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Abstract. A method for learning local affine-covariant regions is presented. We

show that maximizing geometric repeatability does not lead to local regions, a.k.a

features, that are reliably matched and this necessitates descriptor-based learning.

We explore factors that influence such learning and registration: the loss function,

descriptor type, geometric parametrization and the trade-off between matchability

and geometric accuracy and propose a novel hard negative-constant loss function

for learning of affine regions. The affine shape estimator – AffNet – trained with

the hard negative-constant loss outperforms the state-of-the-art in bag-of-words

image retrieval and wide baseline stereo. The proposed training process does not

require precisely geometrically aligned patches. The source codes and trained

weights are available at https://github.com/ducha-aiki/affnet
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1 Introduction

Local features, forming correspondences, are exploited in state of the art pipelines for

3D reconstruction [1,2], two-view matching [3], 6DOF image localization [4]. Classical

local features have also been successfully used for providing supervision for CNN-based

image retrieval [5].

Affine-convariance [7] is a desirable property of local features since it allows robust

matching of images separated by a wide baseline [8,3], unlike scale-covariant features

like ORB [9] or difference of Gaussian (DoG) [10] that rely on tests carried out on

circular neighborhoods. This is the reason why the Hessian-Affine detector [7] combined

with the RootSIFT descriptor [10,11] is the gold standard for local feature in image

retrieval [12,13]. Affine covariant features also provide stronger geometric constraints,

e.g., for image rectification [14].

On the other hand, the classical affine adaptation procedure [15] fails in 20%-

40% [8,16] cases, thus reducing the number and repeatability of detected local features. It

is also not robust to significant illumination change [16]. Applications where the number

of detected features is important, e.g., large scale 3D reconstruction [2], therefore use

the DoG detector. Alleviating the problem of the drop in the number of correspondences

caused by the non-repeatability of the affine adaptation procedure, may lead to connected

3D reconstructions and improved image retrieval engines [17,20].

https://github.com/ducha-aiki/affnet
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This paper makes four contributions towards robust estimation of the local affine

shape. First, we experimentally show that geometric repeatability of a local feature is not

a sufficient condition for successful matching. The learning of affine shape increases the

number of corrected matches if it steers the estimators towards discriminative regions

and therefore must involve optimization of a descriptor-related loss.

Second, we propose a novel loss function for descriptor-based registration and

learning, named the hard negative-constant loss. It combines the advantages of the

triplet and contrastive positive losses. Third, we propose a method for learning the affine

shape, orientation and potentially other parameters related to geometric and appearance

properties of local features. The learning method does not require a precise ground truth

which reduces the need for manual annotation.

Last but not least, the learned AffNet itself significantly outperforms prior methods

for affine shape estimation and improves the state of art in image retrieval by a large

margin. Importantly, unlike the de-facto standard [15], AffNet does not significantly

reduce the number of detected features, it is thus suitable even for pipelines where affine

invariance is needed only occasionally.

1.1 Related work

The area of learning local features has been active recently, but the attention has focused

dominantly on learning descriptors [21,22,23,24,25,26,27] and translation-covariant

detectors [28,29,30,31]. The authors are not aware of any recent work on learning or

improvement of local feature affine shape estimation. The most closely related work is

thus the following.

Hartmann et al. [32] train random forest classifier for predicting feature matchability

based on a local descriptor. "Bad" points are discarded, thus speeding up the matching

process in a 3D reconstruction pipeline. Yi et al. [33] proposed to learn feature orientation

by minimizing descriptor distance between positive patches, i.e. those corresponding

to the same point on the 3D surface. This allows to avoid hand-picking a "canonical"

orientation, thus learning the one which is the most suitable for descriptor matching.

We have observed that direct application of the method [33] for affine shape estimation

leads to learning degenerate shapes collapsed to single line. Yi et al. [34] proposed a

multi-stage framework for learning the descriptor, orientation and translation-covariant

detector. The detector was trained by maximizing the intersection-over-union and the

reprojection error between corresponding regions.

