a
multiplication matrix [22] is constructed. Finally, the solutions are obtained by comput-
ing the eigenvectors [5] of the multiplication matrix. This approach turned out to lead to
a particularly simple procedure for the 5-pt problem since a Gröbner basis and a 10×10
multiplication matrix can be constructed directly from the reduced coefficient matrix M.

Another technique, based on the hidden variable resultant, for solving the 5-pt relative
pose problem was proposed in [17]. This technique is somewhat easier to understand
than [26] but is far less efficient and Maple was used to evaluate large determinants.

3.2 Six point problem
The problem of estimating relative camera position for two cameras with unknown focal
length from minimal number of point correspondences has 15 solutions.

The first minimal solution to this problem proposed by Stewénius et. al. [23] is based
on the Gröbner basis techniques and is similar to the Stewénius’ solution to the 5-pt prob-
lem [26]. Using the linear epipolar constraints, the fundamental matrix is parameterized
by two unknowns as

F = xF1 + yF2 +F3. (8)

Using the rank constraint for the fundamental matrix (4) and the trace constraint for the
essential matrix (5) then brings ten third and fifth order polynomial equations in three
unknowns x, y, and w = f−2, where f is the unknown focal length.



The Gröbner basis solver [23] starts with these ten polynomial equations which can
be represented by a 10× 33 matrix M. Since this matrix doesn’t contain all necessary
polynomials for creating a multiplication matrix, two new polynomials are added and
matrix M is reduced by the G-J elimination. Further four new polynomials are added and
eliminated then. Finally, two more polynomials are added and eliminated. The resulting
system then contains a Gröbner basis and can be used to construct the multiplication
matrix. The resulting solver therefore consists of three G-J eliminations of three matrices
of size 12× 33, 16× 33, and 18× 33. The eigenvectors of the multiplication matrix
provide the solutions to the three unknowns x, y, and w = f−2.

Another Gröbner basis solver to this problem was proposed in [3]. This solver uses
only one G-J elimination of a 34×50 matrix and uses a special technique for improving
the numerical stability of Gröbner basis solvers based on changing the basis B. In this pa-
per it was shown that this solver gives more accurate results than the original solver [23].

A Gröbner basis solver with single G-J elimination of a 31× 46 matrix which was
generated using automatic generator has been presented in [15].

Solution based on the hidden variable resultant method was proposed in [16]. This so-
lution has similar problems as the hidden variable solution to the five point problem [17].

4 Polynomial eigenvalue problems
Polynomial eigenvalue problems (PEP) are problems of the form

A(λ )v = 0, (9)

where A(λ ) is a matrix polynomial defined as

A(λ )≡ λ lCl +λ l−1Cl−1 + · · ·+λC1 +C0, (10)

in which the C j are square n by n matrices.
To illustrate what kind of systems of polynomial equations can be transformed to PEP

consider a system of equations

f1 (x) = ... = fm (x) = 0, (11)

which are given by a set of m polynomials F= { f1, ..., fm| fi ∈ C [x1, ...,xn]} in n variables
x = (x1, ...,xn) over the field of complex numbers. Each of these equations can be written
as fi = ∑k

j=1 ai jxα( j), i = 1, . . . ,m, where xα( j) = xα( j)1
1 xα( j)2

2 ...xα( j)n
n , j = 1, . . . ,k are k

monomials which appear in these equations and ai j are coefficient of these equations. If
for some x j these equations can be rewritten as

fi =
l

∑
p=0

xp
j

r

∑
q=1

bpiq xβ (q), i = 1, . . . ,m, (12)

where bpiq are coefficients and xβ (q) are monomials in all variables except x j, xβ (q) =

xβ (q)1
1 . . .x

β (q) j−1
j−1 x

β (q) j+1
j+1 . . .xβ (q)n

n and if r = m, i.e. that we have so many equations as
monomials in these equations (monomials xβ (q) without the variable x j), then the system
of polynomial equations (11) can be transformed to a PEP (9) of degree l.



An important class of polynomial eigenvalue problems are quadratic eigenvalue prob-
lems where the matrix polynomial A(λ ) has degree two.

Quadratic eigenvalue problem (QEP) is a problem of the form
(
λ 2C2 +λC1 +C0

)
v = 0, (13)

where C2,C1 and C0 are given matrices of size n× n and x is the the eigenvector and λ
corresponding eigenvalue.

QEP (13) can be easily transformed to the following generalized “linear” eigenvalue
problem (GEP) [1]

Ay = λBy, (14)

where

A =
(

0 I
−C0 −C1

)
,B =

(
I 0
0 C2

)
,y =

(
v

λv

)
. (15)

It can be easily seen that QEP (13) has 2n eigenvalues.
Generalized eigenvalue problems (14) are well studied problems and there exist many

efficient numerical algorithms for solving them [1]. For example, MATLAB provides
the function polyeig for solving directly polynomial eigenvalue problems (9) of arbitrary
degree (including their transformation to the generalized eigenvalue problems).

