
Computer Vision and Image Understanding 186 (2019) 58–73

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

Performance analysis of single-query 6-DoF camera pose estimation in
self-driving setups✩

Junsheng Fu a,∗, Said Pertuz a,b, Jiri Matas c, Joni-Kristian Kämäräinen a

a Tampere University - Hervannan Campus, Department of Signal Processing, P.O. Box 553, FI-33101 Tampere, Finland
b Universidad Industrial de Santander, 680003 Bucaramanga, Colombia
c Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, 16627 Praha 6, Czech Republic

A R T I C L E I N F O

Communicated by: P Mordohai

Keywords:
Camera pose estimation
3D point cloud
Hybrid method
Photometric matching
Mutual information
Self driving car

A B S T R A C T

In this work, we consider the problem of single-query 6-DoF camera pose estimation, i.e. estimating the
position and orientation of a camera by using reference images and a point cloud. We perform a systematic
comparison of three state-of-the-art strategies for 6-DoF camera pose estimation: feature-based, photometric-
based and mutual-information-based approaches. Two standard datasets with self-driving setups are used for
experiments, and the performance of the studied methods is evaluated in terms of success rate, translation
error and maximum orientation error. Building on the analysis of the results, we evaluate a hybrid approach
that combines feature-based and mutual-information-based pose estimation methods to benefit from their
complementary properties for pose estimation. Experiments show that (1) in cases with large appearance
change between query and reference, the hybrid approach outperforms feature-based and mutual-information-
based approaches by an average increment of 9.4% and 8.7% in the success rate, respectively; (2) in cases
where query and reference images are captured at similar imaging conditions, the hybrid approach performs
similarly as the feature-based approach, but outperforms both photometric-based and mutual-information-
based approaches with a clear margin; (3) the feature-based approach is consistently more accurate than
mutual-information-based and photometric-based approaches when at least 4 consistent matching points are
found between the query and reference images.

1. Introduction

Camera pose estimation is a fundamental technology for various
applications, such as augmented reality (Taylor, 2016), virtual real-
ity (Ohta and Tamura, 2014), and robotic localization (Castellanos and
Tardos, 2012). The aim of 6 degrees of freedom (DoF) camera pose
estimation is to find the 3-DoF location and 3-DoF orientation of the
query image in a given reference coordinate system. In the literature,
the classical approach for 6-DoF camera pose estimation is to register a
2D query image with previously acquired reference data, which often
consist of a set of reference images and corresponding 3D point clouds.
In practice, this is a fundamental yet challenging problem due to large
displacements between the query and reference images, as well as
image variations caused by changes in the appearance of the scenes,
weather and lighting conditions (Maddern et al., 2017; Mishkin et al.,
2015). Depending on how the 6-DoF pose estimation problem is solved,
state-of-the-art methods can be divided into 2 main categories: direct
and indirect approaches. In our scope, direct approach means that the
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6-DoF camera pose is directly optimized by a cost function defined
over the 6D pose space. For example, the 6-DoF camera pose can be
computed by directly minimizing a cost function that compares the
query image with a rendered synthetic view from a 3D point cloud
(Pascoe et al., 2017; Tykkälä et al., 2013; Newcombe et al., 2011a,b).

In the indirect approach, the query image is registered to the 3D
point cloud by matching point features extracted in the query image
and the reference images (Mishkin et al., 2015; Song et al., 2016;
Irschara et al., 2009; Kim et al., 2014), and the reference images and
the 3D point cloud are defined in the same world coordinate system.
Both direct and indirect approaches have shown good performance
in previous works with different datasets and experimental settings
(Pascoe et al., 2017; Mishkin et al., 2015; Song et al., 2016). However,
the relative performance of the direct and indirect approaches have not
been studied in the same working conditions with large-scale, realistic
datasets.

Although both the indirect and direct approaches have been widely
utilized for 6-DoF pose estimation, we have identified two important
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questions that warrant further research: first, there is no consensus in
the community about which strategies yield the best performance in
real-life conditions, where the appearance of the reference and query
images change significantly according to different weather, lighting and
season conditions. Second, in the literature, pose estimation strategies
are often assessed as a part of full pipelines that involve additional
pre- or post-processing steps, e.g. the incorporation of information from
previous poses in sequential data or global optimization strategies in
simultaneous localization and mapping approaches. As a result, the
contribution of pose estimation methods on the overall performance
of the system, as well as their response to different imaging factors,
remains unclear. In order to tackle the aforementioned problems, we
implemented and studied three state-of-the-art camera pose estima-
tion approaches for the estimation of 6-DoF camera pose of a single
query image using reference images and a point cloud. Specifically,
the three implementations are one indirect approach, a feature-based
method in Kim et al. (2014), and two direct approaches: a photometric-
based method (Tykkälä et al., 2013) and a mutual-information-based
method (Pascoe et al., 2017). The motivation for studying the selected
methods is that they are state-of-the-art, have good speed perfor-
mance and can be conveniently implemented and tested in the same
conditions (Pascoe et al., 2017; Tykkälä et al., 2013; Kim et al., 2014).

We perform a systematic and extensive experimental comparison
of the studied approaches and analyze their performances. Based on
the obtained results, we evaluate a hybrid approach that combines the
feature-based and mutual information-based camera pose estimation
methods, and present an architecture for computing the 6-DoF camera
pose from rough 2-DoF spatial position estimates. As the main contri-
bution of this work, we perform an extensive comparison and analysis
of three strategies for 6-DoF camera pose estimation: a feature-based
approach, a photometric-based approach, and a mutual-information-
based approach. We find that the feature-based approach is more accu-
rate than photometric-based and mutual-information-based approaches
with as few as 4 consistent feature points between the query and
reference images. However, the mutual-information-based approach is
often more robust and can provide a pose estimate when the feature-
based approach fails. We experimentally demonstrate that a hybrid
approach, which combines the feature- and mutual-information-based
approaches, outperforms both. All source code for camera pose estima-
tion methods and their performance evaluation will be made publicly
available.1

In addition, we study the performance of the hybrid approach with
an architecture that allows computing camera pose with multiple ref-
erence images and allows to naturally integrate and refine pose priors
in large uncertainty cases. For the experiments, we used two publicly
available datasets: the KITTI dataset (Geiger et al., 2012) and Oxford
RobotCar dataset (Maddern et al., 2017). The KITTI dataset provides
11 individual sequences with ground truth trajectories. The recently
released Oxford RobotCar dataset (Maddern et al., 2017) contains
many repetitions on the same route. RobotCar dataset provides differ-
ent combinations of weather, traffic and pedestrians, with long-term
changes such as construction and roadworks, which allows a more chal-
lenging evaluation in realistic conditions. Our comparison shows how
the hybrid approach outperforms feature-based, photometric-based or
mutual-information-based approaches. Furthermore, the experiments
show that using multiple reference images improves the robustness of
all pose estimation pipelines.

1.1. Related work

Camera pose estimation using vision has received significant atten-
tion in recent decades. We focus on the case of registering a single
query image with one or several reference images and 3D point clouds.

1 https://github.com/JunshengFu/camera-pose-estimation.

The approaches can be divided into 2 main categories: indirect ap-
proaches (Irschara et al., 2009; Kim et al., 2014; Klein and Murray,
2007; Geiger et al., 2011; Kitt et al., 2010) and direct approaches (Pas-
coe et al., 2017; Tykkälä et al., 2013; Newcombe et al., 2011a). It
is important to notice that many of the above works introduce a
Simultaneous Localization and Mapping (SLAM) method. Specifically,
camera pose estimation discussed in this paper is only one component
utilized within more complex SLAM methods. In our discussion we refer
only to the camera pose estimation part of them.

The indirect approaches establish 2D-3D correspondences between
the query image and the 3D point cloud. The reference images and the
3D point cloud are pre-registered, so the 2D-3D correspondences are
indirectly obtained by establishing 2D-2D correspondences between the
query image and the reference images. Specifically, the query image is
registered with the reference images by utilizing feature detectors for
finding salient image structures for localization, e.g. corners (Rosten
and Drummond, 2006; Mikolajczyk and Schmid, 2004), blobs (Lowe,
1999; Bay et al., 2006; Kadir and Brady, 2001) or regions (Matas et al.,
2004; Tuytelaars and Van Gool, 2000, 2004; Mori et al., 2004). Then
feature descriptors (Calonder et al., 2010; Rublee et al., 2011; Leuteneg-
ger et al., 2011; Alahi et al., 2012; Lowe, 1999; Bay et al., 2006;
Dalal and Triggs, 2005; Tola et al., 2010; Ambai and Yoshida, 2011)
are used to provide a robust representation regardless of appearance
changes due to different viewpoints, weather, lighting, etc. Given the
set of 2D-3D correspondences, a Perspective-n-Point solver (Torr and
Zisserman, 2000; Gao et al., 2003) and RANSAC (Fischler and Bolles,
1981; Torr and Zisserman, 2000) are applied to compute the relative
6-DoF camera pose between the query image and the reference 3D point
cloud. Because different combinations of 2D-3D correspondences lead
to different camera pose estimations, the indirect approach can be con-
sidered as a combinatorial optimization method. A few of the popular
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 methods are described as follows: PTAM (Klein and Murray,
2007) is a widely used featured-based monocular SLAM algorithm that
allows robust state estimation in real-time. LIBVISO1 (Kitt et al., 2010)
is a feature-based 6 DoF camera pose estimation method for a stereo
camera, and it is extended into LIBVISO2 (Geiger et al., 2011) which
supports monocular ego-motion estimation. Besides, 3D scene repre-
sentation either from LIDAR or Structure-from-Motion pipelines can be
utilized to estimate the camera pose. One work (Irschara et al., 2009)
registers on-line images to a sparse 3D scene generated by Structure-
from-Motion pipelines. Another work (Kim et al., 2014) estimates
camera pose by using LIDAR point cloud and reference images.

