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Abstract

An end-to-end method for multi-language scene text
localization, recognition and script identification is pro-
posed. The approach is based on a set of convolutional
neural nets.

The method, called E2E-MLT, achieves state-of-the-
art performance for both joint localization and script
identification in natural images and in cropped word
script identification. E2E-MLT is the first published
multi-language OCR for scene text. The experiments
show that obtaining accurate multi-language multi-
script annotations is a challenging problem.

1. Introduction
Scene text localization and recognition, a.k.a. photo

OCR or text detection and recognition in the wild, is
a challenging open computer vision problem. Applica-
tions of photo OCR are diverse, from helping the visu-
ally impaired to data mining of street-view-like images
for information used in map services and geographic in-
formation systems. Scene text recognition find its use
as a component in larger integrated systems such as
those for autonomous driving, in-door navigations and
visual search engines.

The growing cosmopolitan culture in modern cities
often generates environments where multi-language
text co-appears in the same scene (Fig. 1), trigger-
ing a demand for a unified multi-language scene text
system. The need is also evident from the high interest
in the ICDAR competition on multi-language text [31].

The recent advances in deep learning methods have
helped in improving both the text localization [15, 29,

*These authors contributed equally to this work

Figure 1: Text in multiple languages appearing in
a scene. The proposed E2E-MLT method localizes
words, predicts the scripts and generates a text tran-
scription for each bounding box.

45, 25] and text recognition [19, 39, 6] methods signif-
icantly. However, these improvements are limited to
English text and existing methods do not scale well to
other languages.

Multi-language scene text has specific challenges.
Firstly, the data currently publicly available for non-
English scene text is insufficient for training deep archi-
tectures. Individual languages have specific challenges,
for example, Chinese and Japanese have a high num-
ber of characters, Bangla scene text is mostly hand
written.

In this paper, we introduce E2E-MLT, an end-to-end
multi-language scene text multi-purpose method. E2E-
MLT addresses multi-language scene text localization,
script identification and text recognition. The method
has been trained for the following languages: Arabic,
Bangla, Chinese, Japanese, Korean, Latin. Its
OCR is capable of recognizing 7, 800 characters (com-
pared to less than 100 in Latin [6, 39, 18, 35]).

The first major contribution of this paper is an ef-
ficient method for script identification which demon-
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strates state-of-the-art performance on the ICDAR
RRC-MLT 2017 [31] dataset. The approach learns
discriminative holistic representation for cropped-word
images and emphasizes on preserving aspect-ratio at
cropped-word level.

We further demonstrate that an existing detection
framework [48] when combined with our script identi-
fication method achieves state-of-the-art performance
on joint detection and script identification in natural
scene images on the ICDAR RRC-MLT 2017 [31] data.

Our main contribution is an open dictionary multi-
language text recognition method for natural scene im-
ages. Learning a multi-language OCR is challenging
as characters from different scripts may not only co-
appear within an image, but also within the same word.
Our OCR does not require any language or script spe-
cific information. To our knowledge, we are first to
present a unified OCR for multiple-languages.

As an auxiliary contribution, we publicly release two
large scale synthetically generated datasets for train-
ing multi-language scene text detection and recognition
methods.

2. Related Work
2.1. Scene Text Localization

Scene text localization is the first step in standard
text-spotting pipelines. Given a natural scene image,
objective is to obtain precise word level bounding boxes
or segmentation maps.

Conventional methods such as [32, 33, 9] generally
seek character candidates via extremal region extrac-
tion or edge detection. Deep learning based method
[19] make use of a CNN [23] for image patches to pre-
dict text/no-text score, a character and a bi-gram class.

Jaderberg et al. [18] proposed a multi-staged method
where horizontal bounding box proposals are obtained
by aggregating the output of Edge Boxes [49] and Ag-
gregate Channel Features [8], The proposals are fil-
tered using a Random Forest [5] classifier. As post-
processing a CNN regressor is used to obtain fine-
grained bounding boxes. Gupta et al. [15] proposed a
fully-convolutional regression network trained on syn-
thetic data for performing detection and regression at
multiple scales in an image.

