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Abstract—Wide-baseline matching focussing on problems with
extreme viewpoint change is considered. We introduce the use
of view synthesis with affine-covariant detectors to solve such
problems and show that matching with the Hessian-Affine or
MSER detectors outperforms the state-of-the-art ASIFT [19].

To minimise the loss of speed caused by view synthesis, we
propose the Matching On Demand with view Synthesis algorithm
(MODS) that uses progressively more synthesized images and
more (time-consuming) detectors until reliable estimation of
geometry is possible. We show experimentally that the MODS
algorithm solves problems beyond the state-of-the-art and yet
is comparable in speed to standard wide-baseline matchers on
simpler problems.

Minor contributions include an improved method for tentative
correspondence selection, applicable both with and without view
synthesis and a view synthesis setup greatly improving MSER
robustness to blur and scale change that increase its running
time by 10% only.

Keywords—feature extraction, image matching, view synthesis.

I. INTRODUCTION

The standard method for wide baseline matching involves
detection of local features, calculation of descriptors, gener-
ation of tentative correspondences and their geometric veri-
fication using the homography or epipolar constraint. It is
well known [7], [8], [17] that performance of the pipeline
decreases in the presence of viewpoint and scale changes, blur,
compression artefacts, etc. Lepetit and Fua [12] showed that
matching robustness is improved by synthesis of additional
views given a single, fronto-parallel view of an object. Morel
and Yu [19] combined viewpoint synthesis with the similarity-
covariant Difference-of-Gaussians detector (DoG) and SIFT
matching [14]. The resulting image matching method, called
ASIFT, successfully matched challenging image pairs with
significantly different viewing angles.

We develop the idea of view synthesis for wide baseline
matching and propose a number of novelties that improve sev-
eral stages of the matching pipeline. Some of the improvements
are also applicable to two-view matching without synthesis.
The proposed MODS wide-baseline matcher1 outperforms
ASIFT in terms of speed, the number and percentage of
correct matches generated as well as in the precision of the
estimated geometry. Performance was tested mainly on image
pairs with extreme viewpoint changes, but viewpoint synthesis
also improves matching results in the presence of phenomena
like blur, occlusion and scale change. The following contri-
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1Available at http://cmp.felk.cvut.cz/wbs/index.html

Fig. 1. Homography estimation with extreme viewpoint change. The proposed
MODS algorithm produces 32 matches, 25 are correct. The state-of-the-art
ASIFT [19] outputs 41 matches, 3 are correct. Blue dots: centers of detected
regions. Green dots: reprojected centers of corresponding regions showing
good alignment.

butions are made: first, we show that the seemingly counter-
intuitive synthesis of affine views for ”affine-covariant” de-
tectors greatly improves their performance in wide baseline
matching. With suitable detector-specific configurations of syn-
thesized viewpoints, found through extensive experimentation,
both the Hessian-Affine [16] and MSER [15] detectors clearly
outperform DoG [14].

Second, we generalize the ”first-to-second-closest SIFT
distance ratio” criterion for the selection of tentative corre-
spondences. Depending on the image, the new criterion gives
5-20% more true matches than the standard at no extra com-
putation cost. The proposed criterion improves even matching
performance without synthesis, especially in images with local
symmetries.

Third, we propose an adaptive algorithm for matching very
challenging image pairs which follows the ”do only as much
as needed” principle. The MODS algorithm (Matching On
Demand with view Synthesis) uses progressively more detector
types and more synthesized images until enough correspon-
dences for reliable estimation of two-view geometry are found.
MODS is fast on easy image pairs without compromising
performance on the hardest problems.

A. Related work

The use of view synthesis for image matching is a recent
development and the literature is limited and includes mainly
modifications of the ASIFT algorithm. Liu et al. [13] syn-
thesised perspective warps rather than affine. Pang et al. [21]
replaced SIFT by SURF [3] in the ASIFT algorithm to reduce
the computation time. Sadek et al. [23] present a new affine
covariant descriptor based on SIFT which can be used with or
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without view synthesis. Detection of the MSERs on the scale
space pyramid was proposed by Forssén and Lowe [9].

