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Abstract

A method called, σ-consensus, is proposed to elimi-

nate the need for a user-defined inlier-outlier threshold in

RANSAC. Instead of estimating the noise σ, it is marginal-

ized over a range of noise scales. The optimized model is

obtained by weighted least-squares fitting where the weights

come from the marginalization over σ of the point like-

lihoods of being inliers. A new quality function is pro-

posed not requiring σ and, thus, a set of inliers to deter-

mine the model quality. Also, a new termination criterion

for RANSAC is built on the proposed marginalization ap-

proach. Applying σ-consensus, MAGSAC is proposed with

no need for a user-defined σ and improving the accuracy of

robust estimation significantly. It is superior to the state-of-

the-art in terms of geometric accuracy on publicly available

real-world datasets for epipolar geometry (F and E) and

homography estimation. In addition, applying σ-consensus

only once as a post-processing step to the RANSAC output

always improved the model quality on a wide range of vi-

sion problems without noticeable deterioration in process-

ing time, adding a few milliseconds.1

1. Introduction

The RANSAC (RANdom SAmple Consensus) algo-

rithm proposed by Fischler and Bolles [5] in 1981 has be-

come the most widely used robust estimator in computer

vision. RANSAC and its variants have been successfully

applied to a wide range of vision tasks, e.g. motion seg-

mentation [25], short baseline stereo [25, 27], wide baseline

stereo matching [18, 13, 14], detection of geometric primi-

tives [21], image mosaicing [7], and to perform [28] or ini-

tialize multi-model fitting [10, 17]. In brief, the RANSAC

approach repeatedly selects random subsets of the input

point set and fits a model, e.g. a plane to three 3D points

or a homography to four 2D point correspondences. Next,

1The source code is at https://github.com/danini/magsac

the quality of the estimated model is measured, for instance

by the size of its support, i.e. the number of inliers. Finally,

the model with the highest quality, polished e.g. by least

squares fiting on its inliers, is returned.

Since the publication of RANSAC, a number of modi-

fications has been proposed. NAPSAC [16], PROSAC [1]

and EVSAC [6] modify the sampling strategy to increase

the probability of selecting an all-inlier sample early.

NAPSAC assumes that the inliers are spatially coherent,

PROSAC exploits an a priori predicted inlier probability

of the points and EVSAC estimates a confidence in each

of them. MLESAC [26] estimates the model quality by a

maximum likelihood process with all its beneficial proper-

ties, albeit under certain assumptions about inlier and out-

lier distributions. In practice, MLESAC results are often

superior to the inlier counting of plain RANSAC and they

are less sensitive to the user-defined inlier-outlier threshold.

In MSAC [24], the robust estimation is formulated as a pro-

cess that estimates both the parameters of the data distribu-

tion and the quality of the model in terms of maximum a

posteriori. timates the model quality by a maximum likeli-

hood process with all its beneficial properties, albeit under

certain assumptions about inlier and outlier distributions.

One of the highly attractive properties of RANSAC is

its small number of control parameters. The termination

is controlled by a manually set confidence value η and the

sampling stops as soon as the probability of finding a model

with higher support falls below 1−η.2 The setting of η is not

problematic, the typical values are 0.95 or 0.99, depending

on the required confidence in the solution.

The second, and most critical, parameter is the inlier

noise scale σ that determines the inlier-outlier threshold

τ(σ) which strongly influences the outcome of the proce-

dure. In standard RANSAC and its variants, σ must be

provided by the user which limits its fully automatic out-

of-the-box use and requires the user to acquire knowledge

about the problem at hand. In Fig. 1, the inlier residuals

2Note that the probabilistic interpretation of η holds only for the stan-

dard {0, 1} cost function.
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are shown for four real datasets demonstrating that σ varies

scene-by-scene and, thus, there is no single setting which

can be used for all cases.

To reduce the dependency on this threshold, MIN-

PRAN [22] assumes that the outliers are uniformly dis-

tributed and finds the model where the inliers are least likely

to have occurred randomly. Moisan et al. [15] proposed a

contrario RANSAC, to optimize each model by selecting

the most likely noise scale.