Tian et al. [45] use a CNN-RNN joint model to pre-
dict the text/no-text score, the y-axis coordinates and
the anchor side-refinement. A similar approach [25]
adapts the SSD object detector [28] to detect horizon-
tal bounding boxes. Ma et al. [29] detects text of dif-
ferent orientations by adapting the Faster-RCNN [11]
architecture and adding 6 hand-crafted rotations and
3 aspects. A similar approach was presented in [6],

where the rotation is a continuous parameter and opti-
mal anchor box dimensions are found using clustering
on training set.

As mentioned earlier, all of these methods deal
with English text only. Multi-language method are
described in ICDAR RRC-MLT 2017 [31]. SCUT-
DLVClab separately trains two models, the first model
predicts bounding box detections and second model
classifies the detected bounding box into one of the
script classes or background. TH-DL use a modified
FCN with residual connections for generating text-
proposals and a Fast-RCNN [11] for detection. Google-
LeNet architecture [44] is used for script-identification.

E2E-MLT makes use of the EAST [48] text-detector
combined with the proposed script-identification and
OCR methods.

2.2. Script Identification

The objective of script identification is to take the
cropped word images and predict the script/language
of the text at hand. Existing text recognition al-
gorithms [20, 19, 39] are language-dependent which
makes script identification a vital component for multi-
language scene text understanding. Detecting the
script and language at hand allows the existing meth-
ods to select the appropriate language model [46].

Script identification over complex background has
been studied for video overlaid text [12, 42, 36, 37, 34].
However, these methods solve a different problem than
scene text and rely highly on accurate edge detection
of text components.

Methods for script identification in natural scene im-
ages have been presented in [13, 41, 38, 31]. Gomez et
al. [13] uses ensembles of conjoined networks to learn
representations of discriminative stroke-parts and their
relative importance in a patch-based classification
scheme. Similar to [13], E2E-MLT emphasize the need
to preserve the aspect-ratio at the cropped word level.
Unlike [13], E2E-MLT does not involve pre-processing,
post-processing steps and learns holistic representa-
tions.

Within [31], Synthetic-ECN uses a method pro-
posed in [13] along with synthetically generated data,
SCUT �DLVC uses a sliding window based approach,
TNet uses a majority-voting mechanism to determine
script class, BLCT proposed a complex pipeline mak-
ing use of BoW along with CNN features, TH-DL and
TH-CNN use GoogleLeNet [44] based features.

Unlike, most of these approaches, script identifica-
tion in E2E-MLT does not involve multiple-steps.
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Figure 2: E2E-MLT overview : text proposals are generated and filtered by a EAST [48] based detector. Preserving
the aspect ratio, each text proposal is then normalized to a fixed-height, variable-width tensor. Finally, each
proposal is associated with a sequence of multi-language text and script class or is rejected as no-text.

2.3. Text Recognition

The objective of text recognition methods is to take
the cropped word image and generate the transcription
of the word present.

Scene text recognition has been widely studied for
English text. Jaderberg et al. [18] train a CNN on 9
million synthetic images to classify a cropped word im-
age as one of the words in a dictionary. The dictionary
contains 90 000 English words and the words of the
training and test set. Any word outside the dictionary
is ignored.

Shi et al. [39] generates one sequence of characters
per image by training a fully-convolutional network
with a bidirectional LSTM using the Connectionist
Temporal Classification (CTC) [14]. Unlike the OCR
of proposed E2E-MLT, both [39, 18] resize the source
cropped word image to a fixed-sized matrix of 100×32
pixels regardless of the number of characters present.

The aforementioned methods only deal with English
text, where the number of characters is limited. Meth-
ods like [18, 19] approach the problem from close dic-
tionary perspective where any word outside the dictio-
nary is ignored. Such setting is not applicable to multi-
language scenario where the number of characters and
possible set of words are very high. Text recognition
in E2E-MLT is open-dictionary and does not require
language specific information.