Lenc and Vedaldi [30] introduced the “covariant constraint” for learning various

types of local feature detectors. The proposed covariant loss is the Frobenius norm of

the difference between the local affine frames. The disadvantage of such approach is

that it could lead to features that are, while being repeatable, not necessarily suited

for the matching task (see Section 2.2). On top of that, the common drawback of the

Yi et al. [34] and Lenc and Vedaldi [30] methods is that they require to know the exact

geometric relationship between patches which increases the amount of work needed to

prepare the training dataset. Zhang et al. [29] proposed to “anchor” the detected features

to some pre-defined features with known good discriminability like TILDE [28]. We

remark that despite showing images of affine-covariant features, the results presented

in the paper are for translation-covariant features only. Savinov et al. [31] proposed a
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ranking approach for unsupervised learning of a feature detector. While this is natural

and efficient for learning the coordinates of the center of the feature, it is problematic

to apply it for the affine shape estimation. The reason is that it requires sampling and

scoring of many possible shapes.

Finally, Choy et al. [35] trained a “Universal correspondence network” (UCN) for a

direct correspondence estimation with contrastive loss on a patch descriptor distance.

This approach is related to the current work, yet the two methods differ in several impor-

tant aspects. First, UCN used an ImageNet-pretrained network which is subsequently

fine-tuned. We learn the affine shape estimation from scratch. Second, UCN uses dense

feature extraction and negative examples extracted from the same image. While this

could be a good setup for short baseline stereo, it does not work well for wide baseline,

where affine features are usually sought. Finally, we propose the hard negative-constant

loss instead of the contrastive one.

2 Learning affine shape and orientation

2.1 Affine shape parametrization

A local affine frame is defined by 6 parameters of the affine matrix. Two form a translation

vector (x, y) which is given by the keypoint detector and in the rest of the paper we omit

it and focus on the affine transformation matrix A,

A =

(

a11 a12
a21 a22

)

. (1)

Among many possible decompositions of matrix A, we use the following

A = λR(α)A′ = detA

(

cosα sinα
− sinα cosα

)(

a′11 0
a′21 a

′
22

)

, (2)

where λ = detA is the scale, R(α) the orientation matrix and A′ 1 is the affine shape

matrix with detA′ = 1. A′ is decomposed into identity matrix I and residual shape A′′:

A′ = I +A′′ =

(

a′11 0
a′21 a

′
22

)

=

(

1 0
0 1

)

+

(

a′′11 0
a′′21 a

′′
22

)

(3)

We show that the different parameterizations of the affine transformation significantly

influence the performance of CNN-based estimators of local geometry, see Table 2.

2.2 The hard negative-constant loss

We propose a loss function called hard negative-constant loss (HardNegC). It is based

on the hard negative triplet margin loss [25] (HardNeg), but the distance to the hardest

1 A′ has a (0,1) eigenvector, preserving the vertical direction.
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Fig. 1. A toy example optimization problem illustrating the proposed hard negative-constant

(HardNegC) loss. Five pairs of points, representing 2D descriptors, are generated and the losses are

minimized by Adam [36]: the positive descriptor distance (PosDist) [33] – left, the hard negative

(HardNeg) margin loss [25] – center, HardNegC– right. Top row: identical initial positions of five

pairs of matching points. Arrows show the gradient direction and relative magnitude. Bottom row:

points after 150 steps of Adam optimization, trajectories are shown by dots. HardNeg loss has

a difficulty with the green and magenta point pairs, because the negative example lies between

two positives. Minimization of the positive distance only leads to a small distance to the negative

examples. The proposed HardNegC loss first pushes same class points close to each other and then

distributes them to increase distance to the negative pairs.

(i.e. closest) negative example is treated as constant and the respective derivative of L is

set to zero:

L =
1

n

∑

i=1,n

max (0, 1 + d(si, ṡi)− d(si, N)),
∂L

∂N
:= 0, (4)

where d(si, ṡi) is the distance between the matching descriptors, d(si, N) is a distance

to the hardest negative example N in the mini-batch for ith pair.

d(si, N) = min (min
j 6=i

d(si, ṡj),min
j 6=i

d(sj , ṡi))

The difference between the Positive descriptor distance loss (PosDist) used for learning

local feature orientation in [33] and the HardNegC and HardNeg losses is shown on a

toy example in Figure 1. Five pairs of points in the 2D space are generated and their

positions are updated by the Adam optimizer [36] for the three loss functions. PosDist
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converges the first, but the different class points end up near each other, because the

distance to the negative classes is not incorporated in the loss. The HardNeg margin loss

has trouble when the points from different classes lie between each other. The HardNegC

loss behavior first resembles the PosDist loss, bringing positive points together and then

distributes them in the space, satisfying the triplet margin criterion.