As the major contribution of this paper, we propose an

approach, σ-consensus, that eliminates the need for σ, the

noise scale parameter. Instead of σ, only an upper limit is

required. The final outcome is obtained by weighted least-

squares fitting, where the weights are given for marginal-

izing over σ, using likelihood of the model given data and

σ. Besides finessing the need for a precise scale param-

eter, the novel method, called MAGSAC, is more precise

than previously published RANSACs. Also, we propose

a post-processing step applying σ-consensus to the so-far-

the-best-model without noticeable deterioration in process-

ing time, i.e. at most a few milliseconds. In our experi-

ments, the method always improved the input model (com-

ing from RANSAC, MSAC or LO-RANSAC) on a wide

range of problems. Thus we see no reason for not applying

it after the robust estimation finished. As a second contribu-

tion, we define a new quality function for RANSAC. It mea-

sures the quality of a model without requiring σ and, there-

fore, a set of inliers to measure the model quality. Moreover,

as a third contribution, due to not having a single inlier set

and, thus, an inlier ratio, the standard termination criterion

of RANSAC is marginalized over σ to be applicable to the

proposed method.

2. Notation

In this paper, the input points are denoted as P =
{p | p ∈ R

k, k ∈ N>0}, where k is the dimension, e.g.

k = 2 for 2D points and k = 4 for point correspondences.

The inlier set is I ⊆ P . The model to fit is represented

by its parameter vector θ ∈ Θ, where Θ = {θ | θ ∈
R

d, d ∈ N>0} is the manifold, for instance, of all possi-

ble 2D lines and d is dimension of the model, e.g. d = 2 for

2D lines (angle and offset). Fitting function F : P∗ → Θ
calculates the model parameters from n ≥ m points, where

P∗ = expP is the power set of P and m ∈ N>0 is the min-

imum point number for fitting a model, e.g. m = 2 for 2D

lines. Note that F is a combined function applying different

estimators on the basis of the input set, for example, a min-

imal method if n = m and least-squares fitting otherwise.

Function D : Θ × P → R is the point-to-model residual

function. Function I : P∗×Θ×R→ P∗ selects the inliers

given model θ and threshold σ. For instance, if the origi-

nal RANSAC approach is considered, IRANSAC(θ, σ,P) =
{p ∈ P | D(θ, p) < σ}, for truncated quadratic dis-
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(a) homogr dataset
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(b) EVD dataset
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(c) AdelaideRMF dataset
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(d) kusvod2 dataset

Figure 1: The average residuals (RMSE in pixels; vertical

axis) of manually annotated inliers given the ground truth

model for each scene (horizontal) of four datasets.

Notation

P - Set of data points σ - Noise standard deviation

θ - Model parameters D - Residual function

I - Inlier selector function Q - Model quality function

F - Fitting function m - Minimal sample size

τ(σ) - Inlier-outlier threshold σmax - Upper bound of σ

tance of MSAC, IMSAC(θ, σ,P) = {p ∈ P | D2(θ, p) <
9/4σ2}. The quality function is Q : P∗ × Θ × R → R.

Higher quality is interpreted as better model. For RANSAC,

QRANSAC(θ, σ,P) = |I(θ, σ,P)| and for MSAC, it is

QMSAC(θ, σ,P) =

|I(θ,σ,P)|
∑

i=1

(

1−
D2(θ, Ii(θ, σ,P))

9/4σ2

)

,

where Ii(θ, σ,P) is the ith inlier.

3. Marginalizing sample consensus

A method called MAGSAC is proposed in this section

eliminating the threshold parameter from RANSAC-like ro-

bust model estimation.

3.1. Marginalization over σ

Let us assume the noise σ to be a random variable with

density function f(σ) and let us define a new quality func-

tion for model θ marginalizing over σ as follows:

Q∗(θ,P) =

∫

Q(θ, σ,P)f(σ)dσ. (1)
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Having no prior information, we assume σ being uniformly

distributed, σ ∼ U(0, σmax). Thus

Q∗(θ,P) =
1

σmax

∫ σmax

0

Q(θ, σ,P)dσ. (2)

For instance, using Q(θ, σ,P) of plain RANSAC, i.e. the

number of inliers, where σ is the inlier-outlier threshold

and {D(θ, pi)}
|P|
i=1 are the distances to model θ such that

0 ≤ D(θ, p1) < D(θ, p2) < .... < D(θ, pK) < σmax <
D(θ, pK+1) < ... < D(θ, p|P|) we get a quality function

Q∗(θ,P) = K−
1

σmax

K
∑

k=1

D(θ, pk) =
K
∑

k=1

(

1−
D(θ, pk)

σmax

)

.