3. Method

Given a natural scene image containing multi-
language text, E2E obtain text localizations, generate
text transcription and script class for each detected re-
gion. Overview of E2E-MLT is provided in Fig. 2.

3.1. Multi-Language Synthetic Data Generation

For Synthetic data generation, we adapt the frame-
work proposed by Gupta et al. [15] to a multi-language
setup. The framework generates realistic images by
overlaying synthetic text over existing natural back-
ground images and it accounts for 3D scene geometry.

[15] proposed the following approach for scene-text
image synthesis :

• Text in real-world usually appears in well-defined
regions, which can be characterized by uniform
color and texture. This is achieved by threshold-
ing gPb-UCM contour hierarchies [2] using effi-
cient graph-cut implementation [3]. This gives us
prospective segmented regions for rendering text.

• Dense depth map of segmented regions is then ob-
tained using [27] and then planer facet are fitted
to them using RANSAC [10]. This way normals
to the prospective regions for text rendering is es-
timated.

• Finally, the text is aligned to prospective image
region for rendering. This is achieved by warp-
ing image region to frontal-parallel view using es-
timated region normals, then a rectangle is fitted
to this region, then text is aligned to larger side of
this rectangle.

Details of the experimental setup are presented in
Section 4.1.

3.2. Multi-Language Text Localization

We make use of the EAST [48] text detector for text
localization in a multi-language setup. EAST [48] fol-
lows the general design of DenseBox [17]. The image
is fed into the fully convolutional network (FCN) and
multiple levels of pixel-level text-scores and geometries
are generated. As a post-processing step, threshold-



ing on text-scores and NMS on predicted geometries is
performed.

ResNet50 [16] architecture is used in this paper. The
model is trained with Adam optimizer [22] with a base
learning rate of 0.001. The overall loss is given bt
L = Lgeo + Ldice where Lgeo is IoU loss proposed in
[48] and Ldice is dice loss proposed in [30] The batch
size is set to 16. The model is trained only on IC-
DAR MLT-RRC 2017 dataset [31] and convergence is
observed after 70K iterations.

3.3. Holistic Cropped-Word Script Identification

We formulate script identification as an image clas-
sification problem at the cropped-word level. Our main
idea is to preserve the aspect ratio of input cropped-
word images during both training and testing, thus we
resize the images into fixed-height (H ′ = 64 pixels) and
variable width (W = wH′

h ) tensors.
Given a cropped-word image, our method learns a

holistic representation. We make use of convolution
layers form VGG-16 [43] with ImageNet [7] initialized
weights along with Global-Average-Pooling [26] layer
after the final convolution layer, followed by two fully-
connected layers. Detailed description of architecture
is in Tab. 1.

For learning script identification we minimize
categorical-cross-entropy loss on cropped word image
dataset of [31]. We use a Stochastic Gradient Descent
(SGD) optimizer, with a base learning rate of 0.001,
multiplied by 0.1 every 5 epochs, and momentum of
0.9. The batch size is set to 128. With these settings
the network converges in 16 epochs.

Since the weight-initialization for convolutional lay-
ers is done using pre-trained VGG-16 [43] on Ima-
geNet [7] data, the layers are tuned for objects and not
text. Thus, we update both the convolution and fully-
connected layers during back-propagation. Details of
the dataset and experimental results are provided in
Section 4.2.

3.4. Multi-Language Text Recognition

The proposed OCR in E2E-MLT works forArabic,
Bangla, Chinese, Japanese, Korean and Latin.
We adapt the OCR module presented in [6], and extend
it for a multi-language setup. We select this model be-
cause of its simplicity, generality and relatively fast
training time. Further, this model can be easily ex-
tended by standard tricks such as stacking LSTM mod-
ules [24], using models ensemble [47].