2.3 Descriptor losses for shape registration

Exploring how local feature repeatability is connected with descriptor similarity, we

conducted an shape registration experiment (Figure 2). Hessian features are detected in

reference HSequences [37] illumination images and reprojected by (identity) homogra-

phy to another image in the sequence. Thus, the repeatability is 1 and reprojection error

is 0. Then, the local descriptors (HardNet [25], SIFT [10], TFeat [23] and raw pixels)

are extracted and features are matched by first-to-second-nearest neighbor ratio [10]

with threshold 0.8. This threshold was suggested by Lowe [10] as a good trade-off

between false positives and false negatives. For SIFT, 22% of the geometrically correct

correspondences are not the nearest SIFTs and they cannot be matched, regardless of the

threshold. In our experiments, the 0.8 threshold worked well for all descriptors and we

used it, in line with previous papers, in all experiments.

Notice that for all descriptors, the percentage of correct matches even for the perfect

geometrical registration is only about 50%.

Adam optimizer is used to update affine region A to minimize the descriptor-based

losses: PosDist, HardNeg and HardNegC. The top two rows show the results for A

matrices coupled for both images, bottom – the descriptor difference optimization is

allowed to deform A and Ȧ in both images independently, which leads to a pair of affine

regions that are not in perfect geometric correspondence, yet they are more matchable.

Note, that no training of any kind is involved.

Such descriptor-driven optimization, not maintaining perfect registration, produces a

descriptor that is matched successfully up to 90% of the detections under illumination

changes.

For most of the unmatched regions, the affine shapes become a degenerate lines –

shown in top graphs, and the number of degenerate ellipses is high for PosDist loss;

HardNeg and HardNegC perform better.

The bottom row of Figure 2 shows results for experiments where affine shapes pairs

are independent in each image. Optimization of descriptor losses lead to an increase of

the geometric error on the affine shape. Error E is defined as the mean square error on A

matrix difference:

E =

n
∑

i=1

2(Ai − Ȧi)
2

detA+ det Ȧ
(5)

Again, PosDist loss leads to a larger error. CNN-based descriptors, HardNet and TFeat

lead to relative small geometric error when reaching matchability plateau, while for SIFT

and raw pixels the shapes diverge. Figure 3 shows the case when the initialized shapes

include a small amount of the reprojection error.
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0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

HardNet

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

TFeat

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

SIFT

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

Pixels

Fig. 2. Matching score versus geometric repeatability experiment. Affine shape registration by

a minimization of descriptor losses of corresponding features. Descriptor losses: green – L2-

descriptor distance (PosDist) [33], red – hard triplet margin HardNeg [25], blue – proposed

HardNegC. Average over HSequences, illumination subset. All features are initially perfectly

registered. First two rows: single feature geometry for both images, second two rows: feature

geometries are independent in each image. Top row: geometric error of corresponding features

(solid) and percentage of non-collapsed, i.e. elongation ≤ 6, features (dashed). Bottom row: the

percentage of correct matches. This experiment shows that even perfectly initially registered feature

might not be matched with any of descriptors – initial matching score is roughly ≈ 30..50%. But

it is possibly to find measurement region, which offers both discriminativity and repeatability.

PosDist loss squashes most of the features, leading to the largest geometrical error. HardNeg loss

produces the best results in the number of survived feature and geometrical error. HardNegC

performs slightly worse than HardNeg, slightly outperforming it on matching score. However,

HardNegC is easier to optimize for AffNet learning – see Table 1.

