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Abstract. Two optical flow estimation problems are addressed: i) oc-
clusion estimation and handling, and ii) estimation from image sequences
longer than two frames. The proposed ContinualFlow method estimates
occlusions before flow, avoiding the use of flow corrupted by occlusions
for their estimation. We show that providing occlusion masks as an addi-
tional input to flow estimation improves the standard performance metric
by more than 25% on both KITTI and Sintel. As a second contribution,
a novel method for incorporating information from past frames into flow
estimation is introduced. The previous frame flow serves as an input to
occlusion estimation and as a prior in occluded regions, i.e. those with-
out visual correspondences. By continually using the previous frame flow,
ContinualFlow performance improves further by 18% on KITTI and 7%
on Sintel, achieving top performance on KITTI and Sintel.

1 Introduction

Optical flow is a two-dimensional displacement field describing the projection of
scene motion between two images. Occlusions caused by scene motion contribute
to the ill-posedness of optical flow estimation – at occluded pixels no visual cor-
respondences exist. Classical non-CNN methods address this problem by using
regularisation which extrapolates the flow from the surrounding non-occluded
area. Current state-of-the-art CNN algorithms for optical flow use the correla-
tion cost volume [9,18,31,35,26,16] to estimate the most likely correspondences.
Their regularisation is only implicit and the network has to learn when to rely
on the cost volume and when to extrapolate. In both cases, the occluded areas
are processed the same way as non-occluded ones which leads to errors in the
occluded areas as well as in the nearby non-occluded regions.

Approaches dealing with occlusions [26,1] usually first estimate initial for-
ward and backward optical flows. Occlusions are found by a forward-backward
consistency check and occlusion maps are then used for estimating of the final
optical flow. The problem here is that occlusions affect the initial flow and thus
the final output.

As our first contribution, we extend a current state-of-the-art CNN optical
flow method [35] by estimating the occluded areas first, without estimating the
flow, and then passing the occlusion maps to the optical flow estimation network.
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The correlation cost volume for flow estimation is re-used for occlusion estima-
tion. Intuitively, the cost will be low in non-occluded areas with good correspon-
dences and high in occluded regions. While preserving end-to-end trainability,
we accurately estimate occlusions and significantly improve the estimated flow.

Optical flow estimation over more than two frames is a problem whose diffi-
culty stems from the need for the pixels to be mapped to a reference coordinate
system before loss evaluation. The mapping is defined by the unknown optical
flow itself. Hence, it is difficult to apply temporal regularisation before the flow
is known. A typical solution over three frames is to use the middle one as the
reference defining the coordinate system and to compute the forward flow to
the future frame and the backward flow to the past frame and to apply regu-
larisation to these two flows. Published multi-frame approaches assume various
motion constraints: constant rigid motion for three images [41], adaptive tra-
jectory regularisation over five images [38], multi-frame subspace constrains [19]
and other complex motion models [12] over the whole sequence.

We avoid modelling the motion regularity explicitly and let a CNN model
learn the relations of the current and previous optical flows. The CNN is fed pairs
of consecutive images together with the flow computed between the penultimate
and last images. We solve the coordinate system mapping by bilinear warp [20].
The proposed method is not limited to a fixed temporal horizon, the network
uses previously estimated flows and thus, by recursion, all prior frames.

The two above-mentioned problems – occlusion estimation and the use of
multiple frames – are related. Since there are no correspondences in occluded
areas, optical flow cannot be estimated from the cost volume and the CNN
is forced to use regularisation. Knowing the occlusions and given the previous
flow, the network has prior information about the motion to be used when no
correspondences are available. So, the last estimated flow is also fed into the
occlusions estimation as it is a source of information about possible occlusions.

Finally, we add a specialised refinement network [18,29] to the proposed ar-
chitecture. It has been shown to improve fine detail accuracy of the flow, which
is confirmed by our experiments. We integrate this network with both occlusion
estimation and temporal processing.

Contributions. We introduce integrated occlusion estimation, i.e. the algo-
rithm does not operate on an occlusion-ignorant flow estimate, to the state-of-
the-art PWC-net [35]. Second, we propose a novel method that implicitly uses
all previous frames for optical flow estimation. Finally, we add refinement blocks
with additional feature map inputs leading to improved spatial resolution of the
final flow. ContinualFlow is state-of-the-art on several public benchmarks1: 1st
place in Sintel [6]2 and 1st place in the KITTI’15 [27] optical flow benchmark
among Robust Vision Challenge (ROB) participants and 3rd over all optical
flow methods3 with a large margin in precision in occluded areas. Continual flow
ranked 3rd in ROB [32] for the optical flow category.