Some applications lead to a higher order polynomial eigenvalue problems (PEP)
(

λ lCl +λ l−1Cl−1 + · · ·+λC1 +C0

)
v = 0, (16)

in which the C j are square n×n matrices.
As for the QEP, these problems can be transformed to the generalized eigenvalue

problem (14). Here

A =




0 I 0 . . . 0
0 0 I . . . 0
. . . . . . . . . . . . . . .
−C0 −C1 −C2 . . . −Cl−1


 , B =




I

. . .
I

Cl


 , y =




x
λx
. . .

λ l−1x


 .

(17)
For higher order PEPs, one has to work with larger matrices with nl eigenvalues. There-
fore, for larger values of n and l problems with the convergence of the techniques for solv-
ing these problems sometimes appear. One way how to solve these convergence problems
is to project the given problem (16) onto a low-dimensional subspace and obtain a similar
problem of low dimension [1]. This low-dimensional PEP can then be easier solved using
standard methods.

5 Polynomial eigenvalue formulation of 5-pt & 6-pt
In this section we solve the 5-pt relative pose problem and the 6-pt focal length problem
as the polynomial eigenvalue problems (9) of degree three and degree two.

5.1 Five point problem
In our solution we use the same formulation of the five point problem as it was used
in [19] and [26]. We first use linear equations from the epipolar constraint to parametrize



the essential matrix with three unknowns x, y, and z (6). Using this parameterization, the
rank (2) and the trace constraints (3) results in ten third-order polynomial equations in
three unknowns and 20 monomials and can be written in a matrix form

MX = 0, (18)

where M is a 10×20 coefficient matrix and X = (x3,yx2,y2x,y3,zx2,zyx,zy2,z2x,z2y,z3,x2,
yx,y2,zx,zy,z2,x,y,z,1)> is the vector of all monomials. Between these monomials there
are all monomials in all three unknowns up to degree three. So we can use arbitrary
unknown to play the role of λ in (9). For example, taking λ = z, these ten equations can
be easily rewrite as (

z3C3 + z2C2 + zC1 +C0
)

v = 0, (19)

where v is a 10× 1 vector of monomials, v = (x3,x2y,xy2,y3,x2,xy,y2,x,y,1)> and C3,
C2, C1 and C0 are 10× 10 coefficient matrices. C3 ≡ (0 0 0 0 0 0 0 0 0 m10), C2 ≡
(0 0 0 0 0 0 0 m8 m9 m16), C1 ≡ (0 0 0 0 m5 m6 m7 m14 m15 m19), and C0 ≡ (m1 m2 m3 m4
m11 m12 m13 m17 m18 m20), where m j is the jth column from the coefficient matrix M.

Since C3, C2, C1 and C0 are known square matrices, the formulation (19) is a cubic
PEP. Such problem can be easily solved using standard efficient algorithms, for example
MATLAB function polyeig.

After solving the PEP (19), we obtain 30 eigenvalues z and 30 corresponding eigen-
vectors v from which we extract solutions for x and y. Then we use (6) to compute E.

5.2 Six point problem
Our solution to the 6-pt focal length problem starts with the parameterization of the fun-
damental matrix with two unknowns x and y (8). Substituting this parameterization into
the rank constraint for the fundamental matrix (4) and the trace constraint for the essential
matrix (5) gives ten third and fifth order polynomial equations in the three unknowns x, y
and w = f−2, where f is the unknown focal length. This formulation is the same as the
one used in [23, 16] and can be again written in a matrix form

MX = 0, (20)

where M is a 10×30 coefficient matrix and X =(w2x3,w2yx2,w2y2x,w2y3,wx3,wyx2,wy2x,
wy3,w2x2,w2yx,w2y2,x3,yx2,y2x,y3,wx2,wyx,wy2,w2x,w2y,x2,yx,y2,wx,wy,w2,x,y,w,1)>
is a vector of 30 monomials. In these x and y appear in degree three and w only in degree
two. Therefore, we have selected λ = w. Then, these ten equations can be easily rewrite
as (

w2C2 +wC1 +C0
)

v = 0, (21)

where v is a 10×1 vector of monomials, v = (x3,x2y,xy2,y3,x2,xy,y2,x,y,1)> and C2,C1
and C0 are 10× 10 coefficient matrices. C2 ≡ (m1 m2 m3 m4 m9 m10 m11 m19 m20 m26),
C1 ≡ (m5 m6 m7 m8 m16 m17 m18 m24 m25 m29) and C0 ≡ (m12 m13 m14 m15 m21 m22 m23
m27 m28 m30) , where m j is the jth column from the corresponding coefficient matrix M.

The formulation (21) is a QEP. We can again easily solve this problem using standard
efficient algorithms.