The E2E-MLT OCR is a fully-convolutional neural
network, which takes a variable-width feature tensor
W × H ′ × C as an input (W = wH′

h ) and outputs a
matrix W

4 ×|Â|, where A is the alphabet (all characters

Type Size/Stride Dim × Chn
input - W × 64 × 1

Conv, ReLU ×2 3 × 3 W × 64 × 64

MaxPool 2 × 2/2 × 2 W/2 × 32 × 64

Conv, ReLU ×2 3 × 3 W/2 × 32 × 128

Maxpool 2 × 2/2 × 2 W/4 × 16 × 128

Conv, ReLU ×3 3 × 3 W/4 × 16 × 256

Maxpool 2 × 2/2 × 2 W/8 × 8 × 256

Conv, ReLU ×3 3 × 3 W/8 × 8 × 512

Maxpool 2 × 2/2 × 2 W/16 × 4 × 512

Conv, ReLU ×3 3 × 3 W/16 × 4 × 512

Maxpool 2 × 2/2 × 2 W/32 × 2 × 512

Global-avg-pool, Relu - 512
Fully-con, Relu 512 512
Dropout (0.5) - -

Fully-con, Softmax 7 7

Table 1: E2E-MLT : Convolutional Neural Network for
Script Identification.

Type Chn. Size/Stride Dim
input C - W × 32

C,Norm,ReLU 32 3 × 3
C,Norm,ReLU 32 3 × 3

maxpool 2 × 2/2 W/2 × 16
C,Norm,ReLU 64 3 × 3

C,Norm,ReLU × 2 64 3 × 3

maxpool 2 × 2/2 W/4 × 8
C,Norm,ReLU 128 3 × 3

C,Norm,ReLU × 2 128 3 × 3

maxpool 2 × 2/2 × 1 W/4 × 4
C,Norm,ReLU 256 3 × 3

C,Norm,ReLU × 2 256 3 × 3

maxpool 2 × 2/2 × 1 W/4 × 2
C,Norm,ReLU 512 3 × 3

C,Norm,ReLU × 2 512 3 × 3
Dropout (0.2)

C |Â| 1 × 1 W/4 × 1

log softmax

Table 2: E2E-MLT OCR: Convolutional Neural Net-
work for Text Recognition.

in set of languages = 7800 log-Softmax output). The
full network definition is provided in Tab. 2.

The model is trained with Adam optimizer [22] (base
learning rate = 0.001, β1 = 0.9, β2 = 0.999, weight
decay = 0) and CTC loss function [14].

An union of the ICDAR RRC-MLT 2017 [31] train
dataset, the ICDAR RCTW 2017 [40] train dataset
and the Synthetic Multi-Language in Cropped Word
Dataset for Text Recognition dataset 4.1 is used for
training.

During all experiments we use greedy decoding of
network output. Alternative could be the use of, task
and language specific techniques such as prefix decod-
ing or decoding with language models (for word spot-



ting task). However, our OCR is generalized, open-
dictionary and language independent.

4. Experiments
4.1. Synthetic Datasets

The method for synthetic data generation is ex-
plained in Section 3.1. Two datasets were generated,
both covering the same set of language classes as in IC-
DAR RRC-MLT 2017 [31] : Arabic, Bangla, Chi-
nese, Japanese, Korean, Latin.

The Synthetic Multi-Language in Natural
Scene Dataset for Text Detection contains text ren-
dered over natural scene images selected from the set
of 8, 000 background images collected by [15]. Annota-
tions include word level and character level text bound-
ing boxes along with the corresponding transcription.
The dataset has 206, 000 images with thousands of im-
ages for each language. Sample examples are shown in
Fig. 3.

The Synthetic Multi-Language in Cropped
Word Dataset for Text Recognition (3.8M images)
consists of cropped word images, language class and the
corresponding text-transcriptions. The multi-language
text is rendered over randomly generated plain back-
grounds. Sample examples are shown in Fig. 4.

4.2. Script Identification on ICDAR RRC-MLT

The dataset [31] comprises 68, 613 training, 16, 255
validation and 97, 619 test image cut-out images and
deals with the following 6 languages: Arabic, Latin,
Chinese, Japanese, Korean, Bangla. Addition-
ally, punctuation and some math symbols sometimes
appear as separate words and are assigned a special
script class called Symbols, hence 7 script classes are
considered. The ground truth annotation provides the
script class and the corresponding text transcription.
The dataset has high class imbalance, Fig. 5 shows the
number of images in each class.

