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Abstract We explore the computational bottlenecks of the
affine feature extraction process and show how this process
can be speeded up by 2-3 times with no or very modest
loss of performance. With our improvements the speed of
the Hessian-Affine and MSER detector is comparable with
similarity-invariant SURF and DoG-SIFT detectors.

The improvements presented include a faster anisotropic
patch extraction algorithm which does not depend on the
feature scale, a speed up of a feature dominant orientation
estimation and SIFT descriptor computation using a look-up
table.

In the second part of the paper we explore performance of
the recently proposed first geometrically inconsistent near-
est neighbour criterion and domination orientation genera-
tion process.

1 Introduction

Extraction of local image features is an important part of a
wide variety of computer vision algorithms and significant
effort has been put into speeding up this process. Speed
up efforts have been usually directed at similarity covariant
feature detectors or even only translation invariant detectors.
Affine covariant detectors have been avoided because they
are considered, the paper indicates somewhat unfairly, too
computationally expensive (see Table 1).

Method ‘ SIFT SURF HesAff MSER HesAff+ MSER+
Avg. NFeats |1719.23 2192.33 3181.81 1028.02 3787.60 1348.71
Avg. Time [s] 0.90 0.72 5.38 2.83 1.80 0.69

Table 1: Average processing time (without image 10) and
number of features per an image of commonly used feature
extractors and their variants implementing the proposed im-
provements. We compare similarity invariant SIFT (VIFeat
implementation) and SURF (OpenSURF implementation)
and standard implementations of affine invariant Hessian
Affine (HesAff) (implementation by [18]) and MSER [11]
with the improved affine invariant HesAff+ and MSER+.
Values are computed on all images from Mikolajczyk’s
dataset [15] with average image resolution of 0.7MPx.

In the first part of this work, we show that with careful
implementation the processing time of the traditional affine
covariant detectors (such as Hessian-Affine and MSER) is
comparable to similarity covariant detectors. We show that
by loosening the demands on correctness of the patch ex-
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Figure 1: The classical local image feature extraction
pipeline. Measurement region (red) of a detected feature
(blue) is warped from image I to a patch P normalising
the region based on the local affine shape of the feature de-
scribed by matrix A. The image data in the patch are used
to compute the SIFT descriptor.

traction process from the signal processing point of view,
the processing time can be significantly reduced with only a
modest loss in the scale invariance of the extracted descrip-
tors.

In the second part, we investigate another bottleneck
which is the conversion of gradients from cartesian to po-
lar coordinates and we examine existing and propose a new
arctan2 approximation which speed up this process.

Finally we examine strategies for generating tentative
correspondences. The traditional method for SIFT match-
ing is based on the second (to first) nearest neighbour (SNN)
distance ratio. We confirm that using the first geometric in-
consistent nearest neighbour [16] can improve the perfor-
mance even on two view matching without view synthesis.
We investigate the tentative correspondences between distin-
guished regions (DRs) and number of their matched domi-
nant orientations. We show that the standard second nearest
neighbour criterion is able to remove most of the inconsis-
tent correspondences (e.g. two dominant orientations of a
single DR matched to two different DRs in the tested im-
age) and that the knowledge of the multiple orientation cor-
respondences can help to avoid some degenerate hypotheses
in RANSAC.

2 Related Work

The feature extraction process consists of several stages that
are visualised in Figure 1. In the first step, distinguished
regions (DRs) are detected using a feature detector. There
are several ways how to perform that: Scale-space detectors
(DoG [10], Hessian or Harris-Affine [13]) start with building
a scale space pyramid and each layer of the pyramid is anal-
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ysed for local maxima of some differential operator; in the
Fast Hessian, which is how we call the detector part of the
SUREF system [2], the pyramid consists of integral images,
which are used for computing an approximated Hessian op-
erator with Haar wavelets. In the case of Hessian and Harris
Affine detector, the structure tensor is used to estimate an
affine shape of each DR. Another affine invariant detector,
MSER [11], detects DRs finding maximally stable extremal
regions where the affine shape is defined by their interior’s
second moments.