2.4 AffNet training procedure

The main blocks of the proposed training procedure are shown in Figure 5. First, a batch

of matching patch pairs (Pi, Ṗi)i=1..n is generated, where Pi and Ṗi correspond to the

same point on a 3D surface. Rotation and skew transformation matrices (Ti, T
′
i ) are

randomly and independently generated. The patches Pi and Ṗi are warped by (Ti, Ṗi)
respectively into A-transformed patches. Then, a 32× 32 center patch is cropped and a

pair of transformed patches is fed into the convolutional neural network AffNet, which

predicts a pair of affine transformations Ai, Ṗi, that are applied to the Ti-transformed

patches via spatial transformers ST [38].

Thus, geometrically normalized patches are cropped to 32× 32 pixels and fed into

the descriptor network, e.g. HardNet, SIFT or raw patch pixels, obtaining descriptors



Repeatability Is Not Enough: Learning Affine Regions via Discriminability 7

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
ed

 e
llip

se
s 
[%
], 
da
sh
-d
ot

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Af
fin
e 
m
at
rix
 M
SE
, s
ol
id

PosDist
HardNeg
HardNegC

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

HardNet

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

TFeat

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

SIFT

0 20 40 60 80 100
steps

0.0

0.2

0.4

0.6

0.8

1.0

m
at
ch

es
/d
et
ec

tio
ns

 [%
]

PosDist
HardNeg
HardNegC

Pixels

Fig. 3. Minimization of descriptor loss by optimization of affine parameters of corresponding fea-

tures. Average over HPatchesSeq, illumination subset. Top row: geometric error of corresponding

features (full line) and percentage of non-collapsed, i.e. elongation ≤ 6, features (dashed line).

Bottom row: the fraction correct matches. All features initially have the same medium amount of

reprojection noise. Left to right: HardNet, SIFT, TFeat, mean-normalized pixels descriptors.

Fig. 4. AffNet. Feature map spatial size – top, # channels – bottom. /2 stands for stride 2.

(si, ṡi). Descriptors (si, ṡi) are then used to form triplets by the procedure proposed

in [25], followed by our newly proposed hard negative-constant loss (Eq. 4).

More formally, we are finding affine transformation model parameters θ such that

estimated affine transformation A minimizes descriptor HardNegC loss:

A(θ|(P, Ṗ )) = argmin
θ

L(s, ṡ) (6)

2.5 Training dataset and data preprocessing

UBC Phototour [39] dataset is used for training. It consists of three subsets: Liberty,

Notre Dame and Yosemite with about 2 × 400k normalized 64x64 patches in each,

detected by DoG and Harris detectors. Patches are verified by 3D reconstruction model.

We randomly sample 10M pairs for training.

Although positive point corresponds to roughly the same point on the 3D surface,

they are not perfectly aligned, having position, scale, rotation and affine noise. We have

randomly generated affine transformations, which consist in random rotation – tied

for pair of corresponding patches, and anisotropic scaling t in random direction by

magnitude tm, which is gradually increased during the training from the initial value of

3 to 5.8 at the middle of the training. The tilt is uniformly sampled from range [0, tm].
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Fig. 5. AffNet training. Corresponding patches undergo random affine transformation Ti, Ṫi, are

cropped and fed into AffNet, which outputs affine transformation Ai, Ȧi to an unknown canonical

shape. ST – the spatial transformer warps the patch into an estimated canonical shape. The patch

is described by a differentiable CNN descriptor. n× n descriptor distance matrix is calculated and

used to form triplets, according to the HardNegC loss.

2.6 Implementation details

The CNN architecture is adopted from HardNet[25], see Fig. 4, with the number of

channels in all layers reduced 2x and the last 128D output replaced by a 3D output

predicting ellipse shape. The network formula is 16C3-16C3-32C3/2-32C3-64C3/2-

64C3-3C8, where 32C3/2 stands for 3x3 kernel with 32 filters and stride 2. Zero-

padding is applied in all convolutional layers to preserve the size, except the last one.

BatchNorm [40] layer followed by ReLU [41] is added after each convolutional layer,

except the last one, which is followed by hyperbolic tangent activation. Dropout [42]

with 0.25 rate is applied before the last convolution layer. Grayscale input patches 32×32
pixels are normalized by subtracting the per-patch mean and dividing by the per-patch

standard deviation.

