
Progressive Probabilistic HoughTransformJ. Matasyx, C. Galambosyand J. KittleryyCVSSP,University of Surrey,Guildford, Surrey GU2 5XH,United Kingdom xCentre for Machine Perception,Czech Technical University,Karlovo n�am�est�� 13, 12135 Praha,Czech Republice-mail: g.matas@ee.surrey.ac.ukAbstractIn the paper we present the Progressive Probabilistic Hough Transform(PPHT). Unlike the Probabilistic Hough Transform [4] where StandardHough Transform is performed on a pre-selected fraction of input points,PPHT minimises the amount of computation needed to detect lines byexploiting the di�erence in the fraction of votes needed to reliably detectlines with di�erent numbers of supporting points. The fraction of pointsused for voting need not be speci�ed ad hoc or using a priori knowledge,as in the Probabilistic Hough Transform; it is a function of the inherentcomplexity of data.The algorithm is ideally suited for real-time applications with a �xedamount of available processing time, since voting and line detection isinterleaved. The most salient features are likely to be detected �rst. Ex-periments show PPHT has, in many circumstances, advantages over theStandard Hough Transform.1 IntroductionThe Hough Transform (HT) is a popular method for the extraction of geometricprimitives. In literally hundreds of papers every aspect of the transform hasbeen scrutinised - parameterisation, accumulator design, voting patterns, peakdetection - to name but a few [2]. The introduction of the randomised versionof the Hough Transform is one of the most important recent developments [7],[4] in the �eld. The approach proposed in the paper falls in the 'probabilistic'(or Monte Carlo) class of Hough Transform algorithms, the objective of which isto minimise the proportion of points that are used in voting while maintainingfalse negative and false positive detection rates almost at the level achieved bythe Standard Hough Transform [5]. Unlike the Randomised Hough Transform(RHT) class of algorithms (see [3] for an overview of the Hough Transform),the Probabilistic Hough Transform (PHT) and the Standard Hough Transform1



(SHT) share the same one-to-many voting pattern and the representation of theaccumulator array.In the original paper on the Probabilistic Hough Transform [4], Kiryati et al. show that it is often possible to obtain results identical to SHT if only a fractionp of input points is used in the voting process. In the �rst step of PHT a randomsubset of points is selected and a Standard Hough Transform is performed on thesubset. Successful experiments with p as low as 2% are presented. The poll sizeis a parameter critically inuencing the PHT performance. The authors analysethe problem for the case of a single line immersed in noise. Unfortunately thederived formulae require the knowledge of the number of points belonging tothe line a priori, which is rare in practice. In [1], (Bergen and Schvaytzer) it isshown that the Probabilistic Hough Transform can be formulated as a MonteCarlo estimation of the Hough Transform. The number of votes necessary toachieve a desired error rate is derived using the theory of Monte Carlo evaluation.Nevertheless, the poll size remains independent of the data and is based on apriori knowledge 1. If little is known about the detected objects, a conservativeapproach (much larger than necessary poll size) must be adopted, diminishingthe computational advantage of the Probabilistic Hough Transform.The need to pre-select a poll size can be bypassed by an adaptive scheme[9, 8, 6]. In the Adaptive Probabilistic Hough Transform the termination ofvoting is based on monitoring the polling process. The criterion suggested byYla-Jaaski and Kiryati [9] is based on a measure of stability of the ranks ofthe highest peaks. Shaked et al. [6] propose a sequential rule. Both methodsformulate their goal so as to \obtain the same maximum as if the Hough Trans-form had been accumulated and analysed". In our opinion, such formulationis unrealistic since in almost all applications the detection of multiple instancesof lines (circles, etc.) is required whereas the given stopping rule depends onthe prominence of the most signi�cant feature only. For instance if the inputcontains any number of lines of equal length, it will not be possible to detect astable maximum regardless of the percentage of input points used for voting.In the paper we present a new form of an Adaptive Probabilistic HoughTransform. Unlike the above-mentioned work we attempt to minimise theamount of computation needed to detect lines (or in general geometric features)by exploiting the di�erence in the fraction of votes needed to reliably detect lines(features) with di�erent numbers of supporting points . It is intuitively obvious(and it directly follows e.g. from Kiryati's analysis in [4]) that for lines withstrong support (long lines) only a small fraction of its supporting points haveto vote before the corresponding accumulator bin reaches a count that is non-accidental. For shorter lines a much higher proportion of supporting points mustvote. For lines with support size close to counts due to noise a full transformmust be performed.1Perhaps it is more appropriate to speak about assumptions rather than knowledge