In order to obtain rotationally invariant descriptions,
dominant orientations of each DR are detected. This is usu-
ally done by collecting a weighted histogram of finite deriva-
tives in the feature’s measurement region, which has m-
times bigger measurement scale. This measurement region
is used for descriptor computation and is then normalised to
a small patch (usually of size 41 pixels) used to form invari-
ant descriptor such as SIFT [10].

The process differs for the SURF descriptor, which uses
Haar wavelets for the computation of both the dominant ori-
entations and for the SURF descriptor; therefore, no patch
needs to be extracted. The main advantage of the SURF
detector is its speed, but like the DoG detector, it does not
offer Affine invariance. However, this can be achieved by
using ASIFT [17] or MODS [16] matching startegy which
synthesise views so that images can be matched across sig-
nificant viewpoint changes without a substantial increase in
the processing time.

Another speed-aware approach to feature detection is the
FAST detector [20], which is a classifier learned for corner
detection. However, it examines a neighbourhood of con-
stant size; therefore, it is not scale invariant. This restriction
was addressed in BRISK detector [9].

The computationally expensive part of estimating domi-
nant orientations or computing SIFT descriptor is the con-
version of gradients from Cartesian to Polar coordinates.
This operation can be accelerated in several ways, e.g. in
[8], a circuit design is proposed to accelerate in hardware
this operation. The arctan2 function can be approximated
well by Taylor series expansions, which is often used in
speed-aware implementations [19], [12]. Indeed, this is used
in practice e.g. in VLFeat library [21], where the 3rd or-
der Taylor polynomial is used to approximate the function
arctan((1 — r)/(1 + r)). Similarly, in OpenCV library',
the arctan? is approximated with a 7th degree Taylor series
expansion. Moreover, it is implemented using SSE instruc-
tions.

The extracted local image features are usually used for
image based matching, e.g. in wide baseline stereo prob-
lems. Feature extraction is followed by generation of ten-
tative correspondences, usually using the Lowe’s Second
Nearest Neighbour criterion [10]. Then the tentative cor-
respondences are verified against two-view geometry con-
straints in a RANSAC framework [5].

http://opencv.org/

3 Speeding up patch extraction process

We start with investigation of the main bottlenecks of the
feature extraction process. In order to compare existing fea-
ture extraction algorithms fairly, we measure time needed
for processing hypothetical 1MPx image where a detector
finds 2000 Distinguished regions and extract 3600 descrip-
tors as each distinguished region has 1.8 dominant orien-
tations on average. Because the processing time can also
depend on the size and shape of the detected features, we
compute an average over 16 images of various scenes.

Figure 2 shows the execution time of each stage of the
VLFeat’> DoG detector [21], OpenSURF® implementation
of SURF detector [2], improved implementation of Hessian-
Affine [13] by Perdoch et. al. [18] and MSER [11].

All detectors have been configured in such a way that
they detect features within the same range of scales; the
OpenSURF algorithm was used in two configurations:
FHES+SURF where the initial sampling is set to default
2pxs (i.e. the response is computed for every second pixel)
and FHES-1PX+SURF where the sampling is set to 1px.
All measurements in this article are done with measurement
scale m = 3v/3.

DoG+SIFT [ Pyr.
[ Det.
FHes+SURF [ AffAdpt.
FHes—1px+SURF [0 DomOri.
es-ipxe [ PtchExtr.
HesAff+OPE+SIFT [ ] I Desc.
MSER+OPE+SIFT
0 1 2 3 4
Time [s]

Figure 2: The processing time of feature extraction stages
of commonly used algorithms (VLFeat DoG, OpenSUREF,
HessianAffine by Perdoch [18] and authors’ implementa-
tion of MSER [11] which uses same SIFT implementation
as the HessianAffine). The time was measured on a set of
16 1MPx images. Pyr. stands for the time needed for build-
ing a pyramid (the scale space or the integral images for the
SUREF detector), Det. is the duration of the feature detec-
tion stage. Both of these stages depend mainly on the image
size. AffAdapt. is the duration of iterative affine adaptation
and DomOri. is the time needed for detection of dominant
orientations. AffAdapt. and and DomOri. are normalised to
2000 DRs. The last two stages, PtchExtr., the time needed
to extract patches used for the description (Desc.) are nor-
malised to 3600 features.