Assuming the distribution of inliers and outliers to be

uniform (inlier ∼ U(0, σ); outlier ∼ U(0, l)) and using log-

likelihood of model θ as its quality function Q, we get

Q∗(θ,P) = K(ln
l

σmax
+ 1)

−
1

σmax

K
∑

k=1

D(θ, pk)(1 + ln
l

D(θ, pk)
)− |P| ln l.

(3)

Typically, the residuals of the inliers are calculated as the

Eucledian-distance from the model in some ρ-dimensional

space. In case of assuming errors of the distances along

each axis of this ρ-dimensional space to be indepen-

dent and normally distributed with the same variance σ2,

(residuals)2/σ2 have chi-squared distribution with ρ de-

grees of freedom. Therefore,

g(r | σ) = 2C(ρ)σ−ρ exp (−r2/2σ2)rρ−1

is a density of residuals of inliers with

C(ρ) =
1

2ρ/2Γ(ρ/2)
,

where

Γ(a) =

∫ +∞

0

ta−1 exp (−t)dt

for a > 0 is the gamma function.

In MAGSAC, the residuals of the inliers are described

by a distribution with density g(r | σ), and the outliers by

a uniform one on the interval [0, l]. Note that, for images, l
can be set to the image diagonal. The inlier-outlier thresh-

old τ(σ) is set to the 0.95 or 0.99 quantile of the distribu-

tion with density g(r | σ). Consequently, the likelihood of

model θ given σ is

L(θ,P | σ) =
1

l|P|−|I(σ)|

∏

p∈I(σ)

[

2C(ρ)σ−ρDρ−1(θ, p) exp

(

−D2(θ, p)

2σ2

)]

.

(4)

MAGSAC, for a given σ, uses log-likelihood of model θ as

its quality function as follows: Q(θ, σ,P) = lnL(θ,P|σ).
Thus, the quality marginalized over σ is the following.

Q∗
MAGSAC(θ,P) =

1

σmax

∫ σmax

0

lnL(θ,P|σ)dσ

≈ −|P| ln l +
1

σmax

K
∑

i=1

[i(ln 2C(ρ)l − ρ lnσi)

−
Ri

σ2
i

+ (ρ− 1)Lri](σi − σi−1),

(5)

where {D(θ, pi)}
|P|
i=1 are the distances to model θ, σ0 = 0

and 0 ≤ D(θ, p1) = τ(σ1) < D(θ, p2) = τ(σ2) <
... < D(θ, pK) = τ(σK) < τ(σmax) < D(θ, pK+1) <

... < D(θ, p|P|), Ri = 1
2

∑i
j=1 D(θ, pj)

2 and Lri =
∑i

j=1 lnD(θ, pj). As a consequence, the proposed new

quality function Q∗
MAGSAC does not depend on a manually

set noise level σ.

3.2. σ­consensus model fitting

Due to not having a set of inliers which could be used to

polish the model obtained from a minimal sample, we pro-

pose to use weighted least-squares fitting where the weights

are the point probabilities of being inliers.

Suppose that we are given model θ estimated from a min-

imal sample. Let θσ = F (I(θ, σ,P)) be the model implied

by the inlier set I(θ, σ,P) selected using τ(σ) around the

input model θ. It can be seen from Eq. 4 that the likelihood

of point p ∈ P being inlier given model θσ is

L(p | θσ, σ) = 2C(ρ)σ−ρDρ−1(θσ, p) exp

(

−D2(θσ, p)

2σ2

)

.

For finding the likelihood of a point being an inlier

marginalized over σ, the same approach is used as before:

L(p | θ) ≈
2C(ρ)

σmax

K
∑

i=1

(σi − σi−1)

σ−ρ
i Dρ−1(θσi

, p) exp

(

−D2(θσi
, p)

2σ2
i

)

.

(6)

and the polished model θ∗MAGSAC is estimated using

weighted least-squares, where the weight of point p ∈ P
is L(p | θ).

3.3. Termination criterion

Not having an inlier set and, thus, at least a rough es-

timate of the inlier ratio, makes the standard termination

criterion of RANSAC [8] inapplicable, which is as follows:

k(θ, σ,P) =
ln(1− η)

ln
(

1−
(

|I(θ,σ,P)|
|P|

)m) , (7)
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where k is the iteration number, η a manually set confidence

in the results, m the size of the minimal sample needed for

the estimation, and |I(θ, σ,P)| is the inlier number of the

so-far-the-best model.