The direct approaches compute the 6-DoF camera pose by minimiz-
ing a cost function directly in the 6D space of camera poses (Pascoe
et al., 2017; Tykkälä et al., 2013; Newcombe et al., 2011a,b; Engel
et al., 2014, 2018), and do not need to extract local features of images.
One commonly used cost function is the photometric error between
the query image and the reference view, where the reference view is
generated from the reference 3D point cloud (Tykkälä et al., 2013;
Newcombe et al., 2011a,b). The direct photometric-based methods
usually have good speed performance. For example, LSD-SLAM (Engel
et al., 2014) is a monocular SLAM which allows to build large-scale
maps of the environment and runs in real-time on a CPU. The re-
cent DSO (Engel et al., 2018) combines a fully direct probabilistic
model with joint optimization of all model parameters and it can be
achieved in real-time by omitting the smoothness prior used in other
direct methods and instead sampling pixels evenly throughout the
images. However, they are arguably less robust to real-world global
illumination changes (Newcombe et al., 2011b). A recent work (Pascoe
et al., 2017) utilizes a mutual-information-based cost function for direct
6-DoF camera pose estimation outperforming both the feature-based
and photometric-based approaches in two challenging datasets with
large image variations. This mutual-information-based approach has
been tailored for the SLAM problem and it relies on a well-initialized
reference image (Pascoe et al., 2017). However, it is still unclear what
the performance of the mutual-information-based approach would be
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without accounting for the initialization problem, where single query
image is to be registered with no prior on the pose.

Besides the direct and indirect approaches, a semi-direct visual
odometry pipeline, the SVO, has been proposed by Forster et al. (2014).
In SVO, feature-correspondences are an implicit result of direct motion
estimation rather than of explicit feature extraction and matching.
Thus, feature extraction is only required when the initial key frame
is selected to initialize the construction of a new 3D point cloud. The
advantage of this approach is its increased speed due to the lack of
feature-extraction at every frame and increased accuracy through sub-
pixel feature correspondence. After the feature correspondences and
an initial estimate of the camera pose are established, the algorithm
continues using only point-features. In this work, we are interested
in the solution of the single-query pose estimation problem. The SVO
approach is designed for solving the pose estimation problem in the
context of multiple, sequential frames and has therefore not been
considered in this work.

A recent work (Delmerico and Scaramuzza, 2018) compares visual-
inertial odometry algorithms on different hardware configurations, but
their focus is on monocular visual-inertial odometry methods. Another
benchmark (Li et al., 2016) provides detailed performance analysis of
open source visual SLAM pipelines on different datasets. However, their
work is focused on comparing the performance of the whole visual
SLAM pipeline instead of a single step such as the pose estimation. To
the best of our knowledge, there is a lack of prior art comparing the
stand alone performance of direct and indirect camera pose estimation
approaches in this scenario.

1.2. Overview

Based on our literature review, we selected and implemented three
state-of-the-art 6-DoF pose estimation methods: (1) an indirect feature-
based method (Kim et al., 2014), (2) a direct photometric-based
method (Tykkälä et al., 2013) and (3) a direct mutual-information-
based method (Pascoe et al., 2017). We choose these 3 approaches
because they provide good performance and can be adapted for the
same experimental settings. The details of these methods are presented
in Section 2. In order to conduct a rigorous and systematic analysis
of their practical performance, the studied methods were compared in
three different scenarios: the single-reference case, the multi-reference
case and the large uncertainty case. Each one of the experimental setups
for these 3 scenarios are described in Section 3. Experiments and results
on real datasets are presented in Section 4. Based on the experimental
results, we also evaluate a hybrid approach that combines direct and
indirect methods for an improved performance. The conclusions and
the implementation details of this work are presented in Section 5 and
Appendices, respectively.

2. Evaluated pose estimation methods

The methods selected for comparison in this work are representative
examples of direct and indirect approaches with state-of-the-art perfor-
mance. In this section, we describe each one of the methods in the
simplest scenario, where the inputs are a query image 𝐼𝑄, and a single
reference tuple (𝐼𝑅, 𝑃𝑅) that is formed by a reference image 𝐼𝑅 and its
registered 3D point cloud 𝑃𝑅 (see Fig. 1). The aim is to find the 6D pose
of the query image 𝐼𝑄.

2.1. Indirect feature-based (FB) pose estimation

Standard feature-based pose estimation can be divided into four
main steps: (1) feature detection, (2) feature matching, (3) grouping
of 2D-3D correspondences, and (4) Perspective-n-Point pose estimation.
The block diagram of the feature-based (FB) method is shown in Fig. 2.
In the first step, a feature detector and a feature descriptor are applied
to both query and reference images to detect points – or regions – of

Fig. 1. Inputs for the pose estimation methods in the simplest scenario: a query image
𝐼𝑄 and a reference tuple (𝐼𝑅 , 𝑃𝑅), where 𝐼𝑅 is a single reference image and 𝑃𝑅 is the
registered 3D point cloud associated to 𝐼𝑅. Both the point cloud 𝑃𝑅 and the camera
pose of the reference image 𝐼𝑅 are defined in a common world coordinate system. The
aim is to estimate the 6D pose of the query image 𝐼𝑄.

interest and compute descriptors from pixels surrounding each point
of interest. Secondly, based on the previously computed descriptors,
2D-2D point correspondences are sought between query and reference
images by means of feature matching. Thirdly, since the 3D point cloud
is registered with the reference image, the 2D-3D correspondences
between the query image and the 3D point cloud can be established
indirectly through the 2D-2D correspondences between points of inter-
est in the query and reference images. Finally, a Perspective-n-Point
solver (Gao et al., 2003) and RANSAC (Fischler and Bolles, 1981; Torr
and Zisserman, 2000) are applied for computing the 6-DoF camera pose
from these 2D-3D correspondences. The algorithm and implementation
details of each stage of the feature-based pose estimation can be found
in Appendix A.

2.2. Direct photometric-based (PB) pose estimation

The direct photometric-based approach (Tykkälä et al., 2013) is
defined as a direct minimization of a cost function defined over the 6D
space of camera poses. The pixel intensities of the query image and a
rendered synthetic view from the 3D point cloud are directly compared
in the cost function (Tykkälä et al., 2013). The photometric-based
approach can be divided into three main steps: (1) synthetic image
generation, (2) photometric matching, and (3) coarse-to-fine search.

The block diagram of this method is shown in Fig. 3. In summary
the algorithm works as follows: firstly, for rendering purposes, a colored
3D point cloud is generated by projecting each 3D point of the cloud 𝑃𝑅
to the reference image frame and then assigning the colors from the
reference image at that location. Subsequently, we generate a synthetic
image 𝐼𝑆 by projecting the colored 3D point cloud into an image
plane (see Appendix B.1), where the transformation matrix 𝐌 of the
reference image is used as the initial pose estimate. The goal is to
find the transformation matrix that minimizes the photometric error
between the synthetic view and the query image:

𝐌∗ = argmin
𝐌

𝑅𝐸𝑆(𝐼𝑄, 𝐼𝑆 ), (1)

where 𝑅𝐸𝑆(⋅, ⋅) is the residual function used to compute the photomet-
ric error.

In this work, we solve (1) by means of a coarse-to-fine grid search
(see Appendix B.3). It should be noted that in common tracking ap-
plications where the transformation baseline is small, fast optimization
can be implemented by using Jacobian and gradient-based optimiza-
tion (Tykkälä et al., 2013). However, in the case of big appearance
differences between the query and reference images, gradient-based
optimization often fails to find global solutions, so we adopted a
grid search in our experiments. A more detailed description of the
photometric pose estimation method with implementation details can
be found in Appendix B.
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Fig. 2. Block diagram of feature-based camera pose estimation. 𝐼𝑄 is the query image. The reference image 𝐼𝑅 and the 3D point cloud 𝑃𝑅 are pre-registered and defined in the
world coordinate system. 𝐌∗ is the estimated transformation matrix. For the detailed descriptions of each step see Appendix A.

Fig. 3. Block diagram of direct photometric-based and mutual-information-based camera pose estimation. 𝐼𝑄 is the query image. The reference image 𝐼𝑅 and the 3D point cloud
𝑃𝑅 are pre-registered and defined in the world coordinate system. 𝐌∗ is the estimated transformation matrix. For the detailed descriptions of each step see Appendix B.

2.3. Direct mutual-information-based (MI) pose estimation

The direct mutual-information-based approach is similar to the
photometric-based approach presented in previous section with the
main difference being that, in the cost function (1), the normalized
mutual information (NMI) is used instead of the photometric error.
Specifically, the mutual information-based pose estimation problem is
formulated as the minimization problem:

𝐌∗ = argmin
𝐌

1 −𝑁𝑀𝐼(𝐼𝑄, 𝐼𝑆 ), (2)

where 𝐌∗ is the estimated camera pose, 𝐼𝑄 is the query image, 𝐼𝑆 is
the synthetic image; and the Normalized Mutual Information (NMI) is
computed as (McDaid et al., 2011):

𝑁𝑀𝐼(𝐼𝑆 , 𝐼𝑄) =
𝑀𝐼(𝐼𝑆 , 𝐼𝑄)

𝑚𝑎𝑥(𝐻(𝐼𝑆 ),𝐻(𝐼𝑄))
(3)

with

𝑀𝐼(𝐼𝑆 , 𝐼𝑄) = 𝐻(𝐼𝑆 ) +𝐻(𝐼𝑄) −𝐻(𝐼𝑆 , 𝐼𝑄) , (4)

where 𝐻(𝐼𝑆 , 𝐼𝑄) is the joint entropy of 𝐼𝑆 and 𝐼𝑄, 𝐻(𝐼𝑆 ) and 𝐻(𝐼𝑄)
are the marginal entropies of 𝐼𝑆 and 𝐼𝑄, and 𝑀𝐼(𝐼𝑆 , 𝐼𝑄) is the mutual
information between 𝐼𝑆 and 𝐼𝑄.