Optimization is done by SGD with learning rate 0.005, momentum 0.9, weight decay

0.0001. The learning rate decayed linearly [44] to zero within 20 epochs. The training

was done with PyTorch [43] and took 24 hours on Titan X GPU; the bottleneck is the data

augmentation procedure. The inference time is 0.1 ms per patch on Titan X, including

patch sampling done on CPU and Baumberg iteration – 0.05 ms per patch on CPU.

3 Empirical evaluation

3.1 Loss functions and descriptors for learning measurement region

We trained different versions of the AffNet and orientation networks, with different

combinations affine transformation parameterizations and descriptors with the procedure

described above. The results of the comparison based on the number of correct matches

(reprojection error ≤ 3 pixel) on the hardest pair for each of the 116 sequences from the

HSequences [37] dataset are shown in Tables 1,2.

The proposed HardNetC loss is the only loss function with no "not converged" results.

In the case of convergence, all tested descriptors and loss functions lead to comparable

performance, unlike registration experiments in the previous section. We believe it is

because now the CNN always outputs the same affine transformation for a patch, unlike

in the previous experiment, where repeated features may end up with different shapes.
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Fig. 6. AffNet (top) and Baumberg (bottom) estimated affine shape. One ellipse is detected in the

reference image, the other is a reprojected closest match from the second image. Baumberg ellipses

tend to be more elongated, average axis ratio is 1.99 vs. 1.63 for AffNet, median: Baumberg 1.72

vs 1.39 AffNet. The statistics are calculated over 16M features on Oxford5k.

Affine transformation parameterizations are compared in Table 2. All attempts to

learn affine shape and orientation jointly in one network fail completely, or perform

significantly worse than the two-stage procedure, when affine shape is learned first and

orientation is estimated on an affine-shape-normalized patch. Learning residual shape

A′′ (Eq. 3) leads to the best results overall. Note, that such parameterization does not

contain enough parameters to include feature orientation, thus "joint" learning is not

possible. Slightly worse performance is obtained by using an identity matrix prior for

learnable biases in the output layer.

3.2 Repeatability

Repeatability of affine detectors: Hessian detector + affine shape estimator was bench-

marked, following classical work by Mikolajczyk et al. [8], but on recently introduced

larger HSequences [37] dataset by VLBenchmarks toolbox [45].

HSequences consists of two subsets. Illumination part contains 57 image sixplets

with illumination changes, both natural and artificial. There is no difference is viewpoint

in this subset, geometrical relation between images in sixplets is identity.Second part is

Viewpoint, where 59 image sixplets vary in scale, rotation, but mostly in horizontal tilt.

The average viewpoint change is a bit smaller than in well-known graffiti sequence from

Oxford-Affine dataset [8].

Local features are detected in pairs of images, reprojected by ground truth homog-

raphy to the reference image and closest reprojected region is found for each region

from reference image. The correspondence is considered correct, when overlap error of

the pair is less than 40%. The repeatability score for a given pair of images is a ratio
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Table 1. Learning the affine transform: loss functions and descriptor comparison. The median

of average number of correct matches on the HSequences [37] hardest image pairs 1-6 for the

Hessian detector and the HardNet descriptor. The match considered correct for reprojection error

≤ 3 pixels. Affine shape is parametrized as in Eq. 3. n/c – did not converge.

Training descriptor/loss PosDist HardNeg HardNegC

Affine shape

SIFT n/c 385 386

HardNet n/c n/c 388

Baumberg [15] 298

Orientation

SIFT 387 379 382

HardNet 386 383 380

Dominant orientation [10] 339

between number of correct correspondences and the smaller number of detected regions

in common part of scene among two images.

Results are shown in Figure 7. Original affine shape estimation procedure, imple-

mented in [12] is denoted Baum SS 19, as 19 × 19 patches are sampled from scale

space. AffNet takes 32× 32 patches, which are sampled from original image. So for fair

comparison, we also tested Baum versions, where patches are sampled from original

image, with 19 and 33 pixels patch size.