1 As of the submission date, July 7, 2018.
2 The “Final pass” category.
3 Excluding scene flow methods.
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2 Related Work

Occlusion estimation and occlusion handling. Most optical flow methods
detect occlusions as outliers of the correspondence field [1,13,2] or by a consis-
tency check on the estimated forward and backward optical flows [36,8]. The
optical flow is then extrapolated into the occluded areas. The shortcoming of
such approaches is that the initial flow is already adversely affected by the occlu-
sions. Other methods incorporate occlusion estimation directly into the energy
minimisation [42,37,34] by truncating the data term, avoiding the problematic
post-processing of already affected optical flow. The current best performing
non-CNN method [17] formulates optical flow estimation symmetrically - esti-
mating the forward and backward flows, occlusions and dis-occlusions in a single
joint optimisation.

Most of the current state-of-the-art CNN networks [9,18,31,35] do not ex-
plicitly deal with occlusions. The network in [26] estimates the forward and
backward flows independently and uses the forward-backward consistency check
to estimate the occlusions. The estimated occlusions are then used for network
training only. In LiteFlowNet [16] an occlusion probability map is a function of
brightness inconsistency between the reference frame and warped target frame.
The occlusion probability map is used in a flow regularisation module.

To our best knowledge, no published CNN method estimates occlusions prior
to optical flow estimation to improve the flow in the test phase.

Using multiple frames. Most methods that process more than two frames
impose some kind of regularisation on the flow. Murray and Buxton [28] intro-
duced an approach that uses spatio-temporal smoothness term which regularises
optical flow trajectory over multiple frames. However, the algorithm does not
work well for large displacements. Black et al. [5] extrapolate the flow from the
previous frame as a starting point for the optimisation in the current frame. In
Garg et al. [11], the motion regularisation was relaxed from several rigid motions
into multi-frame subspace constraints allowing non-rigid motions. Multi-frame
subspace constraints were used in [19] over long trajectories. Its extension [12]
allows more complex motions using soft constraints between frames. An adap-
tive trajectory regularisation over five consecutive frames was used in [38], where
optical flow was parametrised w.r.t. the central reference frame. Wulff et. al. [41]
use super-pixel segmentation and a rigid motion assumption over triplets of im-
ages. ProFlow [23] uses three consecutive frames, a CNN regularises non-CNN-
estimated forward (It → It+1) and backward (It−1 → It) optical flows.

While many non-CNN algorithms use more than two frames in some form,
to our best knowledge, no CNN-based method using more frames has been pub-
lished. Unlike the above-mentioned approaches, the proposed method trains the
regularisation from data and does not need any hand-crafted approximations.

The refinement network. The last important component added to the pro-
posed architecture is a specialised refinement network [18,29]. We confirm it
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improves accuracy of fine details of the flow. We integrate the network with
both occlusion estimation and temporal processing.

The refinement network was introduced in [18] for optical flow estimation
as a part of an architecture specialised on optical flow fine detail refinement.
The inputs to the network are the optical flow estimated by previous blocks, the
brightness error of the warped image and the input images themselves. In [18,29],
it was shown that training the first flow estimation block and the refinement
network sequentially leads to improvements in estimated optical flow.

3 ContinualFlow

The proposed ContinualFlow method builds on the state-of-the-art PWC-Net
architecture [35]. We extend the architecture by adding i) occlusion estimation
blocks and use the estimated occlusions for flow estimation, ii) an refinement net-
work to improve fine detail accuracy, and iii) temporal connections for utilising
the previous flow for estimation of both the flow and the occlusions. Fig 1 shows
a schematic of the PWC-Net with both the occlusions estimation blocks and
temporal connections. Another diagram containing also the refinement network
is shown in Fig 2.