2.4. Hybrid (HY) pose estimation

In our experiments, we also evaluate a combination of indirect and
direct approaches for pose estimation. This approach is inspired by the
strong empirical evidence in our experiments showing that: (1) the
feature-based method is superior in accuracy if a sufficient number
of matches can be found (see details in Sections 4.3 and 4.5); (2)
the mutual-information-based approach can still provide a reasonable
estimate in cases where the feature-based method fails to generate an
estimate (no enough matched features found between the reference

and query images). Therefore, our hybrid approach first executes the
feature-based method and, if it fails to compute at least 4 consistent
matching points between the query and reference images, then it
switches to the MI-based method.

Specifically, given one query image 𝐼𝑄 and one reference tuple
(𝐼𝑅, 𝑃𝑅), a feature detector is firstly applied to both the query image
𝐼𝑄 and the reference image 𝐼𝑅, and then we apply feature matching to
obtain 2D-2D matched features. Since the point cloud 𝑃𝑅 is registered
with the reference image 𝐼𝑄, the 2D-3D correspondences can be found
indirectly. Then a PnP solver (Gao et al., 2003) and RANSAC (Torr and
Zisserman, 2000) are applied to the 2D-3D correspondences. For the
PnP solver (Gao et al., 2003), at least 4 consistent 2D-3D correspon-
dence pairs are required. If the camera pose of the query image cannot
be estimated due to less than four 2D-3D correspondences (Torr and
Zisserman, 2000; Gao et al., 2003), the direct mutual-information-based
pose estimation is used to compute the camera pose. The block diagram
of the hybrid approach is shown in Fig. 4.

3. Comparative methodology

In this work, we systematically compare camera pose estimation
approaches in three scenarios: firstly, we compare the performance
of different pose estimation methods for single query images in the
simplest scenario of using only one reference tuple, as shown in Fig. 1.
Secondly, we increase the number of reference images and evaluate
the improvement in accuracy. Thirdly, we evaluate the different ap-
proaches with large spatial uncertainties, where the reference images
can be far away from the query image. The three scenarios considered
for comparison are described in more detail below.

3.1. Single-reference pose estimation

The aim of using a single reference image for different pose es-
timation methods is to compare their performance at the most basic
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Fig. 4. Block diagram of the hybrid approach for camera pose estimation.

Fig. 5. Single-reference pose estimation. The actual location of the query image is
marked with a purple dot, and a circle around the purple dot represents the initial
uncertainty on the location of the query image. Within the uncertainty circle, one
reference image is randomly selected among all possible candidates that are indicated
with red markers from A to L. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Example of inputs for multi-reference case: one query image 𝐼𝑄 and multiple
reference tuples {(𝐼 (1)

𝑅 , 𝑃𝑅
(1)),…(𝐼 (𝑘)

𝑅 , 𝑃𝑅
(𝑘))} which consist of 𝑘 reference images and 𝑘

3D point clouds. All the reference images and 3D point clouds are defined in an unified
coordinate system.

level without pre- or post-processing steps. As illustrated in Fig. 5,
the experiment starts by first defining a radius 𝑟 around the actual
location of the query image. The radius 𝑟 represents the uncertainty
in the location of the query image. The reference image is randomly
selected in the region within the circle. The motivation of random
selection is to evaluate how the studied algorithms respond to different
overlaps between query and reference images. Increasing the radius
reduces the potential overlap between query and reference images,
which makes pose estimation more challenging. For direct methods, this
can be considered as different initialization. After randomly selecting
one reference image within the radius, the inputs of the single-reference
case are the query image 𝐼𝑄 and a reference tuple (𝐼𝑅, 𝑃𝑅), where 𝐼𝑅 is a
single reference image and 𝑃𝑅 is its corresponding 3D point cloud. The
quality of the estimated pose is then assessed in the terms of translation
error and rotation error (see Section 4.2).

3.2. Multiple-reference pose estimation

In this section we explain the case of incorporating the information
obtained from multiple reference images to estimate the camera pose of

a single query image. In this case, the inputs are one query image and
multiple reference tuples which consist of 𝑘 pairs of reference images
and their corresponding 3D point clouds, {(𝐼 (1)𝑅 , 𝑃𝑅(1)),…(𝐼 (𝑘)𝑅 , 𝑃𝑅(𝑘))},
as shown in Fig. 6. All the reference images and 3D point clouds are
defined in an unified coordinate system. The aim of using multiple
reference images is to leverage the additional information to improve
accuracy of camera pose estimation.

In the prior art, Song et al. (2016) fuse multiple camera poses
by: (1) averaging three rotation angles to compute the final rotation
matrix; (2) minimizing a geometrical error term to estimate the final
translation. However, 3D point clouds are not utilized in their ap-
proach, so from each reference image only a line where the camera
pose of the query image should lie is obtained. In contrast, in our
approach, each reference image together with a 3D point cloud are
already sufficient to compute a unique 6-DoF camera pose for the query
image. Therefore, we have considered 4 strategies, which can be easily
adapted to different camera pose estimation methods.

1. Maximum number of matched features (maxf ): we match the
query image with all the available reference images, and select
the reference image with the largest number of matched features
after the feature matching stage. Then, we compute the cam-
era pose of the query image with only the reference tuple that
contains the selected reference image. The remaining processing
steps are the same as in the camera pose estimation with a single
reference tuple.

2. Simple average (avg): for each reference tuple in {(𝐼 (1)𝑅 , 𝑃𝑅(1)),…
(𝐼 (𝑘)𝑅 , 𝑃𝑅(𝑘))}, we compute an individual candidate camera pose
𝐌(𝑖) =

[

𝐑(𝑖) | 𝐭(𝑖)
]

where 𝐑(𝑖) and 𝐭(𝑖) are the rotation matrix
and translation vector of the 𝑖th camera pose, and 𝑖 ∈ {1,… , 𝑘}.
As a result, 𝑘 candidate camera poses will be obtained. Each 6-
DoF camera pose consists of a rotation matrix and a translation
vector. We average the 𝑘 rotation matrices by firstly converting
them to quaternions and then apply quaternion space interpola-
tion (Markley et al., 2007). As a result, the final rotation matrix
is obtained from the averaged quaternion representation, and the
final translation vector can be computed by averaging all the
translation vectors.

3. Weighted average (wavg): similar to simple average, this ap-
proach starts with 𝑘 individual candidate pose estimates 𝐌(𝑖) =
[

𝐑(𝑖) | 𝐭(𝑖)
]

obtained from each reference tuple. Then we take
a weighted average of these 𝑘 camera poses, and the weights
𝐰(𝑖) are computed according to the number of matched fea-
tures between the query image and each reference image. The
calculation of the final pose can be formulated as follows:

𝐌∗ =
∑

𝑖
𝐰(𝑖)𝐌(𝑖), 𝑖 ∈ {1, 2… , 𝑘} (5)

where the rotation matrix 𝐑(𝑖) in 𝐌(𝑖) is converted to quaternions
and then we compute a quaternion-weighted average (Markley
et al., 2007). Each weight value is computed as follows,

𝐰(𝑖) =
𝑚(𝑖)

∑

𝑚(𝑖)
, 𝑖 ∈ {1, 2… , 𝑘} (6)
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Fig. 7. Camera pose estimation with a large uncertainty. An image retrieval method
is combined with a camera pose estimation method to reduce the large position
uncertainty of the query image. The black dot represents the actual location of the
query image, the big blue dashed circle shows the initial uncertainty and the small
purple solid circle indicates the updated uncertainty in pose estimation. The red route
marked in the background is one of the routes in the KITTI dataset. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where 𝑚(𝑖) is the number of the matched features between the
query image 𝐼𝑄 and the 𝑖th reference image 𝐼 (𝑖)𝑅 .

4. Robust weighted average (r-wavg): firstly we match the query
image with all the available reference images and record the
numbers of their matches. If the maximum number of matched
features between the query image and reference images is 𝐾, we
select those reference images with at least half of the maximum
matches 𝐾∕2. The weights for individual candidate camera poses
are computed as follows:

𝑤(𝑖) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑚(𝑖) <
𝐾
2

𝑚(𝑖)
∑

𝑚(𝑖)
, if 𝑚(𝑖) ≥

𝐾
2

(7)

where 𝐾 is the maximum number of matched features and it can
be formulated as 𝐾 = max{𝑚(𝑖)}, 𝑖 ∈ {1, 2… , 𝑘}. In the end, we
apply obtained weights to Eq. (5) to get the final camera pose.

3.3. Camera pose estimation with large uncertainties

In real-life applications, the query image may or may not have a
GPS tag, and even with a GPS tag, the precision of the GPS can be
poor (Linegar et al., 2016; Miura et al., 2015). Therefore, the initial
uncertainty radius 𝑟 of the query camera’s location can be large (see
Fig. 7). In the case of large uncertainties, choosing the reference image
by random selection is not practical anymore, and the use of an image
retrieval method becomes beneficial. Therefore, we compare the perfor-
mance of the studied pose estimation methods with a large uncertainty,
and evaluate how image retrieval improves their performance.

In image retrieval, methods such as Song et al. (2016), Philbin
et al. (2007), Radenović et al. (2016) and Iscen et al. (2017) are
used to effectively identify a few good reference images from a large
reference database. In this work, we select the retrieval method (Philbin
et al., 2007) which performs image retrieval from a large image set
by quantizing low-level image features based on randomized trees
and using an efficient spatial verification stage to re-rank the results
returned from a bag-of-words model. We take up to 5 reference images
with the highest scores from the retrieved ones, and then we perform
single query camera pose estimation with multiple reference images.

Fig. 8. Sample routes for KITTI and Oxford RobotCar dataset with scales.

4. Experiments and results

4.1. Datasets

In this work, experiments were conducted using two public datasets:
the KITTI Visual Odometry dataset (Geiger et al., 2012) and the Oxford
RobotCar dataset (Maddern et al., 2017). The KITTI dataset was cap-
tured by driving around the mid-size city of Karlsruhe (Germany), in
rural areas and on highways. The accurate ground truth is provided
by a Velodyne laser scanner and a GPS localization system. There are
11 sequences in the KITTI dataset with ground-truth camera poses
available, and we use all of them in our experiments. These sequences
are summarized in Table 1. For each sequence, a 3D point cloud 𝑃𝑅 is
obtained from LIDAR, and both query image 𝐼𝑄 and reference image
𝐼𝑅 are from one monochrome camera (according to the author the
monochrome camera is less noisy). For illustration, one example route
from the KITTI dataset is shown in Fig. 8a.