II. MATCHING WITH ON DEMAND VIEW SYNTHESIS

The iterative MODS algorithm (see Alg. 1) repeats a
sequences of two-view matching procedures, until a required
minimum number of geometrically verified correspondences
is found. In each iteration, a different detector is used and a
different set of views generated. The adopted sequence is an
outcome of extensive experimentation with the objective of
solving the most challenging problems while keeping speed
comparable to standard single-detector wide-baseline matchers
for simple problems. For instance, the first iteration of the
MODS algorithm runs the MSER detector with only a very
coarse scale space pyramid which is 10% slower than standard
MSER. Subsequent iterations run complementary detectors
with a higher number of synthesized views. The rest of the
section describes the steps employed in the iterations of the
MODS algorithm.

Algorithm 1 MODS: Matching with On-Demand view Syn-
thesis
Input: I1, I2 – two images; θm – minimum required number of

matches; Smax – maximum number of iterations.
Output: Fundamental of homography matrix F or H;

list of corresponding points.
Variables:Nmatches – detected correspondences, Iter – currect iteration.

while (Nmatches < θm) and (Iter < Smax) do
for I1 and I2 separately do

1 Generate synthetic views according to the
scale-tilt-rotation-detector setup for the Iter.

2 Detect and describe local features.
3 Reproject local features to original image.

Add described features to general list.
end for
4 Generate tentative correspondences

using the first geom. inconsistent rule.
5 Filter duplicate matches.
6 Geometrically verify tentative correspondences

while estimating F or H.
end while

A. Synthetic views generation

It is well known that a homography H can be approximated
by an affine transformation A at a point using the first order
Taylor expansion. Further, an affine transformation can be
uniquely decomposed by SVD into a rotation, skew, scale
and rotation around the optical axis [10]. Morel and Yu [19]
proposed to decompose the affine transformation A as

A = HλR1(ψ)TtR2(φ) =

= λ
(
cosψ − sinψ
sinψ cosψ

)(
t 0
0 1

)(
cosφ − sinφ
sinφ cosφ

) (1)

where λ > 0, R1 and R2 are rotations, and Tt is a diagonal
matrix with t > 1. Parameter t is called the absolute tilt,
φ ∈ 〈0, π) is the optical axis longitude and ψ ∈ 〈0, 2π)
is the rotation of the camera around the optical axis. Each
synthesised view is parametrised by the tilt, longitude and
optionally the scale and represents a sample of the view-sphere
resp. view-volume around the original image.

The view synthesis proceeds in the following steps: at first,
scale synthesis is performed by building a Gaussian scale-
space with Gaussian σ = σbase · S and downsampling factor

S (S < 1). Second, each image in the scale-space is in-plane
rotated by longitude φ with step Δφ = Δφbase/t. In the third
step, all rotated images are convolved with a Gaussian filter
with σ = σbase along vertical direction and σ = t · σbase along
horizontal direction to eliminate aliasing in the final tilting
step. The tilt is applied by shrinking the image along the
horizontal direction by factor t. The parameters of the synthesis
are: the set of scales {S}, Δφbase – the step of longitude
samples at tilt t = 1, and a set of simulated tilts {t}. The
details of view synthesis parameter tuning for each detector
are presented in technical report [18].

B. Local feature detection and description

The goal of the view synthesis procedure is to provide
detectors with a sufficiently similar subset of all artificial
views on the view-sphere that allows matching. For affine-
covariant detectors, unlike the similarity-covariant DoG of
ASIFT, the number of necessary view samples is significantly
decreased while the performance for the most difficult image
pairs gets improved. Moreover, it is known that different
detectors are suitable for different types of images [17] and
that some detectors are complementary in the feature points
they detect [1]. Our experiments show (c.f . Section III) that
combining detectors improves the overall robustness and speed
of the matching procedure.

MODS uses the state-of-the-art affine covariant detectors
MSER and Hessian-Affine. The normalised patches are de-
scribed by the recent modification of SIFT [14] – the Root-
SIFT [2]. The local feature frames computed on the synthe-
sised views are backprojected to the coordinate system of the
original image by a known affine matrix A and associated with
the descriptor and the originating synthetic view.