In order to determine k without using a particular σ, it

is a straightforward choice to marginalize similarly to the

model quality. It is as follows:

k∗(P, θ) =
1

σmax

∫ σmax

0

k(θ, σ,P)dσ

≈
1

σmax

K
∑

i=1

(σi − σi−1) ln(1− η)

ln
(

1−
(

|I(θ,σi,P)|
|P|

)m) .
(8)

Thus the number of iterations required for MAGSAC is cal-

culated during the process and updated whenever a new so-

far-the-best model is found, similarly as in RANSAC.

4. Algorithms using σ-consensus

In this section, we propose two algorithms applying

σ-consensus. First, MAGSAC will be discussed incor-

porating the proposed marginalizing approach, weighted

least-squares and termination criterion. Second, a post-

processing step is proposed which is applicable to the output

of every robust estimator. In the experiments, it always im-

proved the input model without noticeable deterioration in

the processing time, adding maximum a few milliseconds.

4.1. Speeding up the procedure

Since plain MAGSAC would apply least-squares fitting

a number of times, the implied computational complexity

would be fairly high. Therefore, we propose techniques for

speeding up the procedure. In order to avoid unnecessary

operations, we introduce a σmax value and use only the σs

smaller than σmax in the optimization procedure. Thus, from

σ1 < σ2 < ... < σK < σmax < σK+1 < ... < σn

only σ1, σ2, ..., and σi are used. This σmax can be set to a

fairly big value, for example, 10 pixels. In the case when

the results suggest that σmax is too low, e.g. if the density

mode of the residuals is close to σmax, the computation can

be repeated with a higher value.

Instead of calculating θσi
for every σi, we divide the

range of σs uniformly into d partitions. Thus the pro-

cessed set of σs are the following: σ1 + (σmax − σ1)/d,

σ1 +2(σmax− σ1)/d, ..., σ1 + (d− 1)(σmax− σ1)/d, σmax.

By this simplification, the number of least-squares fittings

drops to d from K, where d ≪ K. In the experiments, d
was set to 10.

Also, as it was proposed for USAC [19], there are several

ways of skipping early the evaluation of models which do

not have the chance of being better than the previous so-far-

the-best. For this purpose, we apply SPRT [2] with a τref

threshold. Threshold τref is not used in the model evaluation

(a) Homography; homogr dataset. Errors: ǫLO-MSC = 4.3

(2nd) and ǫMAGSAC = 2.9 pixels (1st).

(b) Homography; EVD dataset. Errors: ǫLO-RSC = 9.1 (2nd)

and ǫMAGSAC = 4.4 pixels (1st).

(c) Fundamental matrix; kusvod2 dataset. Errors: ǫMSC =

14.3 (2nd) and ǫMAGSAC = 0.5 pixels (1st).

(d) Essential matrix; Strecha dataset. Errors: ǫMSC = 4.2

(2nd) and ǫMAGSAC = 2.5 pixels (1st).

(e) Essential matrix; Strecha dataset. Errors: ǫMSC = 5.6

(2nd) and ǫMAGSAC = 3.9 pixels (1st).

Figure 2: Example results of MAGSAC where it was sig-

nificantly more accurate than the second most accurate

method. Average errors (in pixels) are written in the cap-

tions. Inlier correspondences are drawn by color and out-

liers by black crosses.

or inlier selection steps, but is used merely to skip applying

σ-consensus when it is unnecessary. In the experiments, τref
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was set to 1 pixel.

Finally, the parallel implementation of σ-consensus can

be straightforwardly done on GPU or multiple CPUs evalu-

ating each σ on a different thread. In our C++ implementa-

tion, it runs on multiple CPU cores.

4.2. The σ­consensus algorithm

The proposed σ-consensus is described in Alg. 1. The

input parameters are: the data points (P), initial model pa-

rameters (θ), a user-defined partition number (d), and a limit

for σ (σmax).

As a first step, the algorithm takes the points which are

closer to the initial model than τ(σmax) (line 1). Function

τ returns the threshold implied by the input σ parameter.