The recently released Oxford RobotCar dataset (Maddern et al.,
2017) provides multiple traversals of the same route and allows a more
challenging evaluation in changing weather and daylight conditions. 5
sequences of the Oxford RobotCar dataset with completely different en-
vironment conditions were selected for our experiments. The sequence
route is shown in Fig. 8b and example images from 5 sequences are
shown in Fig. 9. Similarly to the KITTI dataset, 3D point clouds are
obtained from LIDAR. The reported GPS information is treated as the
ground-truth for the camera location.

The Oxford RobotCar dataset includes images captured by a Bum-
blebee XB3 (1280 × 960 × 3, 16 Hz). In our experiment, we use the
left image from the Bumblebee XB3 and, for efficiency, we reduced the
number of images in each sequence by taking 1 out of every 10 images.
Also we removed the beginning and ending frames of each sequence
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Fig. 9. Appearance differences among the 5 sequences in the Oxford RobotCar dataset (the images are roughly from the same location).

Table 1
Overview of the 11 sequences in the KITTI dataset (Geiger et al., 2012).

Id # images Tag Total length (km) Mean distance between
consecutive images (m)

00 4541 Urban 3.7 0.8
01 1101 Highway 2.5 2.2
02 4661 Urban 5.1 1.1
03 801 Urban 0.6 0.7
04 271 Urban 0.4 1.5
05 2761 Urban 2.2 0.8
06 1101 Urban 1.2 1.1
07 1101 Urban 0.7 0.6
08 4071 Urban 3.2 0.8
09 1591 Urban 1.7 1.1
10 1201 Urban 0.9 0.8

Table 2
Overview of 5 sequences with different environmental conditions in Oxford RobotCar
dataset (Maddern et al., 2017).

Id # images Tag Total length (km) Mean distance between
consequent images (m)

00 1916 Overcast 6.3 3.3
01 2873 Sun 8.6 3.0
02 2931 Night 9.1 3.1
03 2614 Rain 8.8 3.4
04 3019 Snow 8.7 2.9

where the car is usually parked, producing multiple instances of the
same image. The resulting 5 sequences from Oxford RobotCar dataset
are summarized in Table 2. For the Oxford RobotCar dataset, the query
𝐼𝑄 and reference 𝐼𝑅 images are taken from different traversals of the
route, and therefore give a much more demanding assessment of pose
estimation performance in realistic conditions.

There are two main reasons why we used these specific datasets.
One is the availability of ground truth from commercial-level Inertial
and GPS navigation system. For example, KITTI dataset uses OXTS
RT 3003 (Oxford-Technical-Solutions-Ltd, 2019), and Oxford RobotCar
dataset uses NovAtel SPAN-CPT ALIGN (NovAtel-Inc., 2019). This type
of ground truth information is very limited in other existing datasets.
The other reason is that Oxford RobotCar dataset consist of the multiple
traversals of the same route under changing weather and daylight
conditions. However, since the both datasets are acquired by sensors on
a car the main application field of our results is self-driving cars. This
indicates certain limitations in the images, such as the small variation
in viewpoint between consecutive frames.

4.2. Performance measures

We use translation error, maximum orientation error and the suc-
cess rate of each method to compare the performance of the different
approaches:

1. The translation error is the absolute translation between the
ground-truth location and the estimated location of the query
image.

2. Based on the rotation matrix between the ground-truth camera
pose and the estimated camera pose of the query image, we con-
vert the rotation matrix into 3 Euler angles. Then the maximum
absolute Euler angle is used as the maximum orientation error.

3. The studied methods can fail to yield a camera pose estimate
under some circumstances, for instance when there are not
enough feature matches between the query and reference images
in the indirect approach, or when grid search fails to converge
in direct approaches. In this work, we define the success rate as
the percentage of the processed images for which the estimated
poses are within 10 m from ground truth, and this threshold is
picked from the prior art (Pascoe et al., 2017).

4.3. Experiments with single reference image

In this section, we perform 12 sets of experiments for both KITTI and
Oxford RobotCar datasets. Each set of experiments comprises hundreds
of estimates for a pose estimation method at an uncertainty radius.
The goal of these experiments was to compare the performance of
different pose estimation methods under the single reference scenario,
as described in Section 3.1. For the experiments, the uncertainty radius
𝑟 was varied between 10 to 25 m. Since most of the photos are taken
by a front-looking camera mounted in a car in the streets of an urban
area, these search ranges were selected so that the reference and query
images would have some overlap but not being too close to each other.
The mean distance between two consequent images are from 0.7 to 3.4
m in the two evaluated datasets.

The experiments with the KITTI dataset tested the performance of
different camera pose estimation methods under ‘‘ideal conditions’’, i.e.
same time of the day, lighting and weather condition. For the KITTI
dataset, all the 11 sequences listed in Table 1 have different routes. For
this reason, each sequence was processed individually so that the query
image and the reference images come from the same drive. In order to
separate the query and reference images, we randomly selected 10% of
the images in one sequence for queries, and the rest of images from the
same sequence were used as references.

The experiments with the Oxford RobotCar dataset tested the per-
formance of camera pose estimation methods in challenging conditions
since the query and reference data capture large variation in appear-
ance and structure of a dynamic city environment over long periods
of time. For the Oxford RobotCar dataset presented in Table 2, each
one of the 5 route traversals corresponds to different environmental
conditions on the same route. The sequences were processed jointly
in order to allow the query and reference images to come from the
different sequences. For example, when the summer sunny sequence
(01 in Table 2) was used for the reference images, the winter snow
sequence (04 in Table 2) was used for the queries.

Table 3 summarizes the translation and orientation errors for the
studied methods (FB, PB and MI) in the single-reference scenario. For
a fair comparison of the performance measures, we decided to use only
those images for which all methods are able to provide a pose estimate
(regardless of accuracy). From Table 3a and b we observe the following:

1. By looking into each column, we find that as long as the feature-
based approach is able to estimate the camera pose, its estimates
have smaller translation errors than the other two methods in
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Table 3
Translation error (in meters) and maximum orientation error (in degrees) using a single reference image. For the KITTI dataset, 454 images
(random 10% of the whole sequence) in sequence 00 are used as queries, and the rest as the reference images. For the Oxford RobotCar dataset,
summer sequence (01) is used as the reference and 302 images (random 10%) from the winter sequence (04) are used as the query images.
The second row shows the number of images for which all methods are able to provide a pose estimate regardless of accuracy. The third row
shows the percentage value. All the translation and orientation results are reported in median values.

(a) KITTI sequence: translation error (m) (b) Oxford sequence: translation error (m)

Uncertainty radius (m) 10 15 20 25 Uncertainty radius (m) 10 15 20 25
#images 406 328 282 259 #images 67 60 53 38

(89%) (72%) (62%) (57%) (22%) (20%) (18%) (13%)

FB (Kim et al., 2014) 0.13 0.40 0.48 0.30 FB (Kim et al., 2014) 2.77 2.48 2.40 2.91
PM (Tykkälä et al., 2013) 1.44* 6.66* 7.77* 14.85* PM (Tykkälä et al., 2013) 10.44* 16.23* 20.09* 26.32*
MI (Pascoe et al., 2017) 1.56* 5.41* 6.15* 10.26* MI (Pascoe et al., 2017) 8.71* 13.36* 16.27* 14.94*

(c) KITTI sequence: max orientation error (degree) (d) Oxford sequence: max orientation error (degree)

Uncertainty radius (m) 10 15 20 25 Uncertainty radius (m) 10 15 20 25
#images 406 328 282 259 #images 67 60 53 38

(89%) (72%) (62%) (57%) (22%) (20%) (18%) (13%)

FB (Kim et al., 2014) 1.76 3.83 5.42 3.33 FB (Kim et al., 2014) 3.44 3.79 2.72 3.25
PM (Tykkälä et al., 2013) 1.07* 2.40* 3.37* 3.12* PM (Tykkälä et al., 2013) 3.48* 5.82 2.64 1.88
MI (Pascoe et al., 2017) 1.07* 2.30* 3.45* 2.70* MI (Pascoe et al., 2017) 6.16 4.00 2.42 1.93*

*Indicates a statistically significant difference at the 𝑝 < 0.05 level computed with the Wilcoxon signed rank test (Gibbons and Chakraborti,
2011) against the Feature-based method (FB).

Fig. 10. Success rate comparison for three strategies with single reference image at different uncertainty ranges in two public datasets. (a): in the experiments with the KITTI
sequence 00, a random 10% of the images are used as query image and the rest are used as references. (b): in the experiments with two sequences in Oxford RobotCar sequences,
summer sequence (01) was used for the references and the snow sequence (04) was used for queries. Failure threshold was set to 10 m.

both the KITTI and Oxford RobotCar datasets. This result indi-
cates that the feature-based approach is more accurate in pose
estimation in both ideal environment conditions (KITTI dataset)
and realistic environment conditions (Oxford RobotCar dataset)
with random reference image selection.

2. By looking into each row, we find that the translation errors of
both photometric-based and mutual-information-based approach
increase with the increasing uncertainty radius, but the trans-
lation error of the feature-based approach does not vary much.
This suggests that both the photometric and mutual-information-
based approaches are more sensitive to the initialization.

Table 3c and d compare the orientation errors. Among the studied
methods, the differences in their orientation errors are small. In other
words, all these methods perform similarly in terms of orientation error
for both KITTI and Oxford RobotCar datasets. The reason for these
results might be that all the images are taken by a front-looking camera
mounted on a car driving along the street, so the query images and the
reference images may share similar viewpoints. Fig. 10 plots the success
rates (see definition in Section 4.2) for the studied three strategies with
a single reference at different uncertainty ranges. Fig. 10 shows the
following:

1. The feature-based approach has higher success rate than the
other two approaches in the KITTI dataset; however, the feature-
based approach has the lowest success rate among all three ap-
proaches in the Oxford RobotCar dataset. The mutual-

information-based approach has the highest success rate in Ox-
ford RobotCar dataset. This suggests that the success rate of the
feature-based approach is greatly influenced by the environmen-
tal conditions between the query and reference images. On the
other hand, the mutual-information-based approach is the most
robust in terms of the success rate under different environmental
conditions.