C. Tentative correspondence generation

Different strategies for computation of the tentative corre-
spondences in wide-baseline matching have been proposed.
The standard method for matching SIFT(-like) descriptors
is based on the distance ratio of the closest to the second
closest descriptors in the other image [14]. Performance of this
test in general very efficient method degrades when multiple
observations of the same feature are present. In this case, the
similar descriptors will lead to the first to second SIFT ratio to
be close to 1 and the correspondences will ”annihilate” each
other, despite the fact they all represent the same geometric
constraints and are therefore not mutually contradictory (see
Figure 2). The problem of multiple detections is amplified in
the matching by view synthesis since covariantly detected local
features have often a response in multiple synthetic views. We
propose to use, instead of comparing the first to the second
closest descriptor distance, the distance of the first descriptor
and the closest descriptor that is geometrically inconsistent
with the first one (denoted 1st inc. in the following). We call
descriptors in one image geometrically inconsistent if the Eu-
clidean distance between centers of the regions is ≥ 10 pixels.
The difference of the first-to-second closest ratio strategy and
the closest-to-1st inc. strategy is illustrated in Figure 2.

The kd-tree algorithm from FLANN library [20] effectively
finds the N-closest descriptors in the other image. The distance
ratio thresholds of the closest to 1st inc. were experimentally
selected based on the CDFs of matching and non-matching
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Fig. 2. Comparison of the proposed first to 1st inc. ratio matching
strategy and the standard first to second closest ratio matching strategy. Red
regions are the second closest descriptors, yellow regions correspond to the
closest geometrically inconsistent descriptors, green are the true corresponding
regions. Upper pair – rotationally symmetric DoG regions, lower pair – affine
covariant MSER regions.

descriptors (see [18]). We recommend to use the same values
for SIFT and RootSIFT descriptors, but different thresholds for
the different local feature detectors: RMSER = 0.85, RDoG =
0.85 and RHA = 0.8.

D. Duplicate filtering

The redetection of covariant features in synthetic views
results in duplicates in tentative correspondences. The dupli-
cate filtering is an optional step and prunes correspondences
with close spatial distance of local features in both images.
The number of pruned correspondences can be however used
later for evaluating the quality (probability of being correct)
in PROSAC-like [4] geometric verification.

E. Geometric verification

The LO-RANSAC [11] algorithm searches for the maximal
set of geometrically consistent tentative correspondences. The
model of the transformation is set either to homography or
epipolar geometry, or automatically determined by a Degen-
SAC [5] procedure.

III. EXPERIMENTS

A. 1st geometrically inconsistent vs. 2nd nearest neighbour
correspondence selection strategy

The first to first geometrically inconsistent strategy was
evaluated on 50 image pairs of the publicly available
datasets [17] and [6]. The cumulative distributions of the
number of correct tentative correspondences as functions of
the descriptor distance ratio are used for comparison. The
new matching strategy improves the performance by up to
5% for the matching without view synthesis and up to 30%
(see Figure 3) for matching with view synthesis at almost no
additional computational costs.

B. View synthesis for affine covariant detectors

The view synthesis parameters – tilt {t} sampling and lon-
gitude step Δφbase – were explored in the following synthetic
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Fig. 3. The ratio of the number of correct matches obtained by the 1st
inconsistent and 2nd nearest method, without (left) and with (right) view
synthesis. The black dashed line denotes the widely used distance ratio
threshold = 0.8.

experiment. For each of 100 random images from Oxford
Building Dataset [22], a set of simulated views with latitude
angle θ = (0, 20, 40, 60, 65, 70, 75, 80, 85)◦, corresponding
to tilt series t = (1.00, 1.06, 1.30, 2.00, 2.36, 2.92, 3.86,
5.75, 11.47)2 was generated. The ground truth affine matrix A
was computed for each synthetic view using equation (1). The
original and synthesised images were matched using described
algorithm with single iteration.