AffNet slightly outperforms all the variants of Baumberg procedure for images

with viewpoint change in terms of repeatability and more significant – in number of

correspondences. The difference is even bigger for them image with illumination change

only, where AffNet performs almost the same as plain Hessian, which is upper bound

here, as this part of dataset has no viewpoint changes.

We have also tested AffNet with other detectors on the Viewpoint subset of the

HPatches. The repeatabilities are the following (no affine adaptation/Baumberg/AffNet):

DoG: 0.46/0.51/0.52, Harris: 0.41/0.44/0.47, Hessian: 0.47/0.52/0.56 The proposed

methods outperforms the standard (Baumberg) for all detectors.

One reason for such difference is the feature-rejection strategy. Baumberg iterative

procedure rejects feature in one of three cases. First, elongated ellipses with long-to-

short axis ratio more than six are rejected. Second, features touching boundary of the

image are rejected. This is true for the AffNet post-processing procedure as well, but

AffNet produces less elongated shapes: average axis ratio on Oxford5k 16M features

is 1.63 vs. 1.99 for Baumberg. Both cases happen less often for AffNet, increasing the

number of surviving features by 25%. We compared performance of the Baumberg vs.

AffNet on the same number of features in Section 3.4. Finally, features whose shape

did not converge within sixteen iteration are removed. This is quite rare, it happens in

approximately 1% cases. Example of shapes estimated by AffNet and the Baumberg

procedure are shown in Fig. 6.
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Table 2. Learning the affine transform: parameterization comparison. The average number of

correct matches on the HPatchesSeq [37] hardest image pairs 1-6 for the Hessian detector and

the HardNet descriptor. Cases compared, affine shape combined with the de-facto handcrafted

standard dominant orientation, affine shape and orientation learnt separately or jointly. The match

considered correct for reprojection error ≤ 3 pixels. The HardNegC loss and HardNet descriptor

used for learning. n/c – did not converge.

Orientation

Estimated biases Learned Dominant

Eq. Matrix parameters init jointly separately gradient [10]

(1) A (a11, a12, a21, a22) 0 n/c n/c n/c

(1) A (a11, a12, a21, a22) 1 n/c 360 320

(2) A′, (a′

11, 0, a
′

21, a
′

22), 1 250 327 286

R(α) (sinα, cosα)

(3) A′′ (a′′

11, a
′′

21, a
′′

22) 1 - 370 340

(3) A′′ (1 + a′′

11, a
′′

21, 1 + a′′

22) 0 - 388 349

Table 3. AffNet vs. Baumberg affine shape estimators on wide baseline stereo datasets, with

Hessian and adaptive Hessian detectors, following the protocol [16]. The number of matched

image pairs and the average number of inliers. The numbers of image pairs in a dataset are

boxed. Best results are in bold.

EF EVD OxAff SymB GDB LTLL

[46] [3] [8] [47] [48] [49]

Detector 33 inl. 15 inl. 40 inl. 46 inl. 22 inl. 172 inl.

HesAff [7] 33 78 2 38 40 1008 34 153 17 199 26 34

HesAffNet 33 112 2 48 40 1181 37 203 19 222 46 36

AdHesAff [16] 33 111 3 33 40 1330 35 190 19 286 28 35

AdHesAffNet 33 165 4 42 40 1567 37 275 21 336 48 39

3.3 Wide baseline stereo

We conducted an experiment on wide baseline stereo, following local feature detector

benchmark protocol, defined in [16] on the set of two-view matching datasets [47,48,46,49].

The local features are detected by benchmarked detector, described by HardNet++ [25]

and HalfRootSIFT [50] and geometrically verified by RANSAC [51]. Two following

metrics are reported: the number of successfully matched image pairs and average num-

ber of correct inliers per matched pair. We have replaced original affine shape estimator

in Hessian-Affine with AffNet in Hessian and Adaptive threshold Hessian (AdHess)

The results are shown in Table 3. AffNet outperforms Baumberg in both number

of registered image pairs and/or number of correct inliers in all datasets, including

painting-to-photo pairs in SymB [47] and multimodal pairs in GDB [48], despite it was

not trained for that domains.
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Fig. 7. Repeatability and the number of correspondences (mean top, median bottom row) on

the HSequences [37]. AffNet is compared with the de facto standard Baumberg iteration [15]

according to the Mikolajczyk protocol [8]. Left – images with illumination differences, right –

with viewpoint and scale changes. SS – patch is sampled from the scale-space pyramid at the

level of the detection, image – from the original image; 19 and 33 – patch sizes. Hessian-Affine is

from[12]. For illumination subset, performance of Hessian with no adaptation is an upper bound,

and AffNet performs close to it.