2. When analyzing the same pose estimation method for different
uncertainty radii, the success rates of all approaches decrease
with the increase of the uncertainty radius.

Pascoe et al. (2017) claim that the mutual-information-based SLAM
approach has higher success rate than state-of-the-art feature-based
SLAM approaches (Mur-Artal et al., 2015). Our experiments in Fig. 10b
lead to the same conclusion in the problem of 6-DoF camera pose
estimation using single reference image and 3D point cloud. Interest-
ingly enough, our experiments in Table 3 suggest that the feature-based
approach can be more accurate as long as it is able to compute the
camera pose.

The observations presented above lead us to use the hybrid (HY)
method for pose estimation. Recall however that, for the results pre-
sented in Table 3, we selected images for which all the methods yield a
pose estimate. As a result, the performance of the hybrid method (HY)
in this setting is equivalent to the feature-based method (FB) since the
photometric-based branch of the HY approach works only when the FB
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method fails. For this reason, we only include the HY approach in the
large uncertainty scenario presented in Section 4.5.

4.4. Experiments with multiple reference images

In this experiment, we evaluated the performance of different meth-
ods in the multi-reference setting for the both KITTI and Oxford Robot-
Car datasets. The goal was to evaluate efficient ways to incorporate
the information obtained from multiple reference images to improve
the camera pose estimation.

Similarly to the single reference case of previous section, we con-
sider the reference images within the uncertainty radius 𝑟 around
the actual location of the query image, and then randomly selected
multiple reference tuples. Subsequently, we evaluated the 4 different
methods to fuse camera poses from multiple reference tuples: maximum
number of matched features (maxf ), simple average (avg), weighted
average (wavg) and the robust weighted average (r-wavg). The number
of reference images was varied from one to five.

The results for different multi-reference pose estimation methods
in the KITTI dataset are shown in Table 4. Fig. 11 compares the
success rates for different camera pose estimation methods with multiple
reference images using the robust weighted average (r-wavg) method in
the both KITTI and Oxford RobotCar datasets. The r-wavg method was
used in that figure since it yielded the best overall performance for all
the pose estimation methods.

Table 4 summarizes the results for the experiments with multiple
reference images. The results show that fusing the poses from multiple
references improves the performance of the camera pose estimation
results, and robust weighted average (r-wavg) outperforms the other
approaches, especially with the increased number of reference images.
Fig. 11 compares the success rates of the different approaches with
multiple reference images using robust weighted average method in the
both KITTI and Oxford RobotCar datasets. Fig. 11 tells us two things:

1. The success rates of each method show that the success rate
increases with the increase of the number of reference images.

2. The three bars at each plot show that the feature-based ap-
proach has the highest success rate among different approaches
in the KITTI dataset, but has the lowest success rate in the
Oxford RobotCar dataset. In contrast, the mutual-information-
based approach has the highest success rate in that dataset.
In other words, mutual information is more robust than the
two other approaches under changing environmental conditions.
This finding is consistent with our results in the single reference
scenario.

In the literature, camera pose estimation usually requires geometry
verification (Sattler et al., 2016) which is very effective but requires
extra computation. Interestingly enough, our results show that the
robust weighted average method is a light approach and can be easily
adapted with any pose estimation method with good results.

4.5. Experiments at large uncertainty

Based on the empirical results in Section 4.3, we evaluated a hybrid
approach that leverages the advantages of both the feature-based and
the mutual-information-based approaches. In this section, we tested
these 4 camera pose estimation methods (feature-based, photometric-
based, mutual-information-based, and hybrid approaches) with five
reference images, under the large uncertainty condition.

In Section 3.3, we described the experimental setting for camera
pose estimation under large location uncertainty. In the extreme case,
no prior information on the location is available and the query image
must be matched to the whole reference database. As a result, an image
retrieval method is applied to find suitable reference images (Philbin
et al., 2007). Among all retrieved reference images, up to 5 images with
the highest scores are stored for further processing. In our experiments

we restricted the uncertainty radius to 200 m for the KITTI and 50 m for
the Oxford RobotCar dataset, and adopted the multi-references (up to
5 most similar reference images) pose-estimation approach to improve
robustness of all the investigated methods. We conducted experiments
in all the sequences of the KITTI dataset. In the Oxford RobotCar
dataset, we performed a set of experiments where one sequence is used
for the references and another sequence is used for the queries.

The results for the KITTI and Oxford RobotCar datasets are shown in
Tables 5 and 6 respectively. In this two tables, we tag a pose estimate
as a failure when the translation error is above 10 m. By looking at
the success rates in Table 5, we see that the hybrid and feature-based
approaches outperform other methods in cases where the query and
reference images have been captured at similar imaging conditions
(KITTI dataset). The hybrid approach performs similarly as the feature-
based approach, which indicates that the evaluated hybrid method can
retain good properties of the feature-based method. For the sequence
01, the hybrid method is superior. The plausible explanation for this is
that the sequence 01 is captured from a highway (see Table 1) where
there are less reliable features to be found than in urban scenes. In
urban scenes, the hybrid and feature-based methods provide practically
the same accuracy. Table 6 shows a confusion matrix summarizing the
results in the Oxford RobotCar dataset. For that table, we repeated the
experiments by using one sequence as reference and another one as
query (a total of 5 × 5 different combinations). Therefore, in addition
to a large spatial displacement, query and reference images have been
acquired at very different imaging conditions. From that table, we
conclude the following:

1. The mutual-information-based approach is more robust than the
feature-based or photometric-based approaches, which is consis-
tent with the findings in the single reference and multi-reference
scenarios.

2. The hybrid approach outperforms all other approaches in success
rate when the query and reference images have very differ-
ent imaging conditions. This confirms that the hybrid method
leverages complementary properties of the feature-based and
mutual-information-based methods.

The results on the diagonal of Table 6 are consistent with previous
experiments in the KITTI dataset in Table 5, i.e. in the ideal case
when query and reference images come from the same sequence and
imaging conditions. In this case, feature-based and our hybrid method
outperform the other approaches. A remarkable result in Table 6 is
that, even in the worst case scenario, the lowest success rate of the
hybrid method is 13.2%. Recent results in the same dataset in similar
conditions have reported success rates as low as 0% using SLAM (Pascoe
et al., 2017). Notice that the experimental settings in that work (Pascoe
et al., 2017) are different from ours, but this helps understanding the
difficulty of pose estimation problem under real conditions.

5. Conclusion

We performed systematic and extensive comparisons of three dif-
ferent strategies for 6-DoF camera pose estimation using reference
images and 3D point clouds: an indirect feature-based approach, a direct
photometric-based approach and a direct mutual-information-based
approach. In our experiments the feature-based approach was more ac-
curate than both the photometric-based and mutual-information-based
approaches when as few as 4 consistent correspondent points were
found between query and reference images. The mutual-information-
based approach was more robust than the feature-based and
photometric-based approaches which means that it can provide an
estimate even in the cases when the other methods fail. As expected,
the robustness and accuracy of all methods improved when multiple
reference images were available. In the multi-reference scenario, the ro-
bust weighted average method outperformed other fusing methods for the
estimation of the pose from multiple candidates. Based on the strong
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Table 4
Performance in multi-reference pose estimation in the KITTI sequence 00. 10% images (454) from this sequence are used as query image and the rest are used as references. The
uncertainty radius is 𝑟 = 10 m. The reported results are computed from those images for which all methods are able to provide a pose estimate.

#reference images 1 2 3 4 5

Median (m) Median (deg) Median (m) Median (deg) Median (m) Median (deg) Median (m) Median (deg) Median (m) Median (deg)

Feature-based (FB)
avg 0.13 1.76 0.22* 2.07* 0.25* 2.20* 0.21* 1.80* 0.19* 1.61*
wavg 0.13 1.76 0.15* 1.67* 0.15* 1.78 0.10* 1.22* 0.09* 1.11*
maxf 0.13 1.76 0.11 1.82 0.09 1.79* 0.06 1.21* 0.05* 1.03*
r-wavg 0.13 1.76 0.12 1.70 0.10 1.59 0.06 1.13 0.04 0.93

Photometric (PM)
vg 1.44 1.07 2.29* 1.26* 2.15* 1.38* 2.08* 1.22* 1.90* 1.05*
avg 1.44 1.07 1.67* 1.00* 1.52 1.07* 1.28* 0.79* 1.12* 0.69*
axf 1.44 1.07 1.34 1.01 1.22 1.01* 1.19* 0.72* 1.07 0.66*
r-wavg 1.44 1.07 1.35 0.95 1.21 0.86 1.12 0.68 0.99 0.58

Mutual Information (MI)
avg 1.56 1.07 1.65 1.24* 1.80* 1.43* 1.68* 1.23* 1.60* 1.12*
wavg 1.56 1.07 1.44* 1.10 1.37 1.20 1.16 0.77* 1.17 0.77*
maxf 1.56 1.07 1.36* 1.07 1.29* 1.02* 1.16* 0.79* 1.12* 0.68*
r-wavg 1.56 1.07 1.38 0.98 1.25 0.94 1.09 0.68 1.03 0.62

*Indicates a statistically significant difference at the 𝑝 < 0.05 level computed with the Wilcoxon signed rank test (Gibbons and Chakraborti, 2011) against the robust weighted
average method (r-wavg).

Fig. 11. Success rates comparison for the studied methods with multiple reference images and robust weighted average method in two datasets. The failure threshold was set to
10 m.

empirical results and inspired by the complementary properties of the
feature-based and mutual-information-based approaches, we evaluated
a computationally cheap and easy-to-adapt hybrid approach that com-
bines these two methods. In all experiments, the hybrid method was
on par or superior to the single methods. This is particularly so in
challenging scenarios such as the Oxford RobotCar dataset, where the
hybrid approach outperforms feature-based and mutual-information-
based approaches by an average increase in success rate of 9.4% and
8.7%, respectively.