After solving the QEP (21) we obtain 20 eigenvalues w and 20 corresponding eigen-
vectors v from which we extract solutions for x and y and use (8) to get solutions for focal
length f and fundamental matrix F.
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Figure 1: Noise free test. The results are presented by the MATLAB function boxplot
which shows values 25% to 75% quantile as a blue box with red horizontal line at median.
The red crosses show data beyond 1.5 times the interquartile range.

6 Experiments
In this section we evaluate both our solutions and compare them with the existing state
of the art methods. Since all methods are algebraically equivalent and solvers differ only
in the way of solving problems, we have evaluated them on synthetic data sets only. We
aimed at studying numerical stability and speed of the algorithms in several configura-
tions.

In all our tests, the synthetic scene was generated randomly with the Gaussian dis-
tributions in a 3D cube. Each 3D point was projected by a pair of cameras, where each
camera orientation and position were selected depending on the testing configuration.
Then, Gaussian noise with standard deviation σ was added to each image point.

For the calibrated 5-pt problem we extracted camera relative rotations and translations
from estimated essential matrices. From the four possible choices of rotations and trans-
lations we selected the one where all 3D points were in the front of the canonical camera
pair [11]. Let R be an estimated camera relative rotation and Rgt a ground-truth rotation.
The rotation error is measured as an angle in the angle axis representation of the relative
rotation RR−1

gt and the translation error as an angle between ground-truth and estimated
translation vectors.

In the 6-pt problem evaluations we used estimated focal length to transfer fundamental
matrix to an essential matrix and then we measured errors as in the 5pt problem case. We
also measured relative focal length error ( f − fgt)/ fgt , where f is an estimated focal
length and fgt denotes a ground truth value.

In the first test we studied numerical stability of our algorithms in noise free situa-
tion. Here we show rotation and translation errors w.r.t. the ground truth as a cosine of
the angles which we get as described above. This is because the errors are so small that
the rounding in acos function removed differences between the algorithms. Hence we
skipped acos in the calculations. Figure 1 summarises results for 5000 randomly gener-
ated scenes and camera configurations. From the figure we see that all algorithms behaved
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Figure 2: Top five plots show failure ratio test for noise free data. Tests with data affected
by a 1 pxl noise (1000×1000 image resolution) are displayed in the bottom.

almost the same way. However, 6pt polyeig solution provided more precise focal length
estimation than existing 3 elimination [23] as well as 1-elimination Gröbner basis method
[15]. deviation σ did not cause observable change in relative behaviour of the algorithms,
therefore we do not plot these results.

Next, we studied the fraction of results (y-axis) that gives worse result than a given
error threshold (x-axis). We generated 5000 random scenes and camera poses. Figure 2
summarizes these results for both noise free data (top two rows) and for data affected by
a 1 pxl noise (bottom two rows). Our polyeig solvers provided more stable results than
the state of the art methods.

In the last experiment we tested behaviour of the algorithms for the camera pair with
a constant baseline length (0.5m) moving backwards and zooming to keep image filled
by the projection of the 3D scene. For each position of the cameras pair, we executed
all algorithms several times and selected median values from measured errors. Results
are displayed in Figure 3. From the plots we see that the original 6-pt algorithm returns
less precise results with increasing distance and focal length. Both, single elimination
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Figure 3: Backward moving and zooming camera test.

Gröbner basis method and our polynomial eigenvalue method, return comparable results.
We have implemented our solvers fully in MATLAB. Solvers are easy to implement

since only three (for the 6-pt problem) and four (5-pt problem) matrices are filled with
appropriate coefficients extracted from the input equations followed by MATLAB polyeig
function and constructing E and F from equations (6) and (8).

Comparing the speed of the algorithms, our MATLAB implementation of the 6-pt
problem solver is 3× slower (3 ms) than the MEX implementation of the original so-
lution (1 ms) proposed by Stewenius [23]. Our 6-pt solver is about 30% faster than the
MATLAB implementation of the single elimination Gröbner basis 6-pt solver with a MEX
implementation of the Gauss-Jordan elimination. Our polyeig solution of the 5-pt prob-
lem is about 8× slower (8 ms) than the Gröbner basis MEX solution (1 ms). On the other
hand, according to the MATLAB profiler tool, eigenvalue computation was not the most
expensive part of our solvers. Hence we believe, that the MEX version of our solvers can
be made faster.

7 Conclusion
In this paper we have presented a new simple and numerically stable solutions to the
two important minimal problems in computer vision, the five-point relative pose problem
and the six-point focal length problem. We have formulated them as a quadratic and
cubic polynomial eigenvalue problems which can be solved robustly and efficiently using
existing numerical methods. Experiments have shown that our solutions are somewhat
more stable than the state-of-the-art methods [19, 26, 23]. Our solutions are easy to
implement while achieving comparable speed and numerical accuracy.
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