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Abstract

The Error Correcting Output Coding (ECOC) approach to
classifier design decomposes a multi-class problem into a
set of complementary two-class problems. We show how
to apply the ECOC concept to automatic face verification,
which is inherently a two-class problem. The output of the
binary classifiers defines the ECOC feature space, in which
it is easier to separate transformed patterns representing
clients and impostors. We propose two different combining
strategies as the matching score for face verification. The
first uses the first order Minkowski metric, and requires a
threshold to be set. The second is a kernel-based method
and has no parameters to set. The proposed method ex-
hibits better performance on the well known XM2VTS data
set compared with previous reported results.

1 Introduction

Automation of a system that performs personal identity ver-
ification may use a variety of biometric modalities includ-
ing facial features, voice characteristics, iris scan, finger-
prints. One approach to improving accuracy and robust-
ness of such systems is by combining different modalities,
for example voice and face data as in [2]. Although this
type of multimodal approach can achieve significant perfor-
mance improvement, it is still desirable to concentrate on
biometric subsystem performance in order to further reduce
error rates. Facial images are a popular source of biomet-
ric information since they are relatively easy to acquire, and
provide discriminatory features used by humans for recog-
nition. However automated face verification systems of-
ten have poor levels of performance and improving them
is known to be a difficult task. Some advances recently re-
ported in this context include those described in [9].

A different approach to increasing accuracy is provided
by the method of combining multiple experts within a sin-
gle modality. For example, in [8] it was shown that by com-
bining the scores of several diverse face verification sys-
tems the error rate of the best expert could be reduced by
more than 42 percent. This approach draws on the results

in multiple classifier fusion [10]. Informally, the idea is that
for some complex problems it may be better to combine
relatively simple multiple experts with somewhat differing
opinions rather than designing a single complex expert. If
experts are not too well correlated and a suitable combining
rule can be found, it has been shown that simpler and more
accurate systems may result. Several different techniques
exist to ensure diversity among experts, the Error Correct-
ing Ouput Codes (ECOC) method being just one of them.

In this paper we report on the novel use of ECOC for de-
signing multiple experts for face verification. Use of ECOC
for decomposing a multi-class problem into a set of com-
plementary two class problems is a well established method
in many applications [4, 5, 6, 7, 11, 21, 23, 22, 24]. Such
a decomposition means that attention can be focused on
developing an effective technique for the two-class classi-
fier, without having to consider explicitly the design and
automation of the multi-class case. It is also hoped that
the parameters of a simple expert run many times may be
easier to determine than a complex expert run once. When
first suggested ECOC was based on the idea of using error-
correcting codes as class labels, so that individual classifica-
tion errors propagated from a set of binary classifiers could
potentially be corrected [4]. For a two-class problem, clas-
sification errors can be one of two types, either predicted
class C1 for target class C2 or predicted class C2 for target
class C1.

At first sight, it may seem that ECOC, which is aimed
at multi-class problems, is not suited for face verifcation
which has a single class of clients and a single class of im-
postors. However in this paper we show how to divide the
verification task into two stages, the first being a multi-class
recognition problem.

The paper is organised as follows. The original ECOC
classification method is explained in Section 2, along with
a discussion of how clients can be represented in ECOC fea-
ture space and two methods of checking identity. In section
3 we describe the representation of patterns for face verifi-
cation. The results over XM2VTS face data base come in
section 5, followed by conclusions.
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2 ECOC method and verification

The original motivation for encoding multiple classifiers us-
ing an error-correcting code is based on the idea of mod-
elling the prediction task as a communication problem, in
which class information is transmitted over a channel [5].
Errors introduced into the process arise from various as-
pects of the learning algorithm, including features selected
and finite training sample. From error-correcting theory, we
know that a matrix designed to have d bits error-correcting
capability implies that there is a minimum Hamming Dis-
tance 2d + 1 between any pair of code words. Assuming
each bit is transmitted independently, it is then possible to
correct a received pattern having fewer than d bits in error,
by assigning the pattern to the code word closest in Ham-
ming distance. The ability to detect and possibly correct
errors is dependent on the assumption that each error is in-
dependently produced. While in practice some errors will
be correlated, the experimental evidence reported in [5] is
that application of ECOC principles does lead to reduced
error.