In our experiments with multiple reference images (Section 4.4), we
tested different fusion methods to compute the camera pose. The speed
of the photometric and mutual-information methods could be greatly
improved by utilizing GPU or thread programming. Based on the
experimental results, we empirically fixed the number of the reference
images to be 5 in the large uncertainty case. An interesting question to
be addressed in the future work is to investigate the optimal number of
images needed to achieve a certain accuracy and to compare different
image retrieval approaches.
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Appendix A. Indirect feature-based pose estimation

This appendix presents the detailed description of the four stages
of the indirect feature-based pose estimation method presented in Sec-
tion 2.1.

A.1. Feature detection and description

The first step of the system is to detect and extract features of salient
locations in the query and reference images. Specifically, a feature
detector is used for finding the salient points of an image, and a feature
descriptor is used to describe the neighborhood surrounding that salient
point.

Feature detectors can extract different types of image structures,
e.g. corners (Rosten and Drummond, 2006; Mikolajczyk and Schmid,
2004), blobs (Lowe, 1999; Bay et al., 2006; Kadir and Brady, 2001)
or regions (Matas et al., 2004; Tuytelaars and Van Gool, 2000, 2004;
Mori et al., 2004). For reference purposes, a summary of invariance
properties and performance analysis for some feature detectors are
shown in Table A.7. In turn, feature descriptors can be divided into
following categories: local binary descriptors (Ojala et al., 2002; Guo
et al., 2010; Zhao and Pietikainen, 2007; Froba and Ernst, 2004;
Calonder et al., 2010; Rublee et al., 2011; Leutenegger et al., 2011;
Alahi et al., 2012), spectral descriptors (Lowe, 1999; Lienhart and
Maydt, 2002; Bay et al., 2006; Dalal and Triggs, 2005; Tola et al., 2010;
Ambai and Yoshida, 2011), basis space descriptors (Zahn and Roskies,
1972; Csurka et al., 2004), polygon shape descriptors (Matas et al.,
2004; Belongie et al., 2001), 3D and volumetric descriptors (Klaser
et al., 2008; Scovanner et al., 2007). In the literature, many feature
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Table 5
Camera pose estimation results in a large uncertainty for all 11 KITTI sequences. The uncertainty radius was set to be 200 m and 5 best retrieved reference
images were used for camera pose estimation. The failure threshold was set to 10 m. Note that the first three evaluated methods (Tykkälä et al., 2013; Pascoe
et al., 2017) were originally designed for visual SLAM, but we modified the algorithms for the pose estimation problem.
#sequence ID 00 01 02 03

% Median
(m)

Median
(deg)

% Median
(m)

Median
(deg)

% Median
(m)

Me-
dian(deg)

% Median
(m)

Median
(deg)

FB (Kim et al.,
2014)

99.8 0.031 0.676 84.5 0.494 0.567 99.8 0.025 0.415 100 0.015 0.370

PM (Tykkälä et al.,
2013)

98.2 0.603 0.423 76.4 1.208 0.343 92.9 0.550 0.324 98.8 0.342 0.279

MI (Pascoe et al.,
2017)

97.8 0.633 0.415 60.0 0.980 0.353 97.6 0.475 0.327 98.8 0.270 0.223

HY (Combine FB
and MI)

99.8 0.031 0.676 89.1 0.505 0.562 99.8 0.025 0.415 100 0.015 0.370

#sequence ID 04 05 06 07

% Median
(m)

Median
(deg)

% Median
(m)

Median
(deg)

% Median
(m)

Median
(deg)

% Median
(m)

Median
(deg)

FB (Kim et al.,
2014)

100 0.028 0.132 100 0.022 0.472 100 0.029 0.421 100 0.018 0.326

PM (Tykkälä et al.,
2013)

96.3 0.783 0.222 97.8 0.514 0.360 98.2 0.382 0.308 97.3 0.505 0.336

MI (Pascoe et al.,
2017)

100 0.495 0.177 97.1 0.537 0.352 96.4 0.551 0.332 98.2 0.500 0.319

HY (Combine FB
and MI)

100 0.028 0.132 100 0.022 0.472 100 0.029 0.421 100 0.018 0.326

#sequence ID 08 09 10

% Median
(m)

Median
(deg)

% Median
(m)

Median
(deg)

% Median
(m)

Median
(deg)

FB (Kim et al.,
2014)

100 0.018 0.383 99.4 0.019 0.356 100 0.019 0.420

PM (Tykkälä et al.,
2013)

97.3 0.499 0.329 95.0 0.548 0.321 94.2 0.634 0.355

MI (Pascoe et al.,
2017)

95.3 0.518 0.341 93.7 0.400 0.350 91.7 0.780 0.343

HY (Combine FB
and MI)

100 0.018 0.383 100 0.019 0.368 100 0.019 0.420

Table 6
Large uncertainty pose estimation results for the 5 different sequences in Oxford RobotCar dataset. The uncertainty radius was set to 50 m and 5 best retrieved reference images
are used for camera pose estimation. The failure threshold was set to 10 m. Note that the first three evaluated methods (Tykkälä et al., 2013; Pascoe et al., 2017) were originally
designed for visual SLAM, but we modified the algorithms for the pose estimation problem.

Overcast Sun Night Rain Snow

% Median Median % Median Median % Median Median % Median Median % Median Median
(m) (deg) (m) (deg) (m) (deg) (m) (deg) (m) (deg)

Overcast

FB (Kim et al., 2014) 98.4 0.111 0.791 31.1 3.280 3.015 5.6 6.281 4.043 27.1 3.355 4.106 16.7 1.407 6.941
PM (Tykkälä et al., 2013) 98.4 1.599 0.578 6.2 7.751 6.006 7.3 7.347 10.397 6.7 6.534 3.319 5.3 7.718 9.171
MI (Pascoe et al., 2017) 99.0 1.551 0.716 16.3 4.648 3.991 15.5 7.479 8.625 12.0 7.363 11.716 18.2 6.902 6.556
HY (Combine FB and MI) 100.0 0.112 0.788 40.1 3.398 3.103 21.0 6.966 4.486 35.1 3.828 5.029 31.1 4.251 6.687

Sun

FB (Kim et al., 2014) 33.3 2.604 1.993 98.3 0.121 0.706 2.9 4.642 9.733 12.1 2.275 3.963 15.2 2.877 3.527
PM (Tykkälä et al., 2013) 10.7 6.242 2.135 96.2 1.919 0.585 9.2 7.412 13.885 8.2 6.968 9.364 5.0 7.080 4.104
MI (Pascoe et al., 2017) 16.7 5.102 3.722 96.2 1.685 0.569 17.6 5.859 8.779 11.7 7.470 6.825 15.6 7.793 4.937
HY (Combine FB and MI) 40.0 3.010 2.342 99.7 0.122 0.715 20.1 5.350 8.722 21.8 5.324 4.890 26.2 4.514 3.712

Night

FB (Kim et al., 2014) 4.9 3.332 2.647 1.8 5.337 7.200 89.4 0.217 0.744 1.2 2.879 4.171 2.3 5.788 8.191
PM (Tykkälä et al., 2013) 5.9 8.255 12.956 3.2 8.437 3.251 90.8 2.303 0.543 4.3 8.725 8.275 2.3 6.973 4.625
MI (Pascoe et al., 2017) 8.8 7.189 8.960 11.9 6.732 9.110 94.5 2.126 0.554 12.0 7.776 6.299 13.7 8.199 6.209
HY (Combine FB and MI) 13.7 5.983 3.966 13.3 6.424 7.745 96.9 0.233 0.811 13.2 6.996 5.593 15.0 7.257 7.406

Rain

FB (Kim et al., 2014) 31.6 3.251 2.536 13.2 2.264 4.631 3.7 2.006 1.504 96.9 0.192 0.764 17.2 3.289 3.619
PM (Tykkälä et al., 2013) 13.5 6.959 2.313 13.6 6.913 3.210 9.2 7.050 6.144 96.2 2.336 0.578 9.3 6.436 4.910
MI (Pascoe et al., 2017) 9.4 6.847 9.182 13.9 6.631 5.906 11.7 7.731 9.125 95.0 1.915 1.067 17.5 6.135 5.652
HY (Combine FB and MI) 37.4 3.295 2.908 24.4 3.724 5.779 14.7 6.447 7.147 99.2 0.200 0.773 30.8 4.286 4.577

Snow

FB (Kim et al., 2014) 9.9 2.521 3.625 10.1 2.310 7.945 2.2 5.733 13.984 10.8 2.260 4.811 97.7 0.145 0.834
PM (Tykkälä et al., 2013) 5.4 7.192 33.412 2.4 8.353 20.601 4.8 7.529 5.721 3.6 5.899 14.798 95.7 2.026 0.553
MI (Pascoe et al., 2017) 12.6 8.000 7.760 12.5 7.073 4.269 13.6 7.559 8.608 8.0 6.417 9.510 95.4 2.012 0.734
HY (Combine FB and MI) 19.8 4.534 4.230 20.9 5.343 5.731 15.0 6.993 8.608 18.4 3.727 7.399 100.0 0.149 0.804

descriptors, such as SURF (Bay et al., 2006), BRISK (Leutenegger et al.,
2011) and others, provide their own detector method along with the
descriptor method. DoG (Lowe, 1999) and SURF (Bay et al., 2006)
detectors were designed for efficiency and the other properties are
slightly compromised. However, for most applications they are still
more than sufficient (Tuytelaars et al., 2008).

A summary of the invariance properties of the detectors is in Ta-
ble A.7. In two public datasets used in this work we use images taken by
a front-looking camera mounted in the car, so those images have similar
viewpoints which is along the road. In this work we have utilized
SURF (Bay et al., 2006) for both feature detection and description
due to its invariance properties, performance, and widespread use in
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Table A.7
Invariance properties of feature detectors (Tuytelaars et al., 2008).

