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ABSTRACT

In the real world, a scene is usually cast by multiple il-
luminants and herein we address the problem of spatial illu-
mination estimation. Our solution is based on detecting gray
pixels with the help of flash photography. We show that flash
photography significantly improves the performance of gray
pixel detection without illuminant prior, training data or cali-
bration of the flash. We also introduce a novel flash photog-
raphy dataset generated from the MIT intrinsic dataset.

Index Terms— spatial illumination estimation, gray
pixel, flash photography, color constancy

1. INTRODUCTION

We address the illumination estimation problem which aims
to measure the chroma of illumination in order to remove the
color-bias from a captured image [1]. Illumination estima-
tion can help in high-level vision tasks, e.g. object recogni-
tion, tracking [2] and intrinsic image decomposition. There
exists a large number of related works, from the traditional
non-learning approaches [3] to recent deep learning based ap-
proaches [4, 5, 6]. However, the vast majority of these works
concentrate on the case of a single global illumination which
is often an invalid assumption [7]. In this paper, we explore a
more-complex less-optimistic setting – mixed illumination 1.

Spatially-varying illumination refers to that on a captured
scene, each pixel captures different number of light phantoms
when the camera shutter is on. In other words, all pixels do
not share the same configuration of lights [7], which is the
default assumption for single-illumination estimation. Com-
pared to the single global illumination setting, the mixed illu-
mination setting better corresponds to the real world [8], but is
more challenging clearly, as it extends the ill-posed problem
from one point to a spatial map [7], without extra knowledge
or input.

To circumvent the hardness that spatially-varying illumi-
nation brings, efforts are put as follows: user guidance or hu-
man interaction is given as a supervisory signal [9, 10]; small
patch is assumed to be cast by only one light [11]; light color

1We traverse related works and there exists multiple terms referring to the
same thing (which may confuse readers), i.e. mixed illumination, spatially-
varying illumination, multiple illumination, mixed lighting condition.
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Fig. 1. A multi-illuminant image (ambi), Gray Pixel [13] out-
puts an erroneous prediction (single value, pred) compared to
the groundtruth (GT). By virtue of the flash image (+flash)
the proposed flash photography gray pixel provides an ac-
curate spatial estimate (pred) and faithful corrected image
(corr img).

and number need to be known before experiments [12]. Un-
like these methods, we make use of flash photography.

Flash photography refers to image processing techniques
which use non-flash/flash image pairs. This technique is well
adopted to spatial illumination estimation [14, 15], which as-
sume each patch illuminated by one light and obtain decent
results. Hui et al. [7] proposed a closed-form solution of spa-
tial illumination for the case of a calibrated flash. In essence,
flash calibration in [7] equals to knowing the “groundtruth”
surface albedo in a flash-only image (thus yield “groundtruth”
illumination). What’s more, flash may appear in other forms,
i.e. varying sunlight, cast shadow, which may be hard to cali-
brate.

In this paper, we propose a novel spatial illumination es-
timation method, using flash photography, without need of
flash calibration and any other illuminant prior. Our method
relies on gray pixel detection [13]. The original work as-
sumes Lambertian surfaces, and then revisited and improved
by [16, 17]. The original and extended gray pixel methods
however fail in the case of mixed illumination (the top row
in Fig. 1), but we analytically show how flash photography
circumvents the problem and “lightens” gray pixel photomet-
rically and in performance (bottom row in Fig. 1). The inter-
play of flash photography and gray pixel enables us to achieve
a largely increased performance on our synthesized labora-
tory dataset and some real-world images, than running gray
pixel methods alone, without knowing the flash color.

Our contributions are three-fold:
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• We revisit and revise the gray pixel methods for the
case of mixed illumination.

• Leveraging flash photography and the gray pixel method,
we propose a novel learning-free and well-performing
method for spatial illumination estimation.

• We propose a novel flash-photography dataset for
benchmarking multi-illuminant methods. The dataset
is based on the MIT intrinsic dataset.

The rest of this paper is organized as follows. Section
2 revisits gray pixel and its variants before we introduce the
flash-photography gray pixel in Section 3. In Section 4 we de-
scribe the MIT intrinsic based dataset for our task. Section 5
covers the experiments and results. We conclude in Section 6.

2. GRAY PIXEL

Assuming one light source and narrow sensor response, Gray
Pixel [13] is derived from the Lambertian model, given as:

Ic(p) = Rc(p) max(n(p)ᵀs, 0) lc, (1)

which shows the color channel c at the location p in image I
is a function of a surface albedo R, surface normal n, light
direction s and illumination color l.