The total runtimes per image are the following (average for 800x600 images). Base-

line HesAff + dominant gradient orientation + SIFT: no CNN components – 0.4 sec.

HesAffNet (CNN) + dominant gradient orientation + SIFT – 0.8s, 3 CNN components:

HesAffNet + OriNet + HardNet – 1.2 s. Now the data is naively transferred from CPU to

GPU and back each of the stages, which generates the major bottleneck.

3.4 Image retrieval

We evaluate the proposed approach on standard image retrieval datasets Oxford5k [56]

and Paris6k [57]. Each dataset contains images (5062 for Oxford5k and 6391 for Paris6k)

depicting 11 different landmarks and distractors. The performance is reported as mean

average precision (mAP) [56]. Recently, these benchmarks have been revisited, anno-

tation errors fixed and new, more challenging sets of queries added [18]. The revisited

datasets define new test protocols: Easy, Medium, and Hard.

We use the multi-scale Hessian-affine detector [8] with the Baumberg method for

affine shape estimation. The proposed AffNet replaces Baumberg, which we denote

HessAffNet. The use of HessAffNet increased the number of used feature, from 12.5M

to 17.5M for Oxford5k and from 15.6M to 21.2M for Paris6k, because more features

survive the affine shape adaptions, as explained in Section 3.2. We also performed

additional experiment by restricting number of AffNet features to same as in Baumberg –

HesAffNetLess in Table 4. We evaluated HesAffNet with both hand-crafted descriptor

RootSIFT [11] and state-of-the-art learned descriptors [23,25].

First, HesAffNet is tested within the traditional bag-of-words (BoW) [58] image

retrieval pipeline. A flat vocabulary with 1M centroids is created with the k-means

algorithm and approximate nearest neighbor search [59]. All descriptors of an image are
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Table 4. Performance (mAP) evaluation of the bag-of-words (BoW) image retrieval on the

Oxford5k and Paris6k benchmarks. Vocabulary consisting of 1M visual words is learned on

independent dataset: Oxford5k vocabulary for Paris6k evaluation and vice versa. SV: spatial

verification. QE(t): query expansion with t inliers threshold. The best results are in bold.

Oxford5k Paris6k

Detector–Descriptor BoW +SV +SV+QE(15) +SV+QE(8) BoW +SV +SV+QE(15) +SV+QE(8)

HesAff–RootSIFT [11] 55.1 63.0 78.4 80.1 59.3 63.7 76.4 77.4

HesAffNet–RootSIFT 61.6 72.8 86.5 88.0 63.5 71.2 81.7 83.5

HesAff–TFeat-M* [23] 46.7 55.6 72.2 73.8 43.8 51.8 65.3 69.7

HesAffNet–TFeat-M* 45.5 57.3 75.2 77.5 50.6 58.1 72.0 74.8

HesAff–HardNet++ [25] 60.8 69.6 84.5 85.1 65.0 70.3 79.1 79.9

HesAffNetLess–HardNet++ 64.3 73.3 86.1 87.3 62.0 68.7 79.1 79.2

HesAffNet–HardNet++ 68.3 77.8 89.0 91.1 65.7 73.4 83.3 83.3

Table 5. Performance (mAP) comparison with the state-of-the-art in local feature-based image

retrieval. Vocabulary is learned on independent dataset: Oxford5k vocabulary for Paris6k evaluation

and vice versa. All results are with spatial verification and query expansion. VS: vocabulary size.

SA: single assignment. MA: multiple assignments. The best results are in bold.