In the ECOC method, a k � b binary code word matrix
Z has one row (code word) for each of k classes, with each
column defining one of b sub-problems that use a different
labelling. Specifically, for the jth sub-problem, a training
pattern with target class Ci (i = 1:::k) is re-labelled as class
C1 if Zij = x and as class C2 if Zij = �x (where x is a bi-
nary variable, typically zero or one). One way of looking at
the re-labelling is to consider the k classes as being arranged
into two super-classes.

A summary of the original ECOC Classification algo-
rithm is as follows:
Summary of Training: for j = 1 : b

� re-label training patterns into two classes (super-
classes) according to binary element corresponding to
each class for column j

� train a binary classifier using the re-labelled training
set

Summary of Testing:

� apply pattern to the b trained classifiers forming vector

�y = [y1; y2; :::yb]
T (1)

in which yj is the real-valued output of jth base clas-
sifier

� compute distance between output vector and code
word for each class

Li =
bX

j=1

jZi;j � yj j (2)

� assign pattern to class corresponding to closest code
word ArgMin(Li)

The main constraint in designing Z is the distance between
rows. Indeed, if Z is an equidistant code, the combining
strategy is identical to the Bayesian decision rule [23]. Ref-
erence [18] explains the complexities involved in design-
ing matrices with well separated rows. The ECOC method
has an additional constraint which requires that distance be-
tween columns be high, in order to ensure diversity among
experts. In our experiments we use BCH coding method
with allzero code word removed, and we obtain equidis-
tant rows by the over produce and select strategy. Further
details, and a comparison of BCH with random codes can
be found in [21].

From another perspective, we can view equation 1 as
providing posterior probability of super-class membership.
The decomposition defined by Z can then be interpreted
as a transformation between spaces representing probabili-
ties of individual class and super-class membership [24]. In
fact, a solution to recovering individual class probabilities
is based on method of least squares, providingZZT is non-
singular. Reference [7] can be consulted for a discussion
of the importance of the super-class probabilities as source
of effectiveness of ECOC. The classifier outputs represent
the estimates of super-class probabilities and these are the
estimates that we use to represent clients and impostors for
face verification.

We propose to represent each client i by a set Yi of N
ECOC classifier output vectors, i.e.

Yi = fyl
i
jl = 1; 2; :::; Ng (3)

where N is the number of i�th client patterns available for
training.

Two methods of combining are proposed.

2.1 Distance based combination

We wish to ascertain whether the classifier outputs are
jointly consistent with the claimed identity. This could be
accomplished by setting a threshold on the distance of the
outputs from the client code. However, the compound code
represents an idealised target, rather than the real distribu-
tion of these outputs. Thus measuring the distance from the
client code could be misleading, especially in spaces of high
dimensionality. One alternative would be to adopt the cen-
troid of the joint classifier outputs to characterise each client
and to measure the consistency of a new client claim from
this representation. Incidently, the use of centroid in the
context of ECOC classifiers is also advocated in [7]. How-
ever, as we have only a very small number of training sam-
ples, the estimated centroid would be very unreliable.
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In order to test the hypothesis that the client claim is au-
thentic we adopt as a test statistic the average distance be-
tween vector y and the elements of set Yi. The distance
is measured using first order Minkowski metric rather than
Euclidean metric in order to achieve better robustnes to out-
liers as in (2), i.e.

di(y) =
1

N

NX

l=1

bX

j=1

jylj � yj j (4)

where yj is the jth binary classifier output for the test pat-
tern, and ylj is the jth classifier output for the lth member
of class i. The distance is checked against a decision thresh-
old, t. If the distance is below the threshold, client’s claim
is accepted, otherwise it is rejected.