The original PWC-Net [35] is composed of two networks: a feature pyramid
extractor and a coarse-to-fine optical flow decoder. The feature pyramid extractor
takes as input two images It and It+1 and encodes them into a pyramid of feature
vectors Fs

t and Fs
t+1 with gradually decreasing spatial resolution (indexed by s)

and with increasing channel dimension. The decoder, in a coarse-to-fine manner,
takes features from the corresponding resolution s, warps features Fs

t+1 using

the up-sampled flow F s−1
t+1 estimated at a coarser iteration s − 1 (if not at the

coarsest resolution) and builds a correlation cost volume - a volume of feature
correlations over a limited displacement range. The cost volume is then fed to
the optical flow estimator, which produces the current scale optical flow F s and
the process is repeated for higher resolution. We refer the reader to the original
paper for further details. We are using the version with DenseNet [15] and a
context network as described in the original paper.

3.1 Occlusion Estimation

PWC-Net and many other state-of-the-art approaches rely on the correlation
cost volume for estimation of the optical flow [9,18,31,35,26]. Apart from being
useful for the flow estimation, it is also indicative of possible occlusions. Intu-
itively, when the cost for all displacements for some pixel is high, the pixel is
likely occluded in the next frame. In order to utilise this information, we propose
to connect the occlusions estimator directly after the cost volume computation,
even before any flow is estimated as shown in Fig 1. The output of the occlu-
sions estimator is then sent to the optical flow estimator together with the cost
volume itself. This way the occlusion estimation does not rely on the imprecise
flow estimation and the flow estimator benefits from the additional input. Same
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Fig. 1: ContinualFlow - optical flow and occlusion decoder, which extends the
PWC-Net [35] flow decoder for occlusion estimation. The feature pyramid ex-
tractor (in blue) is a convolutional network which produces a feature pyramid
given an input image. A correlation cost volume is computed on each scale from
warped features from the second frame using up-sampled flow estimated at a
coarser level of decoder. The cost volume is used to estimate occlusions in occlu-
sion estimator (in magenta). The cost volume and the occlusion map are inputs
to the optical flow estimator. For clarity, the diagram shows only three of the six
levels of the ContinualFlow pyramid extractor. The output resolution is quarter
of the input reference frame. Please, refer to the text for additional network
details and inputs explanation.

as the flow estimator, the occlusions estimator works in a coarse-to-fine manner
with higher resolution estimators receiving also up-sampled flow estimate from
the lower resolution.

In experiments, we use an occlusion estimator with five convolutional layers
with D,

⌊
D
2

⌋
,
⌊
D
4

⌋
,
⌊
D
8

⌋
and two output channels (occluded/not occluded maps),

where D = 89 in our case (the number of correlation cost volume layers + 8).
All layers use ReLU activation except for the last one, which uses soft-max.

3.2 Refinement Network

It was shown that a specialised refinement network which processes the output
of the initial network boosts the precision of the flow estimate, especially the fine
details recovery [18,29]. The refinement network takes several extra inputs, like
the current estimate of the optical flow, image It+1 warped back to time step
t and brightness error between It and the warped It+1, and produces a refined
optical flow [18].

The refinement network used in ContinualFlow has the same architecture as
the optical flow decoder, but without the DenseNet connections. The main differ-
ence is in the network inputs. Instead of using the input images and their warps
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Fig. 2: Block diagram of ContinualFlow. Feature extractors with shared weights
compute a feature pyramid from the input images. Features are input to the opti-
cal flow and occlusion decoder and the refinement blocks. The decoder estimates
the optical flow and the occlusion map from the input features and from the tem-
poral connection – the warped optical flow from the previous time step. Optical
flow and occlusion maps are finalised by the refinement blocks.

as in [18], we use the features from the feature pyramid on the corresponding
scale and their warps as a richer input representation. The input error channel
for these features is computed as a sum of the L1 distance and structure simi-
larity (SSIM) [39]. We applied the refinement two times, additional refinements
did not improve the accuracy in our experiments.

3.3 ContinualFlow Estimation over Image Sequence

We use temporal connections, which give the optical flow decoder, the occlusions
decoder and the refinement network an additional input: the flow estimated
in the previous time step (see the orange arrows in Fig 1 and Fig 2). When
processing sequences longer than two frames these connections allow the network
to learn typical relations between the previous and current flows and use them
in the current frame flow estimation.

However, as discussed in Sec 1, the coordinate systems in which the two
flows are expressed differ and need to be transformed onto each other in order
to apply the previous flow to the correct pixels in the current time step. Here we
describe two such transformations, forward and backward warping, and we test
them independently as well as in combination (concatenation of both) in Sec 4.