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2 The AlgorithmTo minimise the computation requirements the proposed algorithm which wecall Progressive Probabilistic Hough Transform (PPHT) proceeds as follows.Repeatedly, a new random point is selected for voting. After casting a vote,we test the following hypothesis: `could the count be due to random noise?', ormore formally `having sampled m out of N points, does any bin count exceedthe threshold of s points which would be expected from random noise?'. Thetest requires a single comparison with a threshold per bin update. Of course, thethreshold s changes as votes are cast. When a line is detected the supportingpoints retract their votes. Remaining points supporting the line are removedfrom the set of points that have not yet voted and the process continues withanother random selection.Such an algorithm possesses a number of attractive properties. Firstly, afeature is detected as soon as the contents of the accumulator allows a decision.The PPHT algorithm is an anytime algorithm. It can be interrupted and stilloutput useful results, in particular salient features that could be detected inthe allowed time. The algorithm does not require a stopping rule. The compu-tation stops when all the points have either voted or have been assigned to afeature. This does not mean that a full Hough Transform has been performed.Depending on the data, only a small fraction of points could have voted, the restbeing removed as supporting evidence for the detected features. If constraintsare given e.g. in the form of minimum line length a stopping rule can be testedbefore selecting a point for voting.Without a stopping rule the PPHT and the Standard Hough Transformdi�er only in the number of false positives. False negatives { missed featureswith respect to the Standard Hough Transform { should not pose a problem,because if the feature is detectable by SHT it will be detected by PPHT at thelatest when the voting �nished when the corresponding bin counts of PPHTand SHT are identical. PPHT and SHT performance di�ers from the point ofview of false positives, only where assignment of points to lines is ambiguous,i.e. where points are in the neighbourhood of more than one line.In our experiments a straightforward one-to-many voting scheme was used.The proposed method reduces computation by minimising the number of pointsthat participate in the voting process, so common improvements that reduce thenumber of votes cast (e.g. by exploiting the gradient information if available)do not interfere with the bene�ts of the method.In setting the decision threshold we assume that all points are due to noise.It is a worst-case assumption, but if many lines are present in the image theassumption is almost valid, since only a fraction of points belong to any singleline.Since every pixel votes into one bin with a given value of �, we can focus onthe analysis of vote distribution along the � axis of the accumulator. If we adoptthe assumption that a vote into any bin is equally likely2, then the distribution2We are aware of the fact that this assumption is most likely not correct, since it corres-3



of points in the m bins is multinomial. If we used the multinomial distributionto make a detection decision, we would have to monitor all m bins, which iscomputationally impractical. We therefore assume that counts in the � bins areindependent, with the probability of a vote falling into a given bin being 1=m.Again, this is clearly an approximation, since counts in all bins must add to N ,the number of votes cast so far. Under the simplifying assumptions the numberof votes in a single bin will follow the binomial distribution. Since Np = N=mis of the order of 1 and p = 1=m much less than 1 the binomial distribution iswell approximated by a Poisson distribution.Here is an outline of the algorithm used:1. Check the input image, if it is empty then �nish.2. Update the accumulator with a single pixel randomly selected from theinput image.3. Remove pixel from input image.4. Check if the highest peak in the accumulator that was modi�ed by thenew pixel is higher than threshold l. If not then goto 1.5. Look along a corridor speci�ed by the peak in the accumulator, and �ndthe longest segment of pixels either continuous or exhibiting a gap notexceeding a given threshold.6. Remove the pixels in the segment from input image.7. Unvote from the accumulator all the pixels from the line that have previ-ously voted.8. If the line segment is longer than the minimum length add it into theoutput list.9. goto 1.3 Performance evaluation of the PPHTPerformance evaluation of a line detection algorithm has many aspects. Insynthetic images the correctness of the output can be measured by the errorrate, i.e. the number of false positives (spurious detected features) and falsenegatives (mis-detected lines). In real images the de�nition of what should andshould not be detected as a line is subjective or application-dependent. SincePPHT is not designed for a speci�c application we illustrate its performance onreal imagery by comparing it with Standard Hough Transform [5] (Section 3.4).The tests designed to assess the correctness (quality) of PPHT are presented insection 3.2. In the limited space we do not present any results on the correctnessof pixel assignment and the precision of recovered line parameters. We do notponds to spatially non-uniform distribution of noise points4