2.2 Kernel combination

Note that instead of measuring the distance between points,
we could measure a between point similarity which can be
expressed by a kernel function that assumes a maximum
when the distance is zero and monotonically decreases as
the distance increases. The design of the decision function
cannot involve any training as the number of points avail-
able is extremely small. We simply use exponential kernels
with fixed width �. The centres do not need to be explic-
itly determined because we use di(y) in the exponent of the
kernel to measure similarity of y to class i. We allocate one
kernel per client and a number of kernels for each imposter.
We measure the relative similarities of a test vector to the
claimed identity and to the impostors as

ki(y) =
X

�

w� expf�
d�(y)

�2
g (5)

where index � runs over all imposter kernel placements and
client i, and the weights w� are estimated. The client claim
test is carried out as follows:

ki(y)f
� 0:5 accept claim

< 0:5 reject claim
(6)

3 Face Image Representation

Normalisation or standardisation is an important stage in
face recognition or verification. Face images differ in both
shape and intensity, so shape alignment (geometric normali-
sation) and intensity correction (photometric normalisation)
can improve performance of the designed system. Our ap-
proach to geometric normalisation has been based on eye
position. Four parameters are computed from the eye co-
ordinates (rotation,scaling and translation in horizontal and
vertical directions) to crop the face part from the original
image and scale it to any desired resolution. Here we use

“manually localised” eye coordinates to eliminate the de-
pendency of the experiments on processes which may lack
robustness. In this way, we can focus our investigation on
how the performance is affected by the methodology of ver-
ification and in particular by the ECOC technique. For pho-
tometric normalisation we have used histogram equalisation
as it has exhibited better performance in comparison with
other existing methods[12].

Although it is possible to use gray levels directly, as
demonstrated in earlier experiments [19, 16], normally fea-
tures are first extracted. There are many techniques in the
pattern recognition literature for extracting and selecting ef-
fective features that provide maximal class separation in the
feature space [3]. One popular approach is Linear Discrim-
inant Analysis (LDA) which is used in our experiments. We
briefly review the theory of LDA, and how it is applied
to face recognition or verification. Further details may be
found in [3, 1].

Given a set of vectors xi; i = 1; : : : ;M , xi 2 RD, each
belonging to one of c classes fC1; C2; : : : ; Ccg, we com-
pute the between-class scatter matrix, SB ,

SB =

cX

i=1

(�i � �)(�i � �)T (7)

and within-class scatter matrix, SW

SW =

cX

i=1

X

xk2Ci

(xk � �i)(xk � �i)
T (8)

where � is the grand mean and �i is the mean of class Ci.
The objective of LDA is to find the transformation

matrix, Wopt, that maximises the ratio of determinants
jWTSBW j
jWTSWW j . Wopt is known to be the solution of the fol-
lowing eigenvalue problem [3]:

SBW � SWW� = 0 (9)

where � is a diagonal matrix whose elements are the eigen-
values of matrix S�1W SB . The column vectors ~wi (i =
1; : : : ; c � 1) of matrix W are referred to as fisherfaces in
[1].

In high dimensional problems (e.g. in the case where xi
are images and D is � 105) SW is almost always singu-
lar, since the number of training samples M is much smaller
than D. Therefore, an initial dimensionality reduction must
be applied before solving the eigenvalue problem in (9).
Commonly, dimensionality reduction is achieved by Prin-
cipal Component Analysis [20][1]; the first (M � c) eigen-
projections are used to represent vectors xi. The dimen-
sionality reduction also allows SW and SB to be efficiently
calculated. The optimal linear feature extractorWopt is then
defined as:

Wopt = Wlda �Wpca (10)

ISBN 0-7695-1272-0/01 $10.00 (C) 2001 IEEE



where Wpca is the PCA projection matrix and Wlda is the
optimal projection obtained by maximising

Wlda = argmax
W

jW TW T
pcaSWWpcaW j

jW TW T
pcaSBWpcaW j

(11)

4 Experiments on XM2VTS Data
Base

We use the XM2VTS face database as it is known to be
challenging and several results of experiments, carried out
according to an internationally agreed protocol using other
verification methods, are readily available in the literature.