F-detector Invariance

Rotation Scale Affine

Harris �
Hessian �
SUSAN �
Harris–Laplace � �
Hessian–Laplace � �
DoG � �
Salient regions � � �
SIFT � �
MSER � � �
SURF � �

multiple applications. Another reason is that our evaluated 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡
method (Kim et al., 2014) also uses SURF (Bay et al., 2006), and we
would like to implement it in the same way.

A.2. Feature matching

Based on the previously computed feature descriptors, the aim
of feature matching is finding 2D-to −2D correspondences between
feature points in the query and reference image.

The popular approaches for feature matching are exhaustive search,
hashing (Strecha et al., 2012), and nearest neighbor techniques (Friedman
et al., 1977; Lowe, 2004; Muja and Lowe, 2009). Exhaustive search
is achieved by minimizing pairwise distance measures between the
feature vectors of the reference and query image. The hashing ap-
proach reduces the size of the descriptors by finding a more compact
representation, e.g. binary strings (Strecha et al., 2012). In nearest
neighbor techniques, KD-trees (Friedman et al., 1977) and their vari-
ants (Lowe, 2004; Muja and Lowe, 2009) are commonly used to quickly
find approximate nearest neighbors in a relatively low-dimensional
real-valued space. The algorithm works by recursively partitioning
the set of training instances based on a median value of a chosen
attribute (Friedman et al., 1977).

We use the exhaustive search approach and adopt a minimum
Euclidean distance on the descriptor vector. For each feature point in
one image, we find the nearest neighbor as its corresponding feature
point in the other image. Besides, we reject some ambiguous matches
by comparing the distance of the closest neighbor to that of the second-
closest neighbor. In other words, correct matches need to have the
closest neighbor significantly closer than the second closest match to
achieve reliable matching (Lowe, 2004). The output of the feature
matching steps are a set 𝐶 of 𝑛 2D-to −2D correspondences between
the query image 𝐼𝑄 and reference image 𝐼𝑅:

𝐶 = {(𝐩(1)𝑄 ,𝐩(1)𝑅 ), (𝐩(2)𝑄 ,𝐩(2)𝑅 ),… , (𝐩(𝑛)𝑄 ,𝐩(𝑛)𝑅 )} (A.1)

where 𝐩(𝑖)𝑄 = [𝑢(𝑖)𝑄 , 𝑣(𝑖)𝑄 ]𝑇 and 𝐩(𝑖)𝑅 = [𝑢(𝑖)𝑅 , 𝑣(𝑖)𝑅 ]𝑇 are the 𝑖th 2D feature
locations on reference and query images, respectively.

A.3. 2D-3D correspondences

The 2D-3D correspondences between the query image and the 3D
point cloud are established by using the set 𝐶 of 2D-2D matches and
the point cloud 𝑃𝑅. Since the point cloud 𝑃𝑅 and the reference image
𝐼𝑅 are pre-registered and defined in the same world coordinate system,
with the 2D-2D matched features, we could indirectly link the 2D-3D
correspondences as illustrated in Fig. A.12.

However, if the matched 2D features at the reference image do not
have associated 3D points from the pre-registered point cloud, we need
to compute the 2D-3D correspondences by following steps: (1) project
3D point cloud onto the reference image, (2) compute the depth of the
feature points, (3) find the corresponding 3D coordinates.

Fig. A.12. Build 2D-3D correspondences through the 2D-2D matched features and the
pre-registered point cloud.

Firstly, we project the 3D point cloud 𝑃𝑅 = [𝐏(1)
𝑅 ,𝐏(2)

𝑅 ,… ,𝐏(𝑚)
𝑅 ]

onto the reference image plane, and get a set of 2D projections 𝑝 =
[𝐩(1),𝐩(2),… ,𝐩(𝑚)], as shown in Fig. A.13. For the 𝑖th 3D point, 𝐏(𝑖)

𝑅 =
[𝑥(𝑖), 𝑦(𝑖), 𝑧(𝑖), 1]𝑇 , we generate a 2D projection 𝐩(𝑖) = [𝑢(𝑖), 𝑣(𝑖)]𝑇 on the
reference image plane by:

𝐩(𝑖) = 𝐊 𝐌 𝐏(𝑖)
𝑅 (A.2)

where 𝐌 is the world to camera transformation matrix and 𝐊 is the
intrinsic matrix of the reference image. 𝐌 and K can be represented
by (A.3) and (A.4):

𝐌 =
[

𝐑 | 𝐭
]

(A.3)

where R is a 3 × 3 rotation matrix, and t is a 3 × 1 translation vector.

𝐊 =
⎡

⎢

⎢

⎣

𝑓𝑥 𝛾 𝑢0
0 𝑓𝑦 𝑣0
0 0 1

⎤

⎥

⎥

⎦

(A.4)

where 𝑓𝑥 and 𝑓𝑦 are focal lengths (in pixels) along the x and y axis
directions; 𝛾 represents the skew coefficient between x and y axis and it
is often 0; 𝑢0 and 𝑣0 represents the principal point which would ideally
be in the center of the image. In the experiments of this paper, we
assume the query image and the reference images share the camera
intrinsic matrix, because the images from each dataset are captured
with the same camera device.

Secondly, we use nearest-neighbor search (Friedman et al., 1977) to
find the closest point among 2D projections 𝑝 for each 2D feature point
in 𝐶 at the reference image. In particular, the 𝑗th feature point 𝐩(𝑗)𝑅 in
the reference image is associated to the 𝑘th point of the 2D projection
set 𝑝 by:

𝑘 = 𝑁𝑁(𝐩(𝑗)𝑅 , 𝑝), 𝑘 ∈ {1, 2… , 𝑚} (A.5)

Finally, we find the 3D coordinates for each 2D feature point. In
particular, the 𝑘th depth value corresponding to 𝐩(𝑘), namely 𝑧(𝑘), is
then used to find the 3D coordinates in the reference image frame
corresponding to 𝐩(𝑗)𝑅 as:

𝐏(𝑗) =

[

𝐊−1𝐩(𝑗)𝑅 𝑧(𝑘)

𝑧(𝑘)

]

(A.6)

As a result, the final 2D-to −3D correspondences can be expressed
as:

𝐶̂ = {(𝐩(1)𝑄 ,𝐏(1)), (𝐩(2)𝑄 ,𝐏(2))..., (𝐩(𝑛)𝑄 ,𝐏(𝑛))} (A.7)

where 𝐩(𝑖)𝑄 is the 𝑖th 2D feature location in the query image, and 𝐏(𝑖) is
the 𝑖th corresponding 3D location in the reference image coordinate.

A.4. Perspective-n-point and RANSAC

The set of 2D-3D correspondences 𝐶̂ establishes one-to-one corre-
spondences between 2D points in the query image frame 𝐩(𝑗)𝑄 , and 3D
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Fig. A.13. An example of projecting the 3D point cloud into the reference image.

points in the reference image frame 𝐏(𝑗), for 𝑗 = 1, 2,… , 𝑛. The last
step is to apply the Perspective-n-Point solver (Gao et al., 2003) to
compute the relative 6-DoF camera pose 𝐌 between the query image
and the reference image. For this purpose, two approaches are com-
bined to solve the problem: the algebraic approach and the geometric
approach. In the algebraic approach, we use Wu’s zero decomposition
method (Wen-Tsun, 1986) to find a complete triangular decomposition
of a practical configuration for the P3P problem (Gao et al., 2003).
We can obtain up to 4 solutions for the pose using 3 points, and in
the geometric approach, we choose the solution that results in smallest
squared re-projection error for the 4th point (Gao et al., 2003),

𝐌∗ = argmin
𝐌

∑

∀𝑖
‖𝐩(𝑖)𝑄 −𝐊𝐌𝐏(𝑖)

‖, 𝑖 ∈ {1, 2… , 𝑛} (A.8)

where 𝐌 is the sought world-to-camera transformation matrix, 𝐌∗ is
its best estimate, 𝐊 is the intrinsic matrix, 𝐩(𝑖)𝑄 is the 𝑖th feature point
at the query image and 𝐏(𝑖) is its corresponding 3D coordinate.

In reality, the set of 2D-3D correspondences 𝐶̂ can be corrupted
by outliers, so it is common to use a robust estimator together with
PnP solvers. RANSAC (Fischler and Bolles, 1981) estimator is a popular
choice, and in our work we use a generalization of the RANSAC
estimator, MLESAC (Torr and Zisserman, 2000). MLESAC adopts the
same sampling strategy as RANSAC to generate putative solutions, but
chooses the solutions by maximizing the likelihood rather than just the
number of inliers.

Finally, the 6-DoF camera pose can be obtained by means of the
decomposition of 𝐌∗ via (A.3).

Appendix B. Direct photometric-based camera pose estimation

This appendix explains the details of the three stages of the di-
rect photometric-based camera pose estimation, namely, generation of
synthetic views, direct photometric matching and coarse-to-fine search.

B.1. Generation of synthetic views

The reference 3D point cloud 𝑃𝑅 does not have any color or in-
tensity information, but this information can be retrieved from the
reference image as follows. Firstly, we project 3D point clouds 𝑃𝑅 =
[𝐏(1)

𝑅 ,𝐏(2)
𝑅 ,… ,𝐏(𝑚)

𝑅 ] onto the reference image plane using (A.2) and get a
set of 2D projections, 𝑝 = [𝐩(1),𝐩(2),… ,𝐩(𝑚)]. This process is the same as
Fig. A.13. Secondly, we use cubic interpolation to compute the intensity
values for each 2D projection and assign the intensity values to the 3D
point cloud as:

𝐼(𝐏(𝑖)
𝑅 ) ← 𝑓 (𝐩(𝑖)𝑅 , 𝐼𝑅), 𝐼𝑅 ∈ R2 (B.1)

where 𝐼𝑅 is the reference image, 𝐩(𝑖) is the 𝑖th 2D projection, 𝐼(𝐏(𝑖)
𝑅 ) is

the intensity value of the 3D point 𝐏(𝑖)
𝑅 , and 𝑓 is the cubic interpolation

function. As a result, we assign intensity (or color) information to the
3D point cloud 𝑃𝑅.