Following the procedure in [13], applying log and a Mex-
ican hat filter δ on Eq. 1 yields:

δ log Ic(p) = δ logRc(p) + δ log max(n(p)ᵀs, 0) + δ log lc.
(2)

A single light casting a small local neighborhood (the same
color and direction), Eq. 2 simplifies to:

δ log Ic(p) = δ logRc(p), (3)

which is the core of gray pixel. δ log Ic(p) = δ log Ic
′
(p),

∀c, c′ ∈ {R,G,B} defines a ”pure gray pixel”. To rank pixels
w.r.t. “grayness”, [13] defines the following grayness func-
tion, up to a scale:

g(p) =
∑

c∈R,G,B

(δ log Ic(p)− δ̄ log I(p))2/δ̄ log I(p), (4)

where δ̄ log I(p) is the mean value of δ log Ic(p). This
method works robustly with single-illumination scenes where
diffuse reflection (the Lambertian assumption) is dominant.

Then [16] augments the above Gray Pixel by replacing
Eq. 4 with the following luminance-independent function:

g′(p) = cos−1
(

1√
3

‖δ log I(p)‖1
‖δ log I(p)‖2

)
, (5)

where ‖ · ‖n refers to the `n norm. g′(p) = 0 refers to pure
gray pixel. To remove spurious color pixels, [16] applies a
mean shift clustering to choose the strongest mode – domi-
nant illumination vector.

The mechanism to detect gray pixel is further improved
in [17]. Different to [13, 16], which are based on the Lam-
bertian model, Qian et al. [17] uses the dichromatic reflection
model [18] to derive a set of more strict constraints for gray
pixels:

g′′(p) = ‖[ δ(log(IR)− log(|I|)), δ(log(IG)− log(|I|))] ‖2,
(6)

where |I| refers to (IR + IG + IB). We refer readers to the
original paper for more details. In Section 5 we report their
performance in a mixed-lighting dataset and show how flash
photography improves them.

3. FLASH GRAY PIXEL

In the sequel, we first investigate what will happen to the ex-
isting gray pixel methods in the case of mixed illumination.
Then we propose a novel gray pixel method using flash pho-
tography, termed as Flash Gray Pixel.

Here we do analysis on the original Gray Pixel [13], but
similar conclusion for [16, 17] can be inferred in an analogue
manner. A scene is illuminated byN light sources or arbitrary
type and color. To describe the image formation process in
this case, Eq. 1 is modified to:

Ic(p) = Rc(p)
∑
i

λi(p) l
c
i , (7)

where λi(p) represents the shading term max(n(p)ᵀsi, 0).
Eq. 3 changes to:

δ log Ic(p) = δ logRc(p) + δ log(
∑
i

λi(p) l
c
i ) . (8)

Since that is a mixed illumination image, the light configura-
tion varies from pixel to pixel, making the right most term in
Eq. 8 non-zero and therefore Eq. 3 fails. This finding explains
that mixed illumination hinders the performance of the gray
pixel method, which motivates us to leverage flash photogra-
phy.

When a flash light is present, the flash image If is ex-
pressed as:

Icf (p) = Rc(p)(
∑
i

λi(p) l
c
i + λf (p) lcf ), (9)

where λf (p) is the shading term of flash light at the position
p and lf the unit-norm chroma vector. Subtracting Eq. 7 from
Eq. 9, we get a flash-only image Ifo:

Icfo(p) = Rc(p)λf (p) lcf , (10)

which is a more solid ground for searching gray pixels. In
other terms, flash image helps to remove the negative effect
of spatially-varying light configurations and gray pixels are
now flash gray pixels.
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Fig. 2. Example images from the generated flash photography dataset. Each sample is a triplet: {no-flash image I , flash-on
image If , illumination ground truth map}. Images are generated from the MIT intrinsic dataset by changing the colors and
mixing the original directional illumination images.

Flash gray pixels can be found from the grayness map of
a residual flash/no-flash image. To select flash gray pixels
robustly, we follow [13] to compute flash-only illumination
component for each pixel: K-means is used to cluster the top
N% gray pixels into preset M clusters; then the illumination
at location p is computed using:

Lc
fo(p) =

M∑
m=1

ωmL
c
m, (11)

where Lm refers to the average illumination for the cluster m
and ωm controls the connection between the pixel I(x, y) to
the cluster m, unfolded as:

ωm =
e−

Dm
2σ2∑M

n=1 e
− Dn

2σ2

, (12)

whereDm is the Euclidean distance from the pixel to the cen-
troid of the cluster m, encouraging nearby pixels to share a
similar flash-only illumination.

Combining the flash-only illumination Lc
fo(p) with Eq. 9

allows to color-corrected the image Ifo by

Icgray(p) = Icfo(p)/Lc
fo(p), (13)

and the mixed illumination is:

Lc(p) = Ic(p)/Icgray(p) . (14)

By estimating flash-only illumination, color-corrected im-
age and the spatial illumination in a sequential order, we can
capture illumination boundaries (Sec. 5). Flash gray pixel can
be filled by more advanced gray pixel methods for further im-
provement.