Forward warping transformation. Forward warping transforms the coordi-
nate system from time step t− 1 using the optical flow Ft−1 itself. The warped
flow F̂t−1 is computed as

F̂t−1 (x + round(Ft−1 (x))) = Ft−1 (x) , (1)
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for all pixel positions x. For positions to which the flow Ft−1 maps more than
once we preserve the larger of the mapped flows. This prioritises larger motions,
thus faster moving objects. Although the experiments show usefulness of this
warping, the main disadvantage of this approach is that the transformation is
not differentiable. Thus, the training cannot propagate gradients through this
step and relies on the shared weights only.

Backward warping transformation. Alternatively, the coordinate system
could be transformed using the backward flow Bt from frame t to frame t − 1.
This requires an extra evaluation of the network, but then the warping is a direct
application of the differentiable spatial transformer [20]. Thus, in this case the
gradients are propagated through the temporal connections during training. A
disadvantage of this approach is the computationally expensive computation of
the backward flow.

Combining forward and backward warping. It is possible to use both warp-
ings at the same time. In ContinualFlow we combine forward warped previous
flow, backward warped previous flow and backward flow by simply concatenat-
ing their outputs. The only difference becomes that the previous flow input has
nine channels: three times two for the flow warps and a validity masks for each
warp (set to zero if the measurement is not available, e.g. at the beginning of
the sequence).

Multi-frame sequence initialisation. The network is fed a pair of input
images and the previously estimated flow. For the first frame in the sequence, no
previous flow estimation is available. We estimate the initial optical flow between
the first and second frame twice. First, we mask out the temporal connection
and, in the second estimation, we use the first estimate as a temporal input.

3.4 Training Loss

The network is trained end-to-end with a weighted multi-task loss over the flow
and occlusions estimators at all scales,

L =

S∑
s=1

αsLs
F + αO

S∑
s=1

αsLs
O , (2)

where αs is the weight of individual scale s losses and αO is the occlusion esti-
mation weight. The sums are over all S spatial resolutions. The flow estimator
loss LF is the same as in PWC-Net, i.e. the end-point error

Ls
F =

∑
x

γ(x)||F s(x)− F s
gt(x)||2 , (3)

where F s is the estimated optical flow at scale s, F s
gt the corresponding ground-

truth optical flow and γ is the valid ground-truth flow mask (one for valid flow
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and zero otherwise). The sum is over all pixel positions. As in [43,7] we adopted
the weighted pixel-wise cross-entropy loss for occlusion map estimation

Ls
O =− wnoc

∑
x:Ogt(x)=1

ρ(x) log Pr(O(x) = 1|X)

− wocc

∑
x:Ogt(x)=0

ρ(x) log Pr(O(x) = 0|X) ,
(4)

where Pr(O(x) = 1|X) is computed using soft-max σ(·) function on the occlu-
sion estimator output O, Ogt is the ground truth occlusion map, ρ the valid
ground-truth occlusion mask used for masking out images without ground-truth
occlusions, and wocc and wnoc are the fractions of occluded and non-occluded
ground truth pixels respectively.

As suggested by [35], we modify this loss for the final fine-tuning on the
most complex evaluation benchmark datasets. Here we change the Ls

F loss to
the generalised Charbonnier loss (with q = 0.4, ε = 0.01 as in [35]):

Ls
F =

∑
x

γ(x)
(
|F̂ s(x)− F s

gt(x)|+ ε
)q
. (5)

4 Experiments

Training details. The ContinualFlow network is trained using a curriculum
learning approach [4] starting from a dataset with less complex motions and
increasing gradually the task complexity [18,35]. First, we train on FlyingChairs
dataset [9] using the training parameters introduced in [35] and following the
learning rate schedule from [18]. We do not use rotation, scaling and trans-
lation augmentations. Since the FlyingChairs dataset contains only two frames
sequences and no occlusion ground truth, we cannot train the full ContinualFlow
model with temporal connections and the occlusion map estimation. Instead, we
use it for pre-training the PWC-Net part of the ContinualFlow network. The
network is trained for 1200k iteration and the learning rate 1e-4 is divided by
2 each 200k iteration, starting from 400k. Images in a batch of size eight are
randomly cropped to 448× 384 px.