The E2E-MLT method for script identification is de-
scribed in Section 3.3. The training is done only on the
real images provided by ICDAR MLT-RRC 2017 [31].
Tab. 3 shows that the E2E-MLT methods outperforms
all entries

4.3. Joint Multi-Language Text Localization and
Script Identification on ICDAR RRC-MLT

The dataset [31] comprises 7, 200 training, 1, 800 val-
idation and 9, 000 testing natural scene images. The
ground truth annotations includes bounding box coor-
dinates, the script class and text-transcription.

Text localization and script identification ap-
proaches for E2E-MLT are explained in Section 3.2 and

Method Accuracy
E2E-MLT 88.54%
CNN-based method 88.09%
SCUT�DLVC 87.69%
BLCT 86.34%
TH-DL 80.72%
Synthetic-ECN [13] 79.20%
TNet 48.33 %
TH-CNN 43.22 %

Table 3: Script Identification accuracy on the ICDAR
MLT-RRC 2017 test data [31].

Method F-Measure Recall Precision
E2E-MLT 58.69% 53.77% 64.61%
SCUT-DLVClab2 58.08% 48.77% 71.78%
TH-DL 39.37% 29.65% 58.58%

Table 4: Joint text localization and script identification
on the ICDAR RRC-MLT [31] test data.

Section 3.3 respectively. As shown in Tab. 4, E2E-
MLT achieves state-of-the-art performance on joint
text localization and script identification on the IC-
DAR MLT-RRC 2017 [31] dataset.

4.4. Multi-Language Text Recognition

E2E-MLT approach for text recognition is explained
in Section 3.4. First we run the analysis of scripts co-
occurrence in individual images (Tab. 5) and scripts
co-occurrence in words (Tab. 6). The script of the
character is defined by Unicode table [1]. Each char-
acter has its unique name (for example character ’A’
has unicode name ’Latin Capital Letter A’ therefore
its script is Latin). The scripts which occur in the IC-
DAR MLT 2017 dataset[31] are Latin (Lat), Arabic
(Ara), Bengali (Beng), Hangul (Hang), CJK,
Hiragana (Hir), Katakana (Kat) and Digit
(Dig). The rest of characters are considered to be
Symbols (Sym). The abbreviation CKH marks the
group of CJK, Hiragana and Katakana scripts.
Tab. 6 shows that script co-occurrence is non-trivial
even on word level. The OCR module in practical ap-
plication should satisfactorily handle at least the com-
mon combination of scripts of non-Latin script and
Latin, Digit, and Symbols script.

OCR accuracy on cropped words of E2E-MLT
is shown in Tab. 7 and the confusion matrix for
individual script in Tab. 8. In this evaluation,
the ground truth for a word is defined as the most
frequent script. Tab. 8 shows that E2E-MLT does
not make make many mistakes due to confusing script
confusion. To confirm this observation, we conducted
the following experiment the on ICDAR 2013 and



(a) Arabic Scene Text (b) Bangla Scene Text (c) Japanese Scene Text

Figure 3: Images from the Synthetic Multi-Language in Natural Scenes Dataset for Text Detection.

(a) Bangla (b) Korean (c) Japanese (d) Chinese (e) Arabic

Figure 4: Images from the Synthetic Multi-Language Cropped Word Dataset for Text Recognition.

Figure 5: The number of training images for each class
in ICDAR MLT-RRC 2017 [31] cropped word dataset.
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Figure 6: E2E-MLT confusion matrix for Script identi-
fication on the ICDAR MLT-RRC 2017 [31] test data.