Figure 2 clearly shows that the most expensive stage of
the existing affine invariant feature detectors is the patch ex-
traction process, note that this stage takes longer for MSER
as it generally detects regions with higher scale [15] and
uses the same patch extraction algorithm as Hessian-Affine,
which means that the patch extraction time depends on the
feature size.

In the following, we propose novel algorithms which re-
duce significantly the dependence of patch extraction time

2http://wuw.v1feat.org/
3http://www.chrisevansdev.com/
computer-vision-opensurf.html
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on the local image feature scale. Then, several improve-
ments which speed up the feature extraction process are pre-
sented.

3.1 The standard patch extraction process

In order to obtain invariant description of a co-variant local
image feature, the image region corresponding to a feature is
normalised. The local derivatives, used to obtain gradients
for the SIFT descriptor, are computed using a Gaussian ker-
nel of the size determined by differentiation scale op [13]
and the extracted patches should have op = const in order
to gain full scale invariance.

In the case of the original Lowe’s [10] SIFT feature
detection and description framework, the patch used for
feature description is extracted from the scale-space layer
where the feature has been located. This means that for a
feature which was found in octave o and in a layer [ of a
scale space with O octaves and L layers, the feature can
have a scale in the input image in interval

s € [ai2°+l%l,ai20+”%} (1)

where ¢; is the initial scale (the prior smoothing used for
building the scale-space pyramid) [10]. Then the descriptor
is computed from a measurement region with scale s,,, =
s - m in the original image where m is the magnification
factor. This method can be used only for similarity-invariant
features as it does not handle anisotropy of affine co-variant
features.

In patch extraction implementations [13] and [18], at
first, an affine image feature is normalised with A1 s from
the input image where A € GL(2) is the de-normalisation
matrix and s = /A is the feature scale. In the next step, the
extracted patch is blurred with an isotropic Gaussian kernel
with variance o g = 20 pms/p in order to obtain differenti-
ation scale o p in the down-sampled descriptor patch.

The disadvantage of the method ([13], [18]) is its com-
putational complexity as it works with the original image
data even for features which may cover the whole image.
This can be seen in Figure 3 which clearly shows that even
though there is only a fraction of detected features in higher
octaves, the patch extraction process still takes a significant
amount of time. All the computation times were measured
on a machine with Intel® Core™i7-3517U CPU with 4MB
cache.

10000 % OPE
- # = PSPE
+=x= PNBPE/NBPE
I Avg. Fts. #

5000

Octave

Figure 3: Time needed for extraction of patches found at dif-
ferent scale space octaves. OPE is the original patch extrac-
tion method [13], [18]. Results obtained with the Hessian
Affine detector. Average on 18 various 3MPx images.
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3.2 Speeding up the affine patch extraction process

We propose a novel algorithm for patch extraction which
uses the pre-blurred layers of the isotropic Gaussian scale
space pyramid. We will refer this algorithm as Pyramid-
Smoothing Patch Extraction (PSPE). Based on the required
op it operates on the Gaussian scale space pyramid layer
where the differentiation scale is small enough that after the
extraction it would not exceed o p in any direction.

Then, the measurement region of the feature is extracted
to the intermediate patch in its original scale in such a way
that the eigenvectors of the affine transformation are aligned
with the image axes. This transformation is found using
the singular value decomposition. Then, equal differentia-
tion scale in all directions can be achieved by a convolu-
tion with an anisotropic, separable Gaussian kernel, which
has the same computational complexity as isotropic Gaus-
sian blurring. Finally, the patch is downscaled and rotated
to the final patch of size p. Details are given in Algorithm 1.