The various configurations of the view synthesis were
tested and results for the selected configurations are shown in
Figure 4. Note that the view synthesis significantly increases
the matching performance, however after reaching some den-
sity of the view-sphere sampling additional views does not
bring more correspondences. MSER and Hessian-Affine need
sparser view-sphere sampling than DoG. Results for all tested
configurations are in technical report [18].

C. Results on the Extreme Viewpoint Dataset

We introduce a two-view matching evaluation dataset3

with extreme viewpoint changes, see Table I. The dataset
includes image pairs from publicly available datasets: ADAM

and MAG [19], GRAF [17] and THERE [6]. The ground truth
homography matrices were estimated by LO-RANSAC using
correspondences from all three detectors in view synthesis
configuration {t} = {1;√2; 2; 2

√
2; 4; 4

√
2; 8}, Δφ = 72◦/t.

The number of inliers for each image pair was ≥ 50 and
the homographies were manually inspected. For the image
pairs GRAF and THERE precise homographies are provided by
Cordes et al. [6]. Transition tilts τ were computed using equa-
tion (1) with SVD decomposition of the linearised homography
at center of the first image of the pair (see Table I).

The configurations evaluated are specified in Table II. For
comparison, ASIFT4 results are added. Computations were
performed on Intel i5 CPU @ 2.6GHz with 4Gb RAM; results
for computation on one core are provided. Based on results
of the different configuration, we have chosen the following
configuration for MODS w.r.t increasing computation time and
performance of the configurations – see Table III. Please note
that only views complementary to the previous iterations are
synthesised.

2assuming that the original image is in the fronto-parallel view
3Available at http://cmp.felk.cvut.cz/wbs/index.html
4Reference code from http://demo.ipol.im/demo/my affine sift
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Fig. 4. Comparison of view synthesis configurations on the synthetic dataset. First row: the number of correct SIFT matches a robust minimum (value 4%
quantile) over 100 random images from [22]). Second row: the ratio of the number of correct matches to the number of detected regions; the mean over 100
random images. Only selected configurations are shown, full version is in [18].

TABLE II. VIEW SYNTHESIS CONFIGURATIONS BASED ON THE

ANALYSIS OF THE ALGORITHM ON THE SYNTHETIC DATASET

Configurations

Detector SPARSE DENSE

MSER

{S} = {1; 0.25; 0.125},
{t} = {1; 5; 9},
Δφ = 360◦/t

{S} = {1; 0.25; 0.125},
{t} = {1; 2; 4; 6; 8},
Δφ = 72◦/t

HessAff
{S} = {1}, {t} = {1;√2;
2; 2
√
2; 4; 4

√
2; 8},

Δφ = 360◦/t

{S} = {1},
{t} = {1; 2; 4; 6; 8},
Δφ = 72◦/t

DoG

{S} = {1},
{t} = {1; 2; 4; 6; 8},
Δφ = 120◦/t

{S} = {1}, {t} = {1;√2;
2; 2
√
2; 4; 4

√
2; 8},

Δφ = 72◦/t

TABLE III. CONFIGURATIONS FOR MODS STEPS

Iter. Setup

1 MSER,{S} = {1; 0.25; 0.125}, {t} = {1}, Δφ = 360◦/t

2 MSER,{S} = {1; 0.25; 0.125}, {t} = {1; 5; 9}, Δφ = 360◦/t

3
HessAff, {S} = {1}, {t} = {1;√2; 2; 2

√
2; 4; 4

√
2; 8},

Δφ = 360◦/t

4 HessAff , {S} = {1}, {t} = {1; 2; 4; 6; 8}, Δφ = 72◦/t

The MODS algorithm allows to set the minimum desired
number of inliers as a stopping criterion. The recommended
value – 15 inliers to the homography, have a very low
probability to be a random result, but are few enough to show
the time gain from the algorithm. To maximize the number of
inliers for each of the detectors, we recommend to use DENSE

configuration as a single step. Figure 5 and Table IV compare
the different view synthesis configurations and the ”affine-
covariant” detectors – they generate more correct matches in a
shorter time than the DoG detector. The DoG based matching
and ASIFT matching cannot solve 3 resp. 9 out of the 15
image pairs. The ASIFT algorithm generates a lower number
of correct inliers and works slower than our DoG DENSE

configuration (which has the same tilt-rotation set). The main
causes are elimination of ”one-to-many”, including correct,

correspondences, the inferiority of the standard 2nd closest
ratio and a simple bruteforce algorithm of matching used in
ASIFT.