ICDAR 2015 word recognition task [21]. We evaluated
two variants of E2E-MLT: full-softmax (7800 classes)
and a soft-max over a subset including Latin-Digit-
Symbol (230 classess). Note that the latin subset we

Sym Dig Lat Ara Beng Hang CJK Hir Kat
Sym 4361 2285 3264 400 482 652 903 378 312
Dig 2285 2838 2166 205 136 460 758 274 219
Lat 3264 2166 5047 501 150 443 876 299 258
Ara 400 205 501 797 0 0 0 0 0
Beng 482 136 150 0 795 0 0 0 0
Hang 652 460 443 0 0 847 81 32 28
CJK 903 758 876 0 0 81 1615 447 355
Hir 378 274 299 0 0 32 447 462 300
Kat 312 219 258 0 0 28 355 300 374

Table 5: Script co-occurrence on the ICDAR MLT-
RRC 2017 [31] validation dataset. The row-column
entry is incremented for all pairs of scripts present in
an image.

Sym Dig Lat Ara Beng Hang CJK Hir Kat
Lat 1046 635 52050 0 0 0 36 0 0
Ara 20 13 0 4881 0 0 0 0 0
Beng 63 5 0 0 3688 0 0 0 0
Hang 118 84 0 0 0 3767 0 0 0
CKH 416 499 21 0 0 0 7265 1424 1037

Table 6: Script co-occurrence in words in the IC-
DAR MLT-RRC 2017 validation dataset [31]. Column:
script of a character. Row: script / script group of the
word the character appeared in. If multiple scripts are
present in the word, the row-column entry is incre-
mented for each script.

recognise is much wider than the English character
set used in ICDAR tasks; we include the following:
ßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿāăąćčďđēęěğħīıŁł
ńňōŏőŒœřŚśşšťūůŷźżŽžƒǔǘǧș���ḥṃṇṛṣễệừfffifl.



Script Acc Edits
len(GT )

Character
Instances Images

Symbol 0.442 0.506 890 530
Digit 0.685 0.189 6647 1862
Latin 0.756 0.101 52554 9285

Arabic 0.268 0.361 4892 951
Bengali 0.264 0.390 3752 673
Hangul 0.536 0.284 3839 1168

CJK 0.402 0.378 7392 1376
Hiragana 0.274 0.310 1663 230
Katakana 0.147 0.441 1010 177

Total 0.629 0.183 82639 ?

Table 7: E2E-MLT OCR accuracy on the ICDAR
MLT-RRC 2017 validation dataset [31]

Sym Dig Lat Ara Beng Hang CJK Hir Kat
Sym 338 85 90 5 2 1 8 1 0
Dig 57 1695 87 9 4 1 6 1 2
Lat 172 92 8946 27 2 4 36 3 3
Ara 28 13 61 843 2 1 2 1 0
Beng 17 9 19 4 615 4 5 0 0
Hang 47 27 37 1 6 1013 34 2 1
CJK 47 13 14 0 0 3 1281 8 10
Hir 19 5 12 2 0 3 25 159 5
Kat 12 2 7 0 0 1 18 6 131

Table 8: Confusion matrix of E2E-MLT OCR on the
ICDAR MLT-RRC 2017 [31] validation dataset. GT
script is in row, the recognized script in columns

Method TED case
insensitive

C.W.R case
insensitive

TencentAILab* 39.35 0.953
Baidu IDL* 57.53 0.899
... ... ...
E2E-MLT OCR Lat. Softmax 91.00 0.859
E2E-MLT OCR 95.33 0.850
PhotoOCR (2013) [4] 109.90 0.853

Table 9: E2E-MLT OCR evaluated on the ICDAR 2013
task 2 dataset [21]. Methods marked by an asterisk are
unpublished.

Qualitative evaluation. The ICDAR MLT
dataset includes a considerable number of vertical
texts, see Tab. 11. Two types are present: text writ-
ten in a horizontal direction – (a), (b), (c), (d), and
text written in vertical direction – (e), (f). The first
type can be detected by grouping detections as a post-
processing step (see Tab. 16, first image, the vertical
text is detected as single characters) and the second
type just by reading rotated image.