Next, the all parts of the ContinualFlow network are trained on the Fly-
ingThings dataset [25]. Since occlusion maps were not available for this dataset,
we computed them using the available backward and forward ground truth flows
and the object segmentation masks. The mask Ot(x) is set to “occluded” for pixel
x when the object labels Lt(x) and Lt+1(Fgt(x)) differ or the bi-directional con-
sistency between backward and forward flows differs by more than one pixel.
The network is trained for 500k iteration and the learning rate, set to 1e-4 for
the first 200k iterations, is divided by 2 at that point and after 100k iterations.
First, we train the network without the refinement. Then, only the refinement
is trained while all other weights are fixed. Images in the batch of size four are
randomly cropped to 768 × 384 px. After cropping, optical flow pointing out of
the frame is labelled as occluded.
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image t image t+1 GT 1/4 resolution GT estimation

Fig. 3: Example estimated occlusion maps on the Sintel (final) dataset, our
validation split. ContinualFlow estimates occlusions up to quarter resolution.

Finally, the ContinualFlow is trained on data from six datasets: Driving [25],
KITTI’15 [27], VirtualKITTI [10], Sintel [6], HD1K [22] and the FlyingChairs
small motions dataset [18]. These datasets, except for FlyingChairs, contain
sequences longer than two frames and are suitable for the training of temporal
connections. We used the first image twice for the FlyingChairs dataset to obtain
the same batch size for all input data, the loss on the estimate of the (zero)
flow F 0,1 is not used. Dense occlusion maps are available only for the Sintel
and Driving datasets. We set occlusion estimation loss to zero on the rest. The
network is fine-tuned for 500k iteration and the learning rate, set to 1e-5 for the
first 200k interactions, is divided by 2 at that point and after 100k iterations.
Images in batches of size four are randomly cropped to 768× 320 px. We sample
images from all datasets uniformly.

We set weights for individual scales as in [35]. Maximal displacement in the
cost volume is set to four. The same scale weights are set to train the refinement
network and for the occlusion map estimation. The occlusion estimation weight
αO is set to 0.1. All experiments are trained with the ADAM optimiser [21] and
0.0004 weight decay. All parts of the network are implemented in TensorFlow.

The ContinualFlow training has the same three phases as training of PWC-
Net. Only when training the refinement network separately, there is an additional
phase which updates only the refinement parameters as mentioned above. Con-
tinualFlow without the refinement network has 9.6M parameters, 0.8M more
than the PWC-Net. The refinement network adds 5.0M parameters, it is based
on the PWC-Net-small architecture. ContinualFlow runs at 8 FPS on KITTI-
resolution of 1240x375 px.

In the following, we focus on the Robust Vision Challenge [32], where one
trained model with the same parameters has to be evaluated on four individual
benchmarks [27,6,22,3] instead of fine-tuning for each particular dataset inde-
pendently.

4.1 Ablation Study

In this section, we experimentally evaluate the individual contributions and de-
sign choices for the ContinualFlow network trained on FlyingChairs [9] and fine-
tuned on FlyingThings [25] as described above. Below, the term baseline refers to
our TensorFlow implementation of PWC-Net. Unlike the PWC-Net settings [35],
we trained the network without rotation, scaling and translation augmentation
of input frames.
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Occlusion map learning. Table 1 shows the results of optical flow estima-
tion with and without occlusion learning. Temporal connections are not used.
Application of the occlusion map estimator improves performance on all tested
datasets not only in occluded regions but also in all non-occluded regions. Fig 3
shows example estimated occlusion maps.

The specialised refinement block improves results of the estimated optical
flow as is shown in [18]. Table 1 compares the optical flow estimation with and
without the refinement block. No temporal connections are used. The refinement
block improves the estimated optical flow, especially in occluded areas.

Influence of the coordinate warping methods. We evaluated the three ap-
proaches for warping the previous flow estimate introduced in section 3.3. Results
for individual datasets are shown in Table 1. Forward warping Wf is beneficial
for the KITTI dataset [27] and the Sintel Clean dataset [6], while backward
warping Wb is more suitable for the complex Sintel Final sequences. The com-
bination of both, Wbf , is the most accurate on FlyingThings sequences [25]. All
evaluated variants use the occlusion estimator in the decoder and no refinement.