4. DATASET

Following [7] (while their dataset is not public), we adapted
the MIT Intrinsic benchmark [19] for our task 2. This dataset

2There are recent datasets that provide flash/no-flash image pairs [20], but
these are unsuitable for our purposes due to unknown illumination number.

was originally collected for the intrinsic image decomposi-
tion task, containing 20 single objects illuminated by uncali-
brated whitish light sources from 10 different directions. This
property allows us to render each image in the combinations
of 1 − 9 directed lights with arbitrary chroma to compose a
new no-flash image I . The 6-th direction is always roughly
frontal and was thus used as the flash source and together with
I forms the flash image If . We generated I and If with vary-
ing number N of light sources, from 2 to 8. Note that even
for the easiest case (N = 2), an obviously-gray patch can
be simultaneously affected by two light sources, violating the
global illumination assumption and failing the original gray
pixel methods as demonstrated in Fig. 2 (proven in Sec.5).

Considering the fact that gray pixel methods are designed
for realistic consumer images ”in the wild” [13] that contain at
least a few gray pixels, we left out the 5 chromatic objects3. In
total, the new dataset contains 105 flash/no-flash image pairs
with spatial illumination map ground truth ((15 objects and 7
choices of N ).

5. EXPERIMENTS

Our setup is the following: we run the three variants of Gray
Pixel methods with flash/no-flash image pairs. On each image
the top 10% gray pixels are selected to cover enough area.
The cluster number is set to M = N , which is the number of
illuminants.

Evaluation metric is the standard average angular error [13].

Results are summarized in Table 1 which shows the perfor-
mance of flash gray pixel on the dataset in Section 4. “GP+f ”
refers to flash gray pixel on the basis of the original gray pixel
method “GP”. Results show that flash photography extensions
of all gray pixel variants [13, 16, 17] systematically improve

3“apple, pear, frog2, potato, turtle”
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Table 1. Results for the gray pixel (GP) variants and their flash photography versions with the mixed illumination dataset. The
values are angular errors averaged over image between the estimated and ground truth illumination maps (lower is better). Gray
denotes the median and white the mean error. N is the number of light sources. The “all” column shows the mean statistics
over all choices of N .

Method/N 2 3 4 5 6 7 8 all

GP [13] 5.86 6.15 5.33 6.65 4.01 5.74 3.73 5.34 3.04 4.93 3.59 4.80 3.37 4.80 4.07 5.49
GP+f 2.37 3.49 2.32 3.85 2.35 3.79 2.39 3.94 2.39 3.80 2.39 3.85 2.39 3.88 2.37 3.80

MSGP [16] 4.91 5.66 5.25 6.03 4.10 5.23 3.52 4.81 3.17 4.42 3.54 4.35 2.87 4.52 4.10 5.00
MSGP +f 2.34 3.17 2.29 3.32 2.34 3.31 2.34 3.40 2.33 3.38 2.50 3.72 2.30 3.46 2.34 3.40

DGP [17] 6.03 6.26 5.26 6.72 4.52 5.89 4.08 5.47 3.42 5.09 3.97 55.07 3.50 4.99 4.13 5.64
DGP +f 2.37 3.73 2.34 4.00 2.37 3.96 2.39 4.01 2.40 3.93 2.40 4.02 2.39 3.99 2.37 3.93

ambi

+flash
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GP+f

MSGP

MSGP+f

DGP

DGP+f

GT

Method/N 2 3 5 8

Fig. 3. Qualitative comparison on estimated illumination of
flash gray pixels, with N light sources (2,3,5,8).

ambi +flash GP GP+f
Fig. 4. Qualitative comparison on color-corrected image of
flash gray pixels in real-world cases. Macbeth ColorChecker
is excluded for illumination estimation.

the results. For all three methods, the improvement over the
whole dataset is over 40% in median and 30% in mean. The
flash photography variants achieve the sufficient color con-
stancy accuracy (≤ 3.0◦) in almost all cases. Fig. 3 illustrates
predicted illumination between gray pixel methods and their
flash variants. It is clear that the original versions cannot find
the fine-grained details of mixed illumination. For example,
the frog back and stomach are cast with different colors that
confuses the original GP methods.

Among all gray pixel methods, the original GP [13] suf-
fers from the mixed illumination the most. MSGP [16] and
DGP [17] perform slightly better, but not to a satisfying de-
gree without the flash. With flash gray pixel, all three methods
perform similarly thus verifying the efficiency of flash pho-
tography. DGP [17] does not perform better than the original
GP which is due to the fact that our dataset does not contain
specular reflectance components.

As the number of diverse illumiants increases, all GP
methods performs better. This can be explained by the fact
that a large number of lights with various colors additively
mix toward a whitish color. Flash gray pixel variants are not
affected by this, obtaining consistent results.

Images from real-world scenes (Fig. 4, images retrieved
from [7]), show that the proposed methods also produce high
quality results (e.g. the white wall is white).

6. CONCLUSION

In this paper we reconsider gray pixel detection through the
medium of flash photography. We find that computing a resid-
ual map from the flash/no-flash pair, gray pixel methods can
perform at full capacity, measuring pixel-wise grayness ef-
fectively and providing spatial color constancy. The method
is pragmatic – it is lightweight, does not need any illuminant
prior, training, flash light calibration or user input. In future,
we will move one step further to what camera manufacturers
are looking for – exploring indoor-outdoor mixed illumina-
tion.
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