4.1 Database and experimental protocol

The extended M2VTS (XM2VTS) database contains 295
subjects. The subjects were recorded in four separate ses-
sions uniformly distributed over a period of 5 months, and
within each session a number of shots were taken including
both frontal-view and rotation sequences. In the frontal-
view sequences the subjects read a specific text (providing
synchronised image and speech data), and in the rotation
sequences the head was moved vertically and horizontally
(providing information useful for 3D surface modelling of
the head). Further details of this database can be found in
[17]. 1

The experimental protocol (known as Lausanne eval-
uation protocol) provides a framework within which the
performance of vision-based (and speech-based) person
authentication systems running on the extended M2VTS
database can be measured. The protocol assigns 200 clients
and 95 impostors. Two shots of each session for each sub-
ject’s frontal or near frontal images are selected to compose
two configurations. We used the first configuration which
is more difficult as the reported results show [15]. In this
configuration, for each client there are 3 training, 3 evalua-
tion and 2 test images. The impostor set is partitioned into
25 evaluation and 70 test impostors. Within the protocol,
the verification performance is measured using the false ac-
ceptance and the false rejection rates. The operating point
where these two error rates equal each other is typically re-
ferred to as the equal error rate point. Details of the this
protocol can be found in [13]. 2

4.2 System description

All images are projected to a lower dimensional feature
space as described in Section 3, so that each pattern is repre-
sented by a vector with 199 elements. There are 200 clients,

1http://www.ee.surrey.ac.uk/Research/VSSP/xm2fdb.html
2http://www.idiap.ch/�m2vts/Experiments/xm2vtsdb protocol october.ps

so from the identification viewpoint we are facing a 200
class problem. We use equi-distant codes generated by the
BCH method, containing 200 entries (compound labels) and
511 bit long. The codes were generated as explained in sec-
tion 2 The Hamming distance between any pair of labels is
256 bits.

For the verification task, the level-zero classifier is a
Multi-Layer Perceptron (MLP) with one hidden layer con-
taining 199 input nodes, 35 hidden nodes and two output
nodes. The Back-propagation algorithm with fixed learning
rate, momentum and number of epochs is used for training.
The dual output is mapped to a value between “0” and “1”
to give an estimation of probability of super-class member-
ship.

The outputs of the MLPs define an ECOC feature vec-
tor, and from equation (4), di(y) for the claimed identity
i is calculated by averaging over respective class images.
Both distance and similarity based rules for combining the
outputs of the ECOC multiple classifiers have been inves-
tigated. Of the two decision functions, the distance based
rule is the only one that depends on a parameter, the deci-
sion threshold, that has to be selected.

4.3 Two Combining Methods

Normally one would use the evaluation set data to compute
the Receiver Operating Characteristics (ROC) curve which
plots the relationship of false rejection rate and false ac-
ceptance rate as a function of threshold. A suitable thresh-
old is then selected to achieve the required behaviour. For
instance, one can specify the threshold that delivers equal
false rejection and false acceptance rates. The threshold can
be selected for each client separately, or globally by averag-
ing the errors over all the clients.

One of the difficulties encountered with our ECOC based
approach was that because the level-zero classifier was ”too
powerful”, the FR and FA errors on the evaluation set
were zero for a large range of thresholds. In such circum-
stances the ROC curve is not very useful in threshold set-
ting. This problem was circumvented by the following pro-
cedure. Starting from t = 0 we successively increased the
threshold in fixed steps to find the point where the total er-
ror (the sum of FR and FA errors) is minimum. If the to-
tal error was zero for several such increments the selected
threshold would correspond to the point just before the total
error would start rising.

The results obtained with the above threshold selection
procedure are given in Table 1 as a function of step size. As
different step sizes terminate the threshold selection pro-
cedure at different destinations from the impostors in the
evaluation set the test set performance varies. In Table 1
we see that when the evaluation set by itself is used to set
thresholds, error rates are higher than when using the com-
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step size FR(e) FA (e) FR(e+tr) FA(e+tr)
.25 13.250 0.108 8.75 .384
.2 10.500 0.142 6.75 .168
.1 6.500 0.277 4.5 .217
.05 5.250 0.413 3.25 .367
.01 4.750 0.654 1.25 .649

.005 4.750 0.711 1.25 .704

.001 4.500 0.739 1.25 .748

Table 1: False Rejection and Acceptance rates on test sets
when clients of (i) evaluation set (e) and (ii) evaluation and
training set (e+tr) are used to set thresholds

bined training/evaluations sets. Even though generalisation
has improved, there is still zero error rate performance on
the evaluation set so that it cannot be used to select the step
size. This may suggest that we could incorporate the evalu-
ation set into ECOC training, but we did not try it.