In case of χ2(4) distribution, it is τ(σ) = 3.64σ. Then

the residuals of the inliers are sorted, therefore, in {σi}
|I|
i=1,

σi < σj ⇔ i < j. In Iord, the indices of the points are

ordered reflecting to {σi}
|I|
i=1, thus σi = D(θ, Iord,i)/3.64

(line 2). In lines 3 and 4, the weights are initialized to

zero, and σmax is set to max({σi}
|I|
i=1). Then the current

σ range is calculated. For instance, the first range to pro-

cess is [σ1, σ1+δσ]. Note that σ1 = 0 due to having at least

m points at zero distance from the model. The cycle runs

from the first to the last point and, since Iord is ordered, each

subsequent point is farther from the model than the previ-

ous ones. Until the end of the current range, i.e. partition,

is not reached (line 7), it collects the points (line 8) one-by-

one. After exceeding the boundary of the current range, θσ
is calculated using all the previously collected points (line

10). Then, for each point, the weight is updated by the im-

plied probability (line 12). Finally, the algorithm jumps to

the next range (line 13). After the weights have been calcu-

lated for each point, weighted least-squares fitting is applied

to obtain the marginalized model parameters (line 14).

4.3. MAGSAC

The MAGSAC procedure polishing every estimated

model by σ-consensus is shown in Alg. 2. First, it initializes

the model quality to zero and the required iteration number

to∞ (line 1). In each iteration, it selects a minimal sample

(line 3), fits a model to the selected points (line 4) validates

it (line 5) and applies σ-consensus to obtain the parameters

marginalized over σ (line 6). The validation step includes

degeneracy testing and tests which stop the evaluation of the

model if there is no chance of being better than the previous

so-far-the-best, e.g. by SPRT test [2]. Note that, for SPRT,

the validation step is also included into σ-consensus when

the distances from the current model are calculated (line 1

in Alg. 1). Finally, the model quality is calculated (line 8),

the so-far-the-best model and required iteration number are

updated (line 10) if required (line 9). As a post-processing

step in time sensitive applications, σ-consensus is a pos-

sible option for polishing the RANSAC output instead of

applying a least-squares fitting to the inliers. In this case, σ-

consensus is applied only once, thus improving the results

without noticeable deterioration in the processing time.

Algorithm 1 σ-consensus.

Input: P – points; θ – model parameters; d – partition

number; σmax – σ limit; η – confidence

Output: θ∗ – optimal model parameters

1: I ← I(P, θ, τ(σmax))

2: Iord, {σi}
|I|
i=1 ← sort({D(θ, p)}p∈I)

3: {wi}
|I|
i=1 ← {0}

|I|
i=1, σmax ← max({σi}

|I|
i=1)

4: δσ ← σmax/d, σnext ← δσ , Itmp ← ∅
5: for i = 1→ |Iord| do

6: p← Iord,i, dp ← D(θ, p)
7: if dp ≤ τ(σnext) then

8: Itmp ← Itmp ∪ {p}
9: continue

10: θσ ← F (Itmp)
11: for i = 1→ |I| do

12: wi ← wi +W (θσ, Ii, δσ)/σmax ⊲ Eq. 6

13: Itmp ← Itmp ∪ {p}, σnext ← σnext + δσ

14: θ∗ ← F (I, {wi}
|I|
i=1) ⊲ Weighted LSQ

Algorithm 2 MAGSAC

Input: P – data points; σmax – σ limit; σref – reference σ;

m – sample size; d – partition number; η – confidence

Output: θ∗ – optimal model; q∗ – model quality

1: q∗ ← 0, k ←∞
2: for i = 1→ k do

3: {pj}
m
j=1 ← Sample(P)

4: θ ← F ({pj}
m
j=1)

5: if ¬Validate(θ, σref) then

6: continue

7: θ′ ← σ-consensus(P, θ, d, σmax) ⊲ Alg. 1

8: q′ ← Q(θ′,P)
9: if q > q∗ then

10: q∗, θ∗, k ← q′, θ′, Iters(q′, |P|, η) ⊲ Eq. 8

5. Experimental Results

To evaluate the proposed post-processing step, we

tested several approaches with and without this step.

The compared algorithms are: RANSAC, MSAC, LO-

RANSAC, LO-MSAC, LO-RANSAAC [20], and a con-

trario RANSAC [15] (AC-RANSAC). LO-RANSAAC is a

method including model averaging into robust estimation.

AC-RANSAC estimates the noise σ. The same random

seed was used for all methods and they performed a final

least-squares on the obtained inlier set. The difference be-

tween RANSAC – MSAC and LO-RANSAC – LO-MSAC

510201



is merely the quality function. Moreover, the methods with

LO prefix run the local optimization step proposed by Chum

et al. [3] with an inner RANSAC applied to the inliers. The

parameters used are as follows: σ = 0.3 was the inlier-

outlier threshold used for the RANSAC loop (this value was

proposed in [11] and also suited for us). The number of in-

ner RANSAC iterations was r = 20. The required confi-

dence η was 0.95. There was a minimum number of iter-

ations required (set to 20) before the first LO step applied

and also before termination. The reported error values are

the root mean square (RMS) errors. For σ-consensus, σmax

was set to 10 pixels for all problems. The partition of σ
range was set to d = 10. Therefore, the processed set of σs

were σmax/d, 2σmax/d, ..., (d− 1)σmax/d, and σmax.