Method SHT PPHTLines FP � FN � FP � FN �2 0.08 0.27 0.08 0.27 0.01 0.10 0.00 0.004 0.36 0.67 0.36 0.67 0.12 0.46 0.06 0.246 1.07 1.22 1.06 1.20 0.37 0.81 0.19 0.448 2.56 1.68 2.56 1.68 1.38 1.30 0.90 1.0110 4.00 1.84 3.98 1.83 2.28 1.90 1.52 1.4812 6.44 2.07 6.40 2.06 3.79 2.15 2.78 1.9914 8.13 2.15 8.03 2.11 5.94 2.21 4.48 2.4916 10.90 2.06 10.86 2.02 8.35 2.23 6.66 3.0718 13.36 2.03 13.32 2.07 9.86 2.77 8.16 3.5120 16.12 1.93 16.04 1.88 12.74 2.37 11.56 4.09Table 1: E�ect of image clutter on false positives (FP) and negatives (FN).Averages and standard deviations (�) over 100 runs are shown.consider precision of the PPHT to be an important characteristic of the method- standard precision can by achieved by a (robust) least squares �t performedon the assigned points. The rest of the experiments test the computationale�ciency of the PPHT (section 3.3).3.1 Experimental setupTo assess the relative merit of the PPHT, the quality of its output was comparedto that of the Standard Hough Transform. The experiments were designed tominimise any di�erences between the SHT and PPHT implementations. Theimplementations were kept as simple as possible, with minimal post and pre-processing (use of gradient information, connectivity etc.). Most standard en-hancements of SHT are directly applicable to PPHT and do not therefore changethe relative merits of the methods. In the implementation, the standard �, �line parameterisation was used. All experiments were carried out with the fol-lowing settings. Resolution of the accumulator space was 0.01 radians for � and1 pixel for �. Pixels within a 3 pixel wide corridor were assigned to a line. Sincethe Hough Transform detects peaks corresponding to in�nite straight lines, butwe want to detect �nite line segments, a single post-processing step was imple-mented to separate collinear lines. From the pixels supporting a particular bin,the longest segment was chosen which had no gaps bigger than 6 pixels long.The minimum accepted line length was 4 pixels. Unless stated otherwise thevalue used for the PPHT speci�c parameter for the signi�cance threshold l was0.99999.3.2 Correctness of line detection using PPHT.The correctness of the PPHT output was measured by the error rate. De�nitionof what constitutes a false positive and a false negative is not as straightforward5



l FP � FN � votes �0.9 0.34 0.73 0.39 0.82 46.88 9.700.99 0.25 0.70 0.36 0.76 46.68 9.800.999 0.13 0.34 0.27 0.68 55.47 8.890.9999 0.17 0.55 0.25 0.59 57.27 8.800.99999 0.17 0.43 0.36 0.70 72.73 12.150.999999 0.11 0.31 0.25 0.61 84.63 13.190.9999999 0.16 0.42 0.39 0.79 93.06 15.200.99999999 0.07 0.26 0.33 0.65 108.62 12.18Table 2: Inuence of signi�cance level on error rate and run time. Averages andstandard deviations over 100 tests are shown.as it may �rst appear. This is particularly a problem where post processing isused to obtain line segments for the in�nite lines found by the Hough Transform.If edge pixels are allowed to be assigned to a single line, incorrect assignment ofpixels (e.g. at intersections of lines) can lead to a split of a correctly extractedline. A pair of collinear lines almost covering a model line are not, in our opinion,identical to a pair of false positives and a false negative. Similarly, it has to bedecided at what level of assignment errors a feature is declared not detected.We decided to use the following criteria for determining the error statistics.False positives are detected lines that cover less than 80% of any single ground-truth line in the image. False negatives are those lines in the model which arecovered by less than 80 percent by detected lines, excluding those counted asfalse positives.Experiment 1. A hundred images containing a �xed number of randomlypositioned lines were syntheticaly generated, the only source of noise being inthe digitisation of the lines themselves. Figure 4 shows a typical image used inthe experiment, the image resolution was 256 both horizontally and vertically,the lines were hundred pixels long. The number of lines varied between 2 and20. Both SHT and PPHT were run on all images, the results of this experimentare summarised in table 1. These measurements of false negatives and positiveswhere counted as described at the beginning of this section.The results in table 1 show that PPHT outperforms the Standard HoughTransform in all the cases. Both the number of false positives and the numberof false negatives for PPHT were lower than those given by SHT. This is anunexpected result. PPHT uses a fraction of SHT votes, but this should reduce,in controlled way, the average correctness of output. The test results show theadvantages of clearing the accumulator space of clutter from explained pixels assoon as the hypothesis they are associated with becomes almost certain.Experiment 2. The parameter l of PPHT, the signi�cance level at whichlines are accepted, controls the trade-o� between false positives and the speedof the method. The inuence of l is shown in table 2. The experiments wereagain performed on a set of 100 synthetic images of 256x256 pixels each with6