Oxford5k Paris6k

Method VS SA MA SA MA

HesAff–SIFT–BoW-fVocab [52] 16M 74.0 84.9 73.6 82.4

HesAff–RootSIFT–HQE [13] 65k 85.3 88.0 81.3 82.8

HesAff–HardNet++–HQE [25] 65k 86.8 88.3 82.8 84.9

HesAffNet–HardNet++–HQE 65k 87.9 89.5 84.2 85.9

assigned to a respective centroid of the vocabulary, and then they are aggregated with a

histogram of occurrences into a BoW image representation.

We also apply spatial verification (SV) [56] and standard query expansion (QE) [57].

QE is performed with images that have either 15 (typically used) or 8 inliers after the

spatial verification. The results of the comparison are presented in Table 4.

AffNet achieves the best results on both Oxford5k and Paris6k datasets, in most of

the cases it outperforms the second best approach by a large margin. This experiment

clearly shows the benefit of using AffNet in the local feature detection pipeline.

Additionally, we compare with state-of-the-art local-feature-based image retrieval

methods. A visual vocabulary of 65k words is learned, with Hamming embedding

(HE) [60] technique added that further refines descriptor assignments with a 128 bits

binary signature. We follow the same procedure as HesAff–RootSIFT–HQE [13] method.

All parameters are set as in [13]. The performance of AffNet methods is the best reported

on both Oxford5k and Paris6k for local features.

Finally, on the revisited R-Oxford and R-Paris, we compare with state-of-the-art

methods in image retrieval, both local and global feature based: the best-performing fine-
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Table 6. Performance (mAP, mP@10) comparison with the state-of-the-art in image retrieval

on the R-Oxford and R-Paris benchmarks [18]. SV: spatial verification. HQE: hamming query

expansion. αQE: α query expansion. DFS: global diffusion. The best results are in bold.

Medium Hard

R-Oxford R-Paris R-Oxford R-Paris

Method mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

ResNet101–GeM+αQE [53] 67.2 86.0 80.7 98.9 40.7 54.9 61.8 90.6

ResNet101–GeM[53]+DFS [54] 69.8 84.0 88.9 96.9 40.5 54.4 78.5 94.6

ResNet101–R-MAC[55]+DFS [54] 69.0 82.3 89.5 96.7 44.7 60.5 80.0 94.1

ResNet50–DELF[64]–HQE+SV 73.4 88.2 84.0 98.3 50.3 67.2 69.3 93.7

HesAff–RootSIFT–HQE [13] 66.3 85.6 68.9 97.3 41.3 60.0 44.7 79.9

HesAff–RootSIFT–HQE+SV [13] 71.3 88.1 70.2 98.6 49.7 69.6 45.1 83.9

HesAffNet–HardNet++–HQE 71.7 89.4 72.6 98.1 47.5 66.3 48.9 85.9

HesAffNet–HardNet++–HQE+SV 75.2 90.9 73.1 98.1 53.3 72.6 48.9 89.1

tuned networks [63], ResNet101 with generalized-mean pooling (ResNet101–GeM) [53]

and ResNet101 with regional maximum activations pooling (ResNet101–R-MAC) [55].

Deep methods use re-ranking methods: α query expansion (αQE) [53], and global

diffusion (DFS) [54]. Results are in Table 6.

HesAffNet performs best on the R-Oxford. It is consistently the best performing

local-feature method, yet is worse than deep methods on R-Paris. A possible explanation

is that deep networks (ResNet and DELF) were finetuned from ImageNet, which contains

Paris-related images, e.g. Sacre-Coeur and Notre Dame Basilica in the “church” category.

Therefore global deep nets are partially evaluated on the training set.

4 Conclusions

We presented a method for learning affine shape of local features in a weakly-supervised

manner. The proposed HardNegC loss function might find other application domains as

well. Our intuition is that the distance to the hard-negative estimates the local density of

all points and provides a scale for the positive distance. The resulting AffNet regressor

bridges the gap between performance of the similarity-covariant and affine-covariant

detectors on images with short baseline and big illumination differences and it improves

performance of affine-covariant detectors in the wide baseline setup. AffNet applied to

the output of the Hessian detector improves the state-of-the art in wide baseline matching,

affine detector repeatability and image retrieval.

We experimentally show that descriptor matchability, not only repeatability should

be taken into account when learning a feature detector.
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