Algorithm 1 PSPE Pyramid-Smoothing Patch Extraction

Require: [ — Input image; L,, s, — Gaussian Scale-Space
pyramid with initial image scale og, octaves 0 < o0; <
O and octaves’ layers 0 < s; < S; A — Local affine
feature; o p — required diff. scale, p — a patch size, m - a
measurement region multiplier.

Ensure: P — Extracted patch.

Get feature scale s = /A

Get patch to extr. feature scale p = 2ms

Compute Singular Value Decomposition A = U D V7T,
Set ll = Dl,l/s, lg = DQ,Q/S
Differentiation blur in I directionin [ is o5, =op ply
if 03, < oo then
6=05 d=1
P(x) = I(U diag(ly, l5) x)
else
0 = [logy(a1,/00)], v = [logy/s (2701, /00)]
& =0020t0/5 d=2°
P(x) = Lo .(27° U diag(l1,l2) x)
end if
Ensure correct diff. scale in both x and y directions
6. =126/d, ¢,=16/d, 6p=0pp/d
Gdw = \/0% — 02, Gay = /0% — o2
Blur Pg(x) = P(x) * g(x,%), ¥ = diag(64z, Gay)
where g(x,Y) is 2D Gaussian filter
Sub-sample to patch: P(x) = Pg(p VT x)

We propose a faster variant of the PSPE algorithm,
PNBPE (Pyramid, No-Blur Patch Extraction), which ig-
nores the anisotropic blurring step. This variant simply
warps the selected pyramid layer to the patch without any
intermediate steps. Unlike the PSPE, the pyramid layer is
not selected according to the affine shape of the feature, but
solely based on the feature scale. With this simplification,
the PNBPE method gets several times faster than the for-
mer PSPE variant. Computation time of this method de-
pends only on the SIFT patch size (usually p = 41). Details
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Algorithm 2 PNBPE Pyramid, No-Blur Patch Extraction

Require: [ — Input image; L,, s; — Gaussian Scale-Space
pyramid with initial image scale o, octaves 0 < 0; <
O and octaves’ layers 0 < s; < S; A — Local affine
feature; op — required diff. scale, p — a patch size, m - a
measurement region multiplier.

Ensure: P — Extracted patch.

Get feature scale s = v/A
Get patch to extr. feature scale p =
Differentiation blurin [ is ¢ = op p
if 0 < oy then
P(x) =1I(p Ax)
else
0= |logy(0/00)], v = [logys (27°0/a0)]
P(x)=L,s(27°p Ax)
end if

2 ms

of this variant are given in Algorithm 2.

We also test a method, called NBPE (No-Blur Patch Ex-
traction), which simply warps the feature measurement re-
gion to the patch using the original image, not the pyramid.
The speed of NBPE and PNBPE is equal.

With PSPE, PNBPE and NBPE it generally holds that
the time needed for patch extraction is proportional to the
number of the features and does not depend on feature size,
as can be seen in Figure 3. The independence of patch ex-
traction time on feature size is demonstrated in Figure 4.

x10°

=t HesAff+OPE
167 = @ = HesAff+PSPE
— %= HesAff+PNBPE/NBPE

- -

1 2 3 4 5
Img. Area [MPx]

Figure 4: Average time needed for extraction of a single
patch. The values are computed as an average over all fea-
tures from 18 different images of a given resolution and is
computed with HessianAffine detector.