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Figure 1: Run time as a functionof voting operations. The correl-ation coe�cient is 0.998. 0.0 50.0 100.0 150.0
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Figure 2: Votes needed to �nd asmall number of lines5 lines of 100 pixels. Increase in the signi�cance level for line detection leadsto a decrease in number of false positives at the cost of increasing the numberof voting operations required, which as will be shown in the next section, isproportional to run time.3.3 Computational e�ciencyWe have argued that the advantage of PPHT lies in its ability to minimisethe number of voting operations while almost retaining the quality of the SHToutput. The run time of the algorithm depends on implementation details, thecompiler as well as on the machine it is run on. To measure the run time speed wewould prefer to use a number related directly to the algorithm itself rather thanthe measured run time. Since the activity which dominates the computation isvoting and unvoting (vote retracting) in the Hough space we will use the numberof such operations as a measure of the amount of computation required.Experiment 3. To check the validity of the assumption, the run time andnumber of voting operations were measured on a large set of test images. Theresults in �gure 1 show a very high correlation between the number of votingoperations and the program run time (correlation coe�cient 0.998).Experiment 4. Since lines are removed as they are found, the numberof voting operations required to �nd a single line is nearly independent of itslength. Figure 2 shows the number of voting operations required to �nd aline in a simple image with only a few lines and no noise. The experimentwas repeated 50 times, and the error bars show one standard deviation. Oncethe line length exceeds a small threshold value, the number of votes requiredbecomes constant. The actual number of voting operations needed to processany image is e�ectively proportional to the number of lines in the image. Thisis particularly true if noise points are considered to be small lines in their own7
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Figure 3: E�ect of line length onnumber of voting operations. Figure 4: Example synthetic im-age.right, which is reasonable if the output comes from an edge detector.Figure 3 shows the fraction of the image points that voted as a function ofthe number of lines in an image. The slight positive gradient of these lines is dueto the accumulator threshold rising as the number of votes it contains increases.3.4 Experiments on real imagesFinally we looked at the results of processing real images. The starting point isthe edge image shown in �gure 5. In �gure 6 the results of the SHT are shown.In �gures 7 and 8 the results of the PPHT algorithm are shown with low andhigh values of l respectively. The number of voting operations used to processeach of these images is shown in table 3.The main di�erence that can be seen between these images is due to thecombination of two factors. The �rst is the use of the greedy pixel allocationroutine used by these programs and the second factor is that the order in whichlines are found in PPHT is much less well de�ned than in SHT. This meansshort lines may be found before longer ones. This in itself is not incorrect, butbecause the greedy pixels allocation takes pixels from either end of the shorterline it can interfere with the detection of other, longer lines which are found bySHT. This problem is less serious with higher values of l because the numberl Voting operationsSHT 31200.999999999 18970.99999 1042Table 3: Voting operations for house image.8



Figure 5: Input edge image. Figure 6: Results of Standard HoughTransform.of votes required to �nd a line increases, and so the order of detection becomesmore deterministic.The other problems inherent to PPHT with a low false positive thresholdcan be seen in the lower left corner of �gure 7. Here false positive lines are founddiagonally crossing the actual lines in the image. This problem can also be seenin the output of the SHT, the window in the centre of �gure 6. The problemshall be solved by exploiting gradient information, a common technique used toenhance SHT.4 ConclusionsIn the paper we presented the Progressive Probabilistic Hough Transform al-gorithm. We showed that unlike the Probabilistic Hough Transform the pro-posed algorithmminimises the amount of computation needed to detect lines byexploiting the di�erence in the fraction of votes needed to reliably detect lineswith di�erent support.The dependence of the fraction of points used for voting is a function of theinherent complexity of data. We demonstrated on input images containing Nlines that the number of votes (speed) of PPHT is almost independent of linelengths (input points).The post-processing used for the experiments presented in this paper is es-sentially the same as that used for SHT. The ordering of recovered lines in PPHTis not as well de�ned as in case of SHT. Although this loss of ordering will leadto some undesirable results around line intersections when using standard SHTpost processing, it is easy to conceive e�ective schemes which would eradicate9
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