5.1. Synthesized Tests

To test the proposed method in a fully controlled envi-

ronment, two cameras were generated by their 3×4 projec-

tion matrices P1 = K1[I3×3 | 0] and P2 = K2[R2 |−R2t2].
Camera P1 was located in the origin and its image plane was

parallel to plane XY. The position of the second camera was

at a random point inside a unit-sphere around the first one,

thus |t2| ≤ 1. Its orientation was determined by three ran-

dom rotations affecting around the principal directions as

follows: R2 = RX,αRY,βRZ,γ , where RX,α, RY,β and RZ,γ

are 3D rotation matrices rotating around axes X, Y and Z, by

α, β and γ degrees, respectively (α, β, γ ∈ [0, π/2]). Both

cameras had a common intrinsic camera matrix with focal

length fx = fy = 600 and principal points [300, 300]T. A

3D plane was generated with random tangent directions and

origin [0, 0, 5]T. It was sampled at ni locations, thus gener-

ating ni 3D points at most one unit far from the plane origin.

These points were projected into the cameras. All of the

random parameters were selected using uniform distribu-

tion. Zero-mean Gaussian-noise with σ standard deviation

was added to the projected point coordinates. Finally, no

outliers, i.e. uniformly distributed random point correspon-

dences, were added. In total, 200 points were generated,

therefore ni + no = 200.

The mean results of 500 runs are reported in Fig. 3.

The competitor algorithms are: RANSAC (RSC), MSAC

(MSC), LO-RANSAC (LO-RSC), LO-MSAC (LO-MSC)

and MAGSAC. Suffix ”+σ” means that σ-consensus was

applied as a post-processing step. Plots (a–c) reports the

geometric accuracy (in pixels) as a function of the noise

level σ using different outlier ratios (a – 0.2, b – 0.5, c –

0.8). The RANSAC confidence was set to 0.95. For in-

stance, outlier ratio 0.8 means that no = 160 and ni = 40.

By looking at the differences between methods with and

without the proposed post-processing step (”+σ”), it can be

seen that it almost always improved the results. E.g. the ge-

ometric error of LO-MSC is higher than that of LO-MSC

+ σ for every noise σ. MAGSAC results are superior to

that of the competitor algorithms on every outlier ratio. It

can be seen that it is less sensitive to noise and more ro-

bust to outliers. In (d), the processing time (in seconds) is

reported as the function of the noise σ. MAGSAC is the

slowest on the easy scenes, i.e. when the noise σ < 0.3
pixels. Thereafter, it becomes the fastest method due to re-

quiring significantly fewer iterations than the others. Plots

(e–f) of Fig. 3 demonstrate that the accuracy provided by

MAGSAC cannot be achieved by simply letting RANSAC

run longer. The charts report the results for a fixed itera-

tion number, i.e. calculated from the ground truth inlier ra-

tio and confidence set to 0.999. For outlier ratio 0.8, it was

log(0.001)/ log(1 − 0.24) = 4 314. For outlier ratio 0.9,

it was log(0.001)/ log(1 − 0.14) = 69 074. It can be seen

that MAGSAC obtains significantly more accurate results

than the competitor algorithms. It finds the desired model

in most of the cases even when the outlier ratio is high.

5.2. Real World Experiments

In this section, MAGSAC and the proposed post-

processing step is compared with state-of-the-art robust es-

timators on real-world data for fundamental matrix, homog-

raphy and essential matrix fitting. See Fig. 2 for exam-

ple image pairs where the error (ǫMAGSAC; in pixels) of the

MAGSAC estimate was significantly lower than that of the

second best method.

Fundamental Matrices. To evaluate the performance on

fundamental matrix estimation we downloaded kusvod23

(24 pairs), Multi-H4 (5 pairs), and AdelaideRMF5 (19

pairs) datasets. Kusvod2 consists of 24 image pairs

of different sizes with point correspondences and funda-

mental matrices estimated from manually selected inliers.