No single detector solved all image pairs. The Hessian-
Affine with DENSE configuration successfully solved 14 out
of 15 image pairs and outperformed other detectors and con-
figurations in the number of inliers, however, at the expense of
the highest computational cost. MSER with no synthesis and in
the SPARSE configuration is the fastest and could solve 10 out
of 15 image pairs. The MODS algorithm solves all image pairs
and saves computational time on processing of the easy pairs
at the cost of a small matching overhead on the hard cases.
Also, MODS is the fastest algorithm in 7 cases, and in another
2 cases it is just ∼ 10% slower than the fastest configuration.
The difference results of MODS step 2 and MSER SPARSE are
caused by randomization in RANSAC and kd-tree building.

Fig. 6 shows the breakdown of the computational time.
SIFT description with the dominant orientation estimation take
50% of the time. Note that the whole process is almost linear
in the area of the synthesised views. The only super-linear part,
matching, takes only 10% of the time.

0 20 40 60 80 100

HessAff

MSER

DoG

MODS

Time [%]

 

 

Synthesis
Detection
Orientation
Description
Matching
RANSAC
Misc

Fig. 6. Percentage of time spent in the main stages of the matching with view
synthesis process on a single core, DENSE configuration. SIFT description, i.e.
the dominant gradient estimation and the descriptor computation is the most
time-consuming part.
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TABLE I. THE EXTREME VIEW DATASET – EVD. IMAGE SOURCES: C – CORDES et al. [6], OX – MIKOLAJCZYK et al. [17], M – MOREL AND YU [19].

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Name THERE GRAF ADAM MAG GRAND PKK FACE GIRL SHOP DUM INDEX CAFE FOX CAT VIN

Source C Ox M M EVD EVD EVD EVD EVD EVD EVD EVD EVD EVD EVD

τ – transitional tilt 6.3 3.6 4.8 20 2.9 7.1 6.9 8.0 9.1 6.9 8.5 11.9 22.5 47 49.8

# Image 1 Image 2 # Image 1 Image 2 # Image 1 Image 2

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15
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Fig. 5. Performance of the selected view synthesis configurations defined in Table II. MODS set to find ≥ 15 inliers. Left – the number of correct RANSAC
inliers. The black dashed line marks the level of 10 correct inlier – a minimum for a reliable estimate of two-view geometry. Right – runtime (1 core).

D. MSER vs. blur and scale change

We have tested performance of recommended scale synthe-
sis configuration for MSER on the image pairs most distorted
by blur and scale change from the Oxford [17] dataset. To
allow comparison with [17], the standard SIFT was used
instead of RootSIFT in this experiment. Note that the results
are not fully compatible as we use NN-distance ratio matching
threshold = 0.8 (In [17] no ratio threshold has been used, so
the absolute number of the matches differs a lot. But relative
ratio between detectors performance remains the same). We
have also performed the duplicate filtering procedure, which
reduces the number of correspondences (c.f . Section II).

Figure 7 shows that scale synthesis with 1st geom. incon-
sistent rule improves MSER performance by 60% to 1000%,

solving the most common MSER problems – sensitivity to
blur and scale change. The quality of tentative correspondences
also increases with the proposed scale synthesis configuration
(Figure 7, right). Table V shows the computation time.