Synthetic views can now be rendered by projecting the colored
3D point cloud using a transformation matrix 𝐌 using (A.2), and the
intensities of the synthetic view 𝐼𝑆 can be obtained as:

𝐼𝑆 (𝐊𝐌𝐏(𝑖)
𝑅 ) ← 𝐼(𝐏(𝑖)

𝑅 ), (B.2)

where 𝐼(𝐏(𝑖)
𝑅 ) is the intensity value of the 𝑖th 3D point 𝐏(𝑖)

𝑅 , 𝐊 is the
intrinsic matrix, 𝐌 is the world-to-synthetic-view transformation, and
𝐼𝑆 (𝐊𝐌𝐏(𝑖)

𝑅 ) is the intensity value of the projection of the 3D point 𝐏(𝑖)
𝑅

at the synthetic frame. Synthetic views are quickly rendered by the
standard computer graphics procedure of surface splatting (Zwicker
et al., 2001).

B.2. Direct photometric matching

The direct photometric-based approach (Tykkälä et al., 2013) is
defined as a direct minimization of the cost function in the space of 6D
camera pose, and in the cost function it compares the pixel intensities of
the query image 𝐼𝑄 and rendered synthetic view 𝐼𝑆 from the colored 3D
point cloud (Tykkälä et al., 2013). The task is to find the best relative
camera transform 𝐌∗ that minimizes the photometric error between
query image 𝐼𝑄 and synthetic image 𝐼𝑆 :

𝐌∗ = argmin
𝐌

RES(𝐼𝑄, 𝐼𝑆 ), (B.3)

where, the photometric error is represented by a residual (RES) defined
as

RES(𝐼𝑄, 𝐼𝑆 ) =
1
𝜇

∑

(𝑢,𝑣)∈𝐼𝑆

(𝐼𝑄(𝑢, 𝑣) − 𝐼𝑆 (𝑢, 𝑣))2 (B.4)

In (B.4) 𝐼𝑄 is the query image, the synthetic view 𝐼𝑆 is generated
by (B.2), and 𝜇 is the number of pixels in 𝐼𝑆 .

To improve the robustness of the matching process, we smooth the
query image 𝐼𝑆 by using a Gaussian filter and then we use the smoothed
version of query image in the image matching process. Moreover, we
use the M-estimator to improve the matching process, since the M-
estimator can be used for managing outliers when the residual vector is
of sufficient length for statistical purpose (Huber, 2011). The main idea
is to generate small weights for residual elements that are classified as
outliers by analyzing the distribution of residual values. Inliers always
have small residual values whereas outliers may have any error value.
In our work, a median filter is used to find the median value among
the residuals, RES(𝐼𝑄, 𝐼𝑆 ), then we give zero weights to all the residual
values that are greater than the median value, and give normalized
weights to the remaining residuals.

With the M-estimator, we can rewrite the residual (B.4) as the
average of the weighted sum-of-square difference:

RES(𝐼𝑄, 𝐼𝑆 ) =
1
𝜆

∑

∀(𝑢,𝑣)
(𝐸(𝑢, 𝑣))2𝑤(𝑢, 𝑣) (B.5)

where we apply the weights to the residual vector and compute the
average of the weighted sum-of-square difference, and 𝜆 is the number
of nonzero weights. The squared difference 𝐸(𝑢, 𝑣) and weights 𝑤(𝑢, 𝑣)
are defined in (B.6) and (B.7) as follows:

𝐸(𝑢, 𝑣) = (𝐼𝑄(𝑢, 𝑣) − 𝐼𝑆 (𝑢, 𝑣))2, (𝑢, 𝑣) ∈ 𝐼𝑆 (B.6)

where 𝐼𝑄 is the query image, 𝐼𝑆 is the synthetic image, and 𝐸 is the
difference between the two images.

𝑤(𝑢, 𝑣) =

{

0, if 𝐸(𝑢, 𝑣) > 𝜃
1, otherwise

(B.7)

where 𝜃 is the median value of 𝐸(𝑢, 𝑣) and (𝑢, 𝑣) ∈ 𝐼𝑆 .

B.3. Coarse-to-fine grid search

We use a two-step coarse-to-fine grid search to solve for the matrix
𝐌∗ in (B.3). The coarse-to-fine grid search concatenates a search with
a coarse step for the local minimum with a subsequent search with a
finer step at the location of the previous minimum location. Given a
reference image, we use the camera pose of the reference image as the
starting point for grid search. The coarse-to-fine search is firstly applied
to the translation, and based on the previous minimum, we then apply
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Fig. B.14. Coarse-to-fine grid search for translation. Grids are placed along x (toward
to the right of the camera) and y (toward to the front of the camera) axis. Search the
minimum within 𝑁 steps of the step size 𝑑 in a search grid, then apply a finer grid
in the minimum point with another 𝑁 steps of the size 𝑑∕𝑁 .

Fig. B.15. Coarse-to-fine grid search for orientation. For the selected axis (z axis,
toward up of the camera), search by 𝑁 steps of the angular size 𝛼, then refine the
search by another 𝑁 of the size 𝛼∕𝑁 .

it to the orientation. The process of the coarse-to-fine grid search is
illustrated in Figs. B.14 and B.15, and we describe the steps as follows:

Firstly, we take the orientation of the reference image for query
image and start coarse-to-fine grid search for translation. There are 2
iterations in total. In the 1st iteration, we define a 2D grid along the
x axis (towards the right of the camera) and y axis (toward the front
of the camera) with a grid dimension of N and a step size of 10. A
synthetic view 𝐼𝑆 is generated for each grid point by (B.2), then we
apply (B.5) to compute the residual value (RES) for this grid point. Then
grid point with the minimum residual value is taken as the starting
point for the 2nd iteration. In the 2nd iteration, we reduce the step
size by 10 times and repeat the same procedure. In the end, we have
estimated translation for query image. The above coarse-to-fine grid
search for translation is illustrated in Fig. B.14.

Secondly, we fix translation of the query image and apply another
coarse-to-fine grid search for orientation. We could search the optimal
orientations along one or multiple axes. For our experiments, we search
the optimal orientations along the z axis (toward up direction of the
car), i.e. optimizing the yaw angle. The search procedure is similar to
the one for translation. The process of the coarse-to-fine grid search for
orientation is illustrated in Fig. B.15.

In our experiments, the both datasets consist of images captured by
cameras mounted on cars and therefore there is mainly variation in
the yaw angle for orientation. In our experimental setup, we choose to
do orientation search only along the z axis. The full 6-DoF grid search
would require a combination of the translation search (Fig. B.14) and
three orientation searches (Fig. B.15).

In the process of generating a synthetic view 𝐼𝑆 , a 3D point cloud
is projected on a camera pose by (A.2). For each synthetic view in the
grid search, we count the number of points projected inside the image
frame. If the number of projected points is less than a threshold (100
in our experiments, see Table C.10), the synthetic view is considered as
invalid. The invalid synthetic view is skipped in the grid search. If all

Table C.8
Details of the test platform.

Processor Intel i7CPU 2.70 GHz
OS Ubuntu 16.04
Memory 32 GB
SW Env. Matlab

Table C.9
Average time performance of the evaluated methods with a single query and a single
reference image. Note these two original papers (Tykkälä et al., 2013; Pascoe et al.,
2017) were designed for slam problem, but we modified the algorithms to adjust to our
problem, and we implemented them in a laptop without utilizing GPU and multi-threads.

KITTI Oxford RobotCar

FB (Kim et al., 2014) 0.06 s 0.08 s
PM (Tykkälä et al., 2013) 1.23 s 4.82 s
MI (Pascoe et al., 2017) 1.34 s 5.15 s
HY (Combine FB and MI) 0.07 s 4.00 s

synthetic views are invalid, the grid search fails to give a camera pose
estimate.

Appendix C. Implementation details and limitations

C.1. Platform and time performance

For reference purposes, we implemented and tested all the evalu-
ated methods without utilizing GPU or multi-thread processing. The
specifications of the platform and the programming language are shown
in Table C.8. The average computing times are reported in Table C.9.
In our implementation, the feature-based approach was the fastest
one. The most time-consuming task for the photometric and mutual-
information method was generation of synthetic views Appendix B.1.
The computations are slower for the Oxford RobotCar dataset since
point clouds are much larger. In addition, with the Oxford Robot-
Car dataset the feature-based method fails more frequently, and the
HY method takes more mutual-information matching which is much
slower.

C.2. Data preprocessing

With the KITTI Visual Odometry dataset (Geiger et al., 2012), we
utilize the original 3D point clouds (LIDAR), ground truth pose data,
and gray-scale images of each sequence. With the Oxford RobotCar
dataset (Maddern et al., 2017), we also utilize the LIDAR scans, camera
pose, and the left image from the trinocular stereo camera. However,
the original 2D LIDAR data is saved as a single scan instead of an
accumulated 3D point cloud as in the KITTI dataset. Therefore we
applied two pre-processing steps to Oxford point clouds:

1. We converted the 2D LIDAR scans into a 3D point cloud by
utilizing the toolkit provided by the authors.2

2. For efficiency, we reduced the number of images in each se-
quence by using every 10-th image and removed the start and
final frames where the car was usually parked. The mean metric
distance between two consecutive frames are shown in Table 2.

C.3. Parameters selection

The details of all parameters used in our experiments are shown in
Table C.10.

2 https://github.com/ori-drs/robotcar-dataset-sdk.
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Table C.10
Method parameter values used in the experiments.
Feature-based (FB)
Feature type SURF

Photometric (PM)
Min # of projected points 100

Mutual-information (MI)
Min # of projected points 100

Grid search
Translation
Grid dimension 𝑑 = 2 × 𝑟 meters, 𝑟 is the uncertainty radius.
# of steps (1st iter) 10
Step length (1st iter) 𝑑

10
meters

# of steps (2nd iter) 10
Step length (2nd iter) 𝑑

100
meters

Orientation
Search range 30 degrees
# of steps (1st iter) 10
Step size (1st iter) 3◦

# of steps (2nd iter) 10
Step size (2nd iter) 0.3◦
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