Temporal connection placement. We experimented with passing the warped
optical flow from previous frame to different network components, thus creat-
ing different temporal connections. In one variant, only the refinement network
received the previous frame flow estimates. In another variant, all temporal con-
nections as depicted in Fig 2 were used. Table 1 shows how feeding these con-
nections with different warpings influences the estimated flow. The best results
were obtained with temporal connections leading into both the decoder and
refinement networks and the combination of forward and backward warpings.

Number of refinement blocks. Table 1 shows results for 1, 2, 3 and 5 stacked
refinement networks. Stacking more than two refinement networks is not ben-
eficial. Thus the final network architecture contains only two refinements. All
evaluated variants use the occlusion estimator and warps the previously esti-
mated optical flow using both warping methods in the first part of the network
and the refinement.

Multi-frame sequences initialisation For the first frame in the sequence,
no previous frame flow estimate is available to be passed to the temporal con-
nections. Unsurprisingly, the estimation on the first frame is usually slightly
worse than at the consecutive frames. We tested two initialisations of the first
frame flow estimation: (i) no flow (zero displacements) instead of the previously
estimated optical flow and, (ii) a two-pass initial estimation of the currently esti-
mated optical flow as described in Section 3.3. We evaluated both approaches for
an increased length of the sequence on different datasets. As shown in Table 1,
the two-pass initialisation leads to quicker convergence and is most beneficial for
the first optical flow estimation in the sequence.
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Table 1: Ablation study of ContinualFlow. The leftmost column codes
the experiment configurations: occlusion estimator (+OC); refinement network
(+R); temporal connection with forward warping (Wf), backward warping (Wb)
and both warping methods (Wbf); previous flow input in the refinement (RWx);
and two pass (2pass) initialisation of the first frame of the sequence N frames
long. Performance measure are the KITTI 3-pixel error metric (column Fl) and
the end-point error (in pixels, all other columns) for background (bg), fore-
ground (fg), occluded (occ), non-occluded (noc) and all (all) pixels. The best
performance in bold. All models trained on FlyingChairs and fine-tuned on Fly-
ingThings. See section 3 for details.

FlyingThings KITTI’15 noc KITTI’15 occ Sintel Clean Sintel Final
all occ-bg occ-fg noc-bg noc-fg Fl-all all Fl-all all all occ noc all occ noc

common: baseline Occlusion map learning

22.79 25.31 53.88 10.64 26.78 37.73 7.82 43.56 14.16 3.45 9.29 2.38 5.36 12.03 4.17
+OC 18.01 18.27 47.53 7.10 20.13 23.98 5.22 31.12 10.60 2.45 7.46 1.53 4.02 9.99 2.91

common: baseline+OC The specialised refinement block

18.01 18.27 47.53 7.10 20.13 23.98 5.22 31.12 10.60 2.45 7.46 1.53 4.02 9.99 2.91
+R 17.80 17.49 45.90 7.31 21.46 21.14 4.78 28.61 9.83 2.30 7.11 1.42 3.87 9.68 2.76

common: baseline+OC Influence of coordinate warping methods

18.01 18.27 47.53 7.10 20.13 23.98 5.22 31.12 10.60 2.45 7.46 1.53 4.02 9.99 2.91
+Wf 14.90 14.89 38.75 6.55 16.69 20.78 4.13 27.85 8.28 2.18 6.67 1.37 4.04 9.48 3.03
+Wb 16.33 17.10 39.68 6.49 20.72 26.52 4.56 33.80 10.64 2.58 7.49 1.70 3.79 9.27 2.80
+Wbf 14.64 14.84 36.05 6.10 17.65 23.64 4.56 30.92 9.46 2.36 6.79 1.59 3.81 8.97 2.87

common: baseline+OC Temporal connection placement

+RWf 16.10 15.87 38.71 6.76 19.01 23.11 4.88 30.35 9.82 2.27 6.89 1.45 3.92 9.34 2.90
+RWbf 14.90 15.35 37.55 5.78 17.69 24.54 4.84 32.18 10.12 2.35 6.93 1.54 3.55 8.62 2.65
+Wbf 14.64 14.84 36.05 6.10 17.65 23.64 4.56 30.92 9.46 2.36 6.79 1.59 3.81 8.97 2.87
+Wbf+ RWbf 14.28 14.24 35.58 5.82 17.56 21.72 4.41 29.48 9.33 2.26 6.66 1.49 3.70 8.81 2.76