TABLE V. MSER MATCHER RUNTIME ON OXFORD [17] DATASET

scale synthesis setup time [s]
{S} = {1} 56.6
{S} = {1; 0.25; 0.125} 61.5

IV. CONCLUSIONS

We have introduced view synthesis to two-view wide-
baseline matching with affine-covariant detectors and shown
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TABLE IV. A COMPARISON OF DIFFERENT VIEW SYNTHESIS AND DETECTOR CONFIGURATIONS (WITH ROOTSIFT). BEST RESULTS ARE HIGHLIGHTED

BY A GREY BACKGROUND. MODS SET TO FIND ≥ 15 INLIERS. RESULTS WITH LESS THAN 8 CORRECT INLIERS ARE IN RED.

Image Correct inliers Time, 1 core [s] Correct inliers/sec
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S

,
θ
m

=
1
5

A
S
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graf 82 322 165 375 1235 653 1.0 81.8 3.0 11.0 45.2 25.5 83.9 3.9 55 34.1 27.3 25.6
index 18 23 24 34 264 143 0.5 54.1 2.2 5.4 20.8 18.3 38.1 0.4 11.1 6.3 12.7 7.8
shop 29 17 73 133 311 130 0.8 79.5 2.5 10.1 36.2 24 35.2 0.2 28.7 13.2 8.6 5.4
adam 20 24 18 86 214 125 0.8 17.8 0.7 1.6 6.0 6.3 26.7 1.3 24.3 54.1 35.6 19.8
there 14 20 12 49 189 94 4.5 150.0 4.5 10.1 43.4 36.9 3.1 0.1 2.7 4.9 4.4 2.5
mag 31 11 28 54 72 59 0.8 16.1 0.8 1.6 5.3 5.4 37.3 0.7 34.4 33.5 13.5 10.9
dum 25 3 0 10 66 28 29.4 158.0 4.8 20.1 60.2 42.5 0.9 0.0 0.0 0.5 1.1 0.7
grand 14 0 9 0 42 28 21.9 131.0 4.2 14.8 50.8 34.6 0.6 0.0 2.1 0.0 0.8 0.8
fox 19 0 19 22 74 25 2.1 47.4 2.1 5.8 18.6 18.2 9.0 0.0 9.3 3.8 4 1.4
cafe 17 4 14 0 45 22 1.8 39.2 1.7 4.5 17.2 15.2 9.3 0.1 8.2 0.0 2.6 1.4
girl 34 0 0 14 59 18 13.1 110.0 2.7 10.0 36.7 27.5 2.6 0.0 0.0 1.4 1.6 0.7
pkk 27 0 6 12 41 10 9.5 75.9 2.4 6.8 24.1 25.5 2.8 0.0 2.5 1.8 1.7 0.4
cat 25 3 0 21 18 6 3.9 36.2 1.4 2.2 7.8 11.7 6.3 0.1 0.0 9.6 2.3 0.5
face 39 0 9 17 24 0 15.6 138.0 3.4 11.3 38.8 32.0 2.5 0.0 2.7 1.5 0.6 0.0
vin 19 0 0 0 6 0 30.3 66.9 2.3 6.3 22.8 21.7 0.6 0.0 0.0 0.0 0.3 0.0
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Fig. 7. MSER performance with and w/o scale synthesis on the most
distorted pairs (1-6) with scale change and blur from [17]. Left – the number
of correct SIFT matches. Right – the proportion of correct matches within
tentative correspondences. The best detectors from [17]: BARK, BOAT, TREES

– Hessian-Affine, BIKES – IBR are shown for comparison.

that matching with the Hessian-Affine or MSER detectors
outperforms the state-of-the-art ASIFT.

To address the robustness vs. speed trade-off, we have
proposed the Matching On Demand with view Synthesis
algorithm (MODS) that uses progressively more synthesized
images and more (time-consuming) detectors until a reliable
estimate of geometry is obtained. We show experimentally
that the MODS algorithm solves matching problems beyond
the state-of-the-art and yet is comparable in speed to standard
wide-baseline matchers on simpler problems.

Minor contributions include an improved method for tenta-
tive correspondence selection, applicable both with and with-
out view synthesis. A modification of the standard first to
second nearest SIFT distance rule increases the number of
correct matches by 5-20% at no additional computational cost.
Finally, we found a simple view synthesis set up costing less
than 10% of time that greatly improves MSER robustness to
blur and scale change.
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