To demonstrate the effectiveness of ECOC we report in
Table 2 the result of applying the exhaustive search method
directly to the original 199 dimensional feature vectors.
Comparing Tables 1 and 2, the benefits of mapping the input
data onto the ECOC output vectors are clearly visible. Note
also that in this case the evaluation set error rates are non
zero, i.e. the populations of clients and impostors are over-
lapping. In this particular case the ROC curve could have
been computed but we did not pursue this particular scheme
as it was clearly inferior to the ECOC based approach.

step size FR(Ev) FA (Ev) FR(Ts) FA(Ts)
.25 1.67 .89 16.75 1.105
.2 0.83 1.07 15.25 1.44
.1 .5 .35 12.75 .735

.01 .167 .33 8 1.18
.005 .167 .31 8 1.239
.001 .167 .292 8 1.311

Table 2: False Rejection and Acceptance rates on evaluation
(Ev) and test (Ts) sets when features are applied directly

Although the kernel combination method requires no
thresholds, there are design parameters that can be varied to
control the behaviour of the method. In particular, we can
choose different ways to represent impostors. Each of the
25 evaluation impostors has 4 sets of 2 images as explained
in Section 4.1. Therefore, as an alternative to 25 centres av-
eraged over 4 sets we can choose 50 centres averaged over
2 sets or 100 centres averaged over 1 set. The error rates for
25, 50, 100 impostor centres, are shown in Table 3. In com-
parison with Table 1, there is a different trade-off between
false acceptance and false rejection rates.

impostor centres FR(Ev) FA(Ev) FR(Ts) FA(Ts)
25 0 0 0.750 0.883
50 0 0 0.500 0.879

100 0 0 0.750 1.245

Table 3: False Rejection and Acceptance rates(on evalua-
tion and test sets) using kernel combination with various
number of impostor centres

For comparison we are including the results obtained us-
ing three other methods on the same data set and with the
same protocol. The methods use the same representation of
image data in terms of 199 fisher face coefficients. They
employ three different scores for decision making in this
feature space. In particular, we use the Euclidean metric,
sE , Normalised correlation, sN , and Gradient metric, sO ,
as detailed in [9]. The results are summarised in Table 4.

Score Evaluation set Test set
FR FA TE FR FA TE

sE 7.83 7.83 15.66 5.50 7.35 12.85
sN 2.50 2.50 5.00 2.25 2.56 4.81
sO 1.74 1.74 3.48 1.75 1.70 3.45

Table 4: Performance of the three baseline matching scores
on manually registered images

By comparing Table 4 and Table 1 it would appear that
the more robust metric used in di(y) combined with the
multiple representation of clients may be more effective
than the Euclidean distance based score. From Table 1, Ta-
ble 2 and Table 3 we see that all the ECOC based results are
decisively superior to the decision making in the original
Fisher face space. Also, from Table 1 and Table 3 the com-
bination of ECOC multiple classifier outputs by means of
the relative similarity score in (6) appears to yield slightly
better results than using the distance based score di(y).
We conclude that if we can transform patterns representing
clients and impostors into a feature space where they are
more easily separated, then verification performance may
improve. The first stage of the ECOC classification algo-
rithm provides such a transformation, and both the com-
bining methods that we tried in the experiments performed
well.

5 Conclusion

We have described a face verification system based on the
concept of Error Correcting Output Coding (ECOC), which
decomposes a multi-class problem into a set of comple-
mentary two-class problems that can be solved with binary
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classifiers. The output of the classifiers defines the ECOC
feature space, in which we show that it is easier to sepa-
rate transformed patterns representing clients and impos-
tors. Face verification is inherently a two-class problem,
and we proposed a solution that first generates a discrim-
inant from the multi-class recognition problem defined by
the ECOC matrix. For verification, the generated discrimi-
nant is checked for consistency with the distribution of re-
sponses for the particular client. Verification performance
using two different combining methods on the XM2VTS
face database was shown to be better than previous reported
results ([15]).
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