common: baseline+OC+Wbf Number of refinement blocks

+1xRWbf 14.28 14.24 35.58 5.82 17.56 21.72 4.41 29.48 9.33 2.26 6.71 1.47 3.76 8.93 2.80
+2xRWbf 14.26 14.13 35.60 5.78 17.62 21.77 4.45 29.62 9.35 2.26 6.72 1.47 3.76 8.96 2.79
+3xRWbf 14.30 14.13 35.71 5.75 17.77 21.98 4.50 29.86 9.40 2.26 6.74 1.47 3.77 8.99 2.80
+5xRWbf 14.43 14.24 36.16 5.75 17.93 22.48 4.58 30.35 9.49 2.28 6.80 1.48 3.80 9.03 2.83

common: baseline+OC+Wbf+RWbf Multi-frame sequence initialisation

2 frames - - - - - 25.08 5.50 32.59 11.56 2.48 7.72 1.48 3.84 9.64 2.75
2 frames+2pass - - - - - 23.06 5.03 30.92 11.00 2.41 7.60 1.41 3.74 9.48 2.66

3 frames - - - - - 21.72 4.41 29.48 9.33 2.26 6.71 1.47 3.76 8.93 2.80
3 frames+2pass - - - - - 21.65 4.36 29.42 9.23 2.26 6.71 1.48 3.73 8.92 2.76

4 frames - - - - - 21.53 4.30 29.32 9.05 2.23 6.59 1.46 3.75 8.83 2.82
4 frames+2pass - - - - - 21.54 4.30 29.33 9.02 2.24 6.59 1.46 3.73 8.80 2.80

5 frames - - - - - 21.48 4.25 29.27 8.92 2.21 6.51 1.45 3.80 8.85 2.87
5 frames+2pass - - - - - 21.48 4.25 29.28 8.92 2.21 6.52 1.46 3.79 8.83 2.86

10 frames - - - - - 21.49 4.24 29.28 8.90 - - - - - -
10 frames+2pass - - - - - 21.48 4.24 29.27 8.89 - - - - - -
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image overlay ground truth ProFlow ROB [23] PWC-Net ROB [35] ContinualFlow ROB

Fig. 4: Example results on Sintel Final-pass for ContinualFlow closest competi-
tors in the Robust Vision Challenge. End-point-error for each method is shown
for particular scenes.

4.2 Comparison with State of the Art

We start by noting that a single model was used for all benchmarks without fur-
ther fine-tuning to individual datasets. We were not able to evaluate occlusions
on public benchmarks since there is no benchmark available for occlusion map
estimation. ContinualFlow achieves recall 0.87 and F1-score 0.83 for the valida-
tion split of FlyingThings [25] and recall 0.72 and F1-score 0.48 for Sintel [6].
Examples of estimated occlusion maps are shown in Fig 3.

KITTI’15 optical flow benchmark [27] results are reported in Table 2. Fl refers
to the KITTI evaluation metric – the percentage of pixels with end-point-error
greater than 3 px. Our method ranked first among methods participating in the
Robust Vision Challenge (ROB) and third for all optical flow estimation methods
with score 10.03% on all evaluated pixels. We are interested in ROB Challenge
since methods outside ROB fine-tune on each particular dataset, resulting in
over-fitting, which we wanted to avoid.

Sintel. Fig 4 shows visual comparison with the closest competitors. Results of
ROB participants on the Sintel dataset are reported in Table 3. ContinualFlow
ranked first on Sintel Final for the all pixels end-point-error evaluation. As we are
focused on occlusion estimation and handling, we point out that ContinualFlow
achieves best results for estimation in occluded areas with significant margin.

Robust Vision Challenge. A snapshot of the leaderboard4 of optical flow
Robust Vision Challenge [32] is shown in Table 4. ContinualFlow is built on our
implementation of PWC-Net [35]. While ContinualFlow did not achieve a better
results in the ROB than the original PWC-Net, the experiments show that our
contributions outperform the results of our baseline.

The source code for PWC-Net was released by the authors just days be-
fore the ACCV submission deadline, so a direct comparison was possible only

4 As of July 7, 2018.
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Table 2: KITTI’15 optical flow benchmark results of Robust Vision Challenge
participants as of June 7, 2018. Performance measured by the KITTI 3-pixel
error metric (column Fl) and the end-point error (in pixels, all other columns)
for background (bg), foreground (fg), occluded (occ), non-occluded (noc) and
all (all) pixels. The best results in bold. Anonymous entries in time of paper
submission are marked [anon]. Methods are sorted according to Fl-all, the default
ranking for KITTI.