3.3 Matching performance of patch extraction
variants

In Figure 7, the comparisons of matching scores of different
patch extraction methods for the Hessian-Affine and MSER
detector are shown. The matching score is measured as de-
fined by [15], with a difference that one-to-one correspon-
dences are computed for descriptors only. In the original
implementation of the matching score benchmark, match is
deemed correct when it is a one-to-one match both based on
descriptor distances and in ellipse overlaps. Though, this is
not usable for DRs with multiple orientations as the ellipse
overlap does not take into consideration the dominant orien-

tations. We use matching score instead of [14] as we want
to measure performance under various geometric transfor-
mations. Matching score has been computed with RootSIFT
[1] descriptor normalisation.

Tests have been performed on datasets from [15] or their
variants from [4] with more precise ground truth where
available. The GRAF and WALL dataset test invariance to
viewpoint change, BOAT and BARK to zoom and rotation
and BIKES are used to test invariance to image blur. In order
to show the invariance to scale changes we have measured
average matching score using 32 images which have been
resized to scales in (1,0.2) (SYNTH. SCALE). Similarly,
to simulate invariance to anisotropic deformations, we have
generated datasets of the same images but scaled only in the
y-axis direction (SYNTH. ANIS. SCALE).

It can be observed that PSPE method obtains in gen-
eral the same performance as the original patch extraction
method. The PNBPE and NBPE methods have similar per-
formance when the features which need to be matched are
relatively small, though they get worse performance on the
Bark and Bikes dataset and with MSER detector which de-
tects bigger features. This is additionally confirmed with the
tests on synthetic images. On synthetic scale dataset, it can
be seen that the PNBPE method has slightly better scale in-
variance as the NBPE method is ignoring Nyquist—Shannon
sampling theorem and in case of bigger scale changes, the
aliasing becomes an issue.

The reason why PNBPE and NBPE has got the same
number of matches is that these methods detects more dom-
inant orientations (1.9 for PNBPE and 2 for NBPE) as the
extracted patch contains higher frequencies. But those ori-
entations are less stable, thus these patch extraction variants
have worse matching score.

4 Speeding up the SIFT

HesAff+OPE+SIFT  HesAff+NBPE+SIFT
Convolution (30%) Interpolation (19%)
Interpolation (20%) SIFT sampling (16%)
SIFT sampling (10%) arctan2 (14%)
arctan2 (8%) Gradient comp. (10%)

Table 2: The most time consuming functions (self-cost, per-
centage of the whole program runtime) by profiling Wall-1
[15] feature extraction.

As a significant bottleneck of the feature extraction pro-
cess is the arctan2 function (see Table 2), we have investi-
gated the precision and speed of existing implementations in
VLFeat and OpenCV and proposed a new algorithm which
outperforms these approximations in speed.

We have created a method which approximates the
arctan2 function using look-up table (LUT). This method
divides the interval (0,27) into octants, and is us-
ing a LUT of 256 bins accordingly for each octant as
arctan(x/y) = w/2 — arctan(y/x), if > 0 and similar
rule is for x < 0.

The comparison of different methods in single precision
floating point numbers is given in Table 3 where the error



Impl. RMS Err. [radx 10~3] Max Err. [radx10~3] Avg. time [ns]
ARCTAN2 0 0 139.1
VLFEAT 4.278 6.136 95.3
OPENCV 0.073 0.167 99.5
LUT-256 1.815 3.922 89.9

Table 3: Speed of different arctan2 implementations and
approximations in single floating point precision. Values are
computed over 2x10° measurements and the error is com-
pared against the arctan2 , standard reference.

is compared against the standard implementation®. It can be
seen that our LUT-256 method outperform the investigated
methods in speed and has smaller error than the method used
in VLFeat library. The error does not have any influence on
descriptor performance. However, as the speed of LUT ap-
proximation depends mostly on memory access speed, for
processors with smaller CPU cache it may be needed to re-
duce the number of bins, partially scarifying the precision.

Method DomOri [ps] (Speed-up) SIFT [ws] (Speed-Up)
Standard 110.35 159.26
LUT-256 47.12 (2.3) 95.06 (1.7)
SSE-OpenCV 38.75(2.8) 73.38 (2.2)

Table 4: The average speed-up per a single MSER feature
using the arctan2 approximation and SSE instructions in
different patch extraction stages.