AdelaideRMF and Multi-H consist a total of 24 image

pairs with point correspondences, each assigned manually

to a homography or the outlier class. All points which are

assigned to a homography were considered as inliers and the

others as outliers. In total, 48 image pairs were used from

three publicly available datasets. All methods applied the

seven-point method [8] as a minimal solver for estimating

F. Thus they drew minimal sets of size seven in each itera-

tion. For the final least squares fitting, the normalized eight-

point algorithm [9] was ran on the obtained inlier set. Note

that all fundamental matrices were discarded for which the

oriented epipolar constraint [4] did not hold.

The first three blocks of Table 1, each consisting of three

rows, report the quality of the estimation on each dataset

as the average of 100 runs on every image pair. The first

two columns show the name of the tests and the investi-

gated properties: (1) eavg is the RMS geometric error in pix-

els of the obtained model w.r.t. the manually annotated in-

3http://cmp.felk.cvut.cz/data/geometry2view/
4http://web.eee.sztaki.hu/˜dbarath/
5cs.adelaide.edu.au/˜hwong/doku.php?id=data
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Figure 3: Synthetic homography fitting. The competitor methods are: RANSAC, MSAC, LO-RANSAC, LO-MSAC and

MAGSAC. Suffix ”+σ” means that σ-consensus was applied to the output. Plots (a–c) report the errors (in pixels) as function

of the noise σ with confidence set to 0.95. Plot (d) shows the avg. processing time (in seconds). Plots (e–f) report the results

made by using a fixed iteration number calculated from the ground truth inlier ratio and confidence set to 0.999.

liers. For fundamental matrices and homographies, it is the

average Sampson distance and re-projection error, respec-

tively. For essential matrices, it is the mean Sampson dis-

tance of the implied F and the correspondences. (2) Value t
is the mean processing time in milliseconds. (3) Value s is

the mean number of samples, i.e. RANSAC iterations, had

to be drawn till termination. Note that the iteration num-

bers of methods applied with or without the proposed post-

processing are equal.

It can be seen that for F estimation the proposed post-

processing step improved the results in nearly all of the tests

with negligible deterioration in the processing time. The er-

rors were reduced by approximately 8% compared with the

methods without σ-consensus. MAGSAC led to the most

accurate results for kusvod2 and Multi-H datasets and it

was the third best for AdelaideRMF dataset by a small mar-

gin of 0.03 pixels.

Homographies. To test homography estimation we down-

loaded homogr (16 pairs) and EVD6 (15 pairs) datasets. Each

consists of image pairs of different sizes from 329 × 278
up to 1712 × 1712 with point correspondences and inliers

selected manually. The Homogr dataset consists of mostly

short baseline stereo images, whilst the pairs of EVD un-

dergo an extreme view change, i.e. wide baseline or ex-

6http://cmp.felk.cvut.cz/wbs/

treme zoom. All algorithms applied the normalized four-

point algorithm [8] for homography estimation both in the

model generation and local optimization steps. The 4th and

5th blocks of Fig. 1 show the mean results computed us-

ing all the image pairs of each dataset. Similarly as for F

estimation, the proposed post-processing step always im-

proved (by 1.42 pixels on average). For both datasets, the

results obtained by MAGSAC were significantly more ac-

curate than what the competitor algorithms obtained.

Essential Matrices. To estimate essential matrices, we

used the strecha dataset [23] consisting of image se-

quences of buildings. All images are of size 3072 × 2048.

The ground truth projection matrices are provided. The

methods were applied to all possible image pairs in each

sequence. The SIFT detector [12] was used to obtain corre-

spondences. For each image pair, a reference point set with

ground truth inliers was obtained by calculating F from the

projection matrices [8]. Correspondences were considered

as inliers if the symmetric epipolar distance was smaller

than 1.0 pixel. All image pairs with less than 50 inliers

found were discarded. In total, 467 image pairs were used

in the evaluation. The results are reported in the 6th block of

Table 1. The trend is similar to the previous cases. The most

accurate essential matrices were obtained by MAGSAC.