Mistakes in the ground truth annotations add
to the challenge, see Tab. 12. For Latin-script native
readers, they are hard to identify. Another common

Method TED case
insensitive

C.W.R case
insensitive

Dahua OCR* 179.26 0.859
Baidu-IDL* 298.80 0.709
... ... ...
E2E-MLT OCR Lat. Softmax 633.00 0.606
E2E-MLT OCR 639.67 0.603
MAPS2015 1,068.72 0.339

Table 10: E2E-MLT OCR evaluated on the ICDAR
2015 task 2 dataset [21], methods marked with asterisk
are unpublished

(a) (b) (c) (d) (e) (f)

Table 11: Vertical text instances in the ICDAR MLT-
RRC 2017 dataset [31]

GT تمرٌيات (a)힝으로(b)기와이츠 (c)베 (d) 4 (e)
Rec تمرّيات 항으로 기와미츠 제 다

GT PUII (f) 365원 (g)ALBERTO (h) königsleig (i)
Rec PULI 365일 CRISTINA Konigsbery

GT 跨行资金归集提供保底归集功能 , missing text (j)
Rec烤行资金日集提供保定日能，只需设置一个保

Table 12: Errors in the GT of the ICDAR MLT-RRC
2017 validation dataset [31]. Incorrect transcriptions
are highlighted in red. Note that some errors lead to
very large edit distances, e.g. in (f) and (h). GT errors
effect both training and evaluation of the method. We
estimate that at least 10% of errors on non-latin words
reported for E2E-MLT on the ICDAR MLT dataset are
due to GT mistakes.

source of error is caused by GT bounding boxes that
are incorrectly axis-aligned bounding. Such images of-
ten contain more lines of text, confusing the recongiser
assuming a single line, see Tab. 13.

4.5. End-to-End recognition

Quantitative evaluation of end-to-end recognition
(localization and recognition) on the validation set of
ICDAR MLT 2017 [31] data is shown in Tab. 15. Qual-



GT 倍。从此之后, 大约 60% 的成年男性有了普选权。..
Rec 自湖光程单用带头大 68 水城个加有心请连权导饮

Table 13: Multi-line text in ICDAR MLT-RRC 2017
[31] GT

GT 閩江公� (a) ৭০০০৪ (b) 60 5,50
Rec閣江公� 900 08 69 190

GT صامطة (e)আশীব⊻াদ (f)ボイ (g)
Rec حامطة জসুীবদ ホイ

GT“千强镇”之首。(h)虫ス卜ツフ構造の場合は, (i)
Rec“干强镇”之首。 央ストツプ情通の場合は、

GT臺北市政府交通局:02-27256888 (j)
Rec壹化城行#通局：02一27256888

Table 14: Difficult cases (for Latin-script native read-
ers). Transcription errors, shown in red, which require
close inspection - (a), (g), (h), (i). Note that for (i),
the error is also in the ground truth. We were not able
to establish a clear GT for (e) and (f). For (b), th tran-
scription is 70004 in Bangla. In the context of Latin
scripts, this same image will be interpreted as 900 08.
Note the errors related to “:” and —, there are multiple
types of colons and dashes in UTF.

Text
Length

E2E
Recall Precision E2E

Recall ED1
Loc. Recall
IoU 0.5

3+ 0.319 0.420 0.407 0.613
2+ 0.327 0.405 0.420 0.623

Table 15: E2E-MLT end-To-end recognition results on
ICDAR MLT 2017 [31] validation set.

itative results are demonstrated in Tab. 16.

5. Conclusion
E2E-MLT, an end-to-end multi-language method,

has been proposed. It achieves state-of-the-art per-
formance for both joint localization and script identi-
fication in natural images and in cropped word script
identification. E2E-MLT is the first published multi-
language OCR for scene text. The implementation

Table 16: Example E2E-MLT results on the ICDAR
MLT 2017 dataset[31]

along with trained models are publicly released here:
https://github.com/yash0307/E2E-MLT.

The current mistakes in ground truth of ICDAR



RRC-MLT 2017 data [31] hurts both our training and
evaluation. We will engage with ICDAR MLT compe-
tition organizers to improve quality of Ground Truth
and Training data.

In our future work, we will train the proposed text
localization and script identification approaches on the
introduced synthetic datasets.
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