KITTI’15 occ (%) KITTI’15 noc (%)
Fl (%) bg fg all bg fg all

ContinualFlow ROB 8.54 17.48 10.03 5.90 14.99 7.55
LFNet ROB [anon] 11.18 10.20 11.01 6.14 6.87 6.27
PWC-Net ROB [35] 11.22 13.69 11.63 7.12 10.29 7.69
ProFlow ROB [23] 14.15 21.82 15.42 8.44 17.90 10.15
FF++ ROB [33] 15.32 19.27 15.97 7.82 15.33 9.18
ResPWCR ROB [anon] 16.63 16.18 16.55 10.10 12.23 10.49
AugFNG ROB [anon] 19.77 9.95 18.14 13.75 6.71 12.47
DMF ROB [40] 30.74 30.07 30.63 19.32 25.60 20.46

Table 3: Sintel benchmark results for Robust Vision Challenge participants.
Performance measured the end-point error (EPE, in pixels) for matched (noc),
unmatched (occ) and all (all) pixels. The best results in bold. Anonymous entries
marked [anon]. Methods are sorted by EPE all, the default ranking for Sintel.

Sintel Final Sintel Clean
all noc occ all noc occ

ContinualFlow ROB 4.528 2.723 19.248 3.341 1.752 16.292
PWC-Net ROB [35] 4.903 2.454 24.878 3.897 1.726 21.637
ProFlow ROB [23] 5.015 2.659 24.192 2.709 1.013 16.549
AugFNG ROB [anon] 5.500 2.978 26.052 3.606 1.603 19.939
LFNet ROB [anon] 5.966 3.278 27.893 4.815 2.333 25.065
FF++ ROB [33] 6.496 2.990 35.057 3.953 1.148 26.836
ResPWCR ROB [anon] 6.530 3.849 28.371 5.674 3.138 26.380
DMF ROB [40] 7.475 3.575 39.245 5.368 1.742 34.899
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Table 4: Robust Vision Challenge. Performance measured by ranking of all met-
rics in individual datasets. The best results in bold. Anonymous entries marked
[anon]. Methods are sorted by the Robust Vision Challenge rank.

Middlebury KITTI MPI Sintel HD1K

PWC-Net ROB [35] 2 4 2 1
ProFlow ROB [23] 1 6 1 4
ContinualFlow ROB 5 2 3 3
LFNet ROB [anon] 7 1 6 5
AugFNG ROB [anon] 9 3 4 2
FF++ ROB [33] 3 5 5 6
DMF ROB [40] 4 8 7 8
ResPWCR ROB [anon] 6 7 8 7
WOLF ROB [anon] 8 9 9 9
TVL1 ROB [30] 10 10 10 10
H+S ROB [14] 11 11 11 11

through ROB vision challenge submissions, which are limited in number by the
challenge rules. We did our best to follow the paper regarding the architecture,
parameters and training. Later, when analysing the results, we found two main
differences: i) Due to implementation issues, we omitted rotation and scaling
data augmentations, which in retrospect could harm the performance signifi-
cantly as suggested in [24]. ii) Our implementation is in Tensorflow whereas the
original implementation is in Caffe, so some of the suggested training parameter
values may need to be fine-tuned for this framework. Still, the ablation study
clearly shows the impact and significance of the novelties (occlusion estimation,
feeding the previous estimate of optical flow as input).

5 Conclusion

The ContinualFlow network for optical flow estimation was introduced, with two
novelties - occlusion estimation integrated in the optic flow computation and
the use of the optic flow from the previous time instant, and, through recursion,
of all prior flows. We showed that the two contributions improve performance,
especially in occluded areas or areas close to motion discontinuities. In evaluation
on standard dataset ContinualFlow is top ranked in Sintel and 3rd in KITTI.
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Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: ICCV. pp. 2758–2766 (Dec 2015)

10. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object
tracking analysis. In: CVPR (2016)

11. Garg, R., Pizarro, L., Rueckert, D., Agapito, L.: Dense multi-frame optic flow for
non-rigid objects using subspace constraints. In: ACCV (2010)

12. Garg, R., Roussos, A., Agapito, L.: A variational approach to video registration
with subspace constraints. IJCV (3) (2013)
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