Also it was the fastest algorithm on average.
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RSC + σ MSC + σ LO-RSC + σ LO-MSC + σ LO-RSAAC AC-RSC MAGSAC

k
u
s
v
o
d
2

F
,
2
4

eavg 0.73 0.60 0.75 0.64 0.56 0.52 0.58 0.50 1.01 0.63 0.38

t 38 39 19 19 25 25 17 17 17 55 31

s 661 661 313 313 316 316 160 160 160 71 382

fails 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.00

A
d
e
l
a
i
d
e

F
,
1
9

eavg 0.58 0.54 0.66 0.63 0.28 0.27 0.31 0.31 0.33 0.46 0.30

t 491 493 420 420 393 394 380 380 380 447 939

s 3 327 3 327 2 752 2 752 2 221 2 221 2 091 2 091 2 091 2 047 2 638

fails 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
u
l
t
i
-
H

F
,
4

eavg 0.70 0.59 0.84 0.75 0.53 0.52 0.50 0.50 0.58 0.72 0.47

t 321 329 149 149 132 140 119 128 126 46 467

s 1 987 1 987 908 908 580 580 327 327 327 23 1 324

fails 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

h
o
m
o
g
r

H
,
1
6

eavg 3.61 2.12 3.64 2.18 3.39 2.13 3.53 2.19 2.95 1.83 1.37

t 83 85 64 65 71 72 64 65 65 37 131

s 1 815 1 815 1 395 1 395 1 478 1 478 1 222 1 222 1 222 148 877

fails 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.00 0.06

E
V
D

H
,
1
5

eavg 5.73 4.08 5.15 3.57 5.42 4.07 4.78 3.55 4.55 5.05 1.76

t 381 383 379 380 367 369 353 356 355 291 162

s 6 212 6 212 6 106 6 106 5 847 5 847 5 540 5 540 5 540 3 463 2 239

fails 0.57 0.50 0.57 0.43 0.57 0.50 0.57 0.43 0.53 0.33 0.29

s
t
r
e
c
h
a

E
,
4
6
7

eavg 7.05 6.91 7.32 7.13 9.61 9.48 10.62 10.23 10.17 15.56 6.51

t 3 046 3 052 2 894 2 894 2 548 2 549 2 535 2 537 2 536 4 637 2 398

s 3 530 3 530 3 315 3 315 2 789 2 789 2 770 2 770 2 770 3 680 2 183

fails 0.24 0.22 0.26 0.22 0.27 0.22 0.26 0.22 0.24 0.23 0.00

a
l
l

eavg 3.07 2.47 3.04 2.48 3.30 2.83 3.39 2.88 3.27 4.04 1.80

emed 2.17 1.36 2.24 1.47 1.98 1.33 2.06 1.35 1.98 1.28 0.92

t 727 730 654 655 589 592 578 581 580 921 688

fails 0.19 0.16 0.17 0.14 0.18 0.15 0.16 0.14 0.16 0.10 0.03

Table 1: Accuracy of robust estimators on two-view geometric estimation. Fundamental matrix estimation (F) on kusvod2

(24 pairs), AdelaideRMF (19 pairs) and Multi-H (4 pairs) datasets, homography estimation (H) on homogr (16 pairs) and

EVD (15 pairs) datasets, and essential matrix estimation (E) on the strecha dataset (467 pairs). In total, the testing included

545 image pairs. The datasets, the problem, the number of the image pairs (#) and the reported properties are shown in the

first three columns. The other columns show the average results (100 runs on each image pair) of the competitor methods

at 95% confidence. Columns with ”+σ” show the results when the proposed σ-consensus was applied to the output of the

method on its left. The mean geometric error (eavg; in pixels) of the estimated model w.r.t. the manually selected inliers are

written in each 1st row; the mean processing time (t, in milliseconds) and the required number of samples (s) are written in

every 2nd and 3rd rows. In the 4th one, the proportion of failures, i.e. when the sough model is not found, is shown. The

geometric error is the RMS Sampson distance for F and E, and the RMS re-projection error for H using the ground truth

inlier set. The thresholds proposed in [11] were used. For MAGSAC, σmax = 10 pixels.

6. Conclusion

A robust approach, called σ-consensus, was proposed

for eliminating the need of a user-defined threshold by

marginalizing over a range of noise scales. Also, due to not

having a set of inliers, a new model quality function and ter-

mination criterion were proposed. Applying σ-consensus,

we proposed two methods: first, MAGSAC applying σ-

consensus to each of the models estimated from a mini-

mal sample. The method is superior to the state-of-the-art

in terms of geometric accuracy on publicly available real-

world datasets for epipolar geometry (both F and E) and ho-

mography estimation. The method is often faster than other

RANSAC variants in case of high outlier ratio. The pro-

posed post-processing step applies σ-consensus only once:

to polish the RANSAC output. The method nearly always

improved the model quality on a wide range of vision prob-

lems without noticeable deterioration in processing time,

i.e. at most a few milliseconds. We see no reason for not

applying it after the robust estimation finished.
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