However the OPENCV approximation is implemented
using SSE instructions, and in addition it uses SSE for gra-
dient magnitude computation where the SSE instruction for
the square root (SQRTPS) is already an approximation with
rel.err. < 1.5 x 10712 [6] which is more than sufficient for
the feature extraction purposes.

The overall speed-up of the feature extraction stages
in comparison to the original implementation is shown
in Table 4. It can be seen that even speeding up the
arctan2 function with a look-up table can bring a signifi-
cant improvements in the processing time. The advantage
of the LUT-256 is that it has tunable precision by varying
the number of bins which can be chosen in such a way that it
would fit to the CPU cache of the target architecture. How-
ever, in the following experiments we use the SSE-OpenCV
variant.

The processing time of Hessian-Affine and MSER de-
tectors using the proposed improvements are shown in Fig-
ure 5. It can be seen that with the PSPE or NBPE algo-
rithm together with the SSE-OpenCV (referred as SIFT+),
the feature extraction process takes around half the time of
the original implementation. In Table 5 we show the average
processing time per an image from the Mikolajczyk’s dataset
[15] without normalisation to a constant number of features,
i.e. the expected time needed to extract features from a sin-
gle image. From this table it is clear that for example using
the improved MSER+NBPE+SIFT+ for feature extraction is
similarly time consuming as using SURF algorithm.

“4Defined by IEEE Std 1003.1, particularly used GNU C Library 2.15
implementation
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Figure 5: Processing time of particular feature extraction
stages using the proposed improvements. In all feature ex-
tractors here, the SSE-OpenCV method is used for comput-
ing arctan2 . The values in the graph are measured in the
same way as in Figure 2.

Method Avg. NFeats Avg. Time
DoG+SIFT 1719.23 0.90
FHes+SURF 2192.33 0.72
HesAff+OPE+SIFT 3181.81 5.38
HesAff+PSPE+SIFT+ 3201.98 3.56
HesAff+PNBPE+SIFT+ 3714.40 1.78
HesAff+NBPE+SIFT+ 3787.60 1.80
MSER+OPE+SIFT 1028.02 2.83
MSER+PSPE+SIFT+ 1035.04 2.15
MSER+PNBPE+SIFT+ 1266.79 0.69
MSER+NBPE+SIFT+ 1348.71 0.69

Table 5: Average processing time and number of features
per an image (without image 10) of commonly used extrac-
tors and feature extractors with the proposed speed improve-
ments on all images from Mikolajczyk’s dataset [15]. The
values are computed in the same way as in Table 1.

5 Matching features in multiple-orientation
context

The output of a detection algorithm on input image [ is a set
of distinguished regions (DR). Afterwards, dominant orien-
tations A for each region are detected in order to obtain ro-
tation invariance, which creates several local affine features
for each DR. Usually, the number of dominant orientations
is limited to 1 < |AL| < 4 and for each dominant orienta-
tion, one descriptor is extracted.

In image matching task, the fact that a single DR
generates more descriptors is usually ignored and it simply
matches all descriptors from a reference image to the
matched image. This has several consequences, e.g. for the
SNN ratio (SNNr) criterion. This criterion is used to filter
correspondences C of the reference image descriptors to the
matched image descriptors and generates a set of tentative
correspondences TC C C. It computes the distance ratio
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of the first closest to the second closest reference image
descriptor and when this ratio is higher than 0.8, the
correspondence is rejected (i.e. that the correspondence is
not distinguishable enough). On the other hand, in case
of symmetric DRs, the second nearest neighbour can be
located on the same DR in the matched image as the first
nearest neighbour. This issue was tackled by [16] where
the SNN criterion has been revisited. The authors added a
new condition that the SNN ratio is not computed with the
second closest descriptor but with the First Geometrically
Inconsistent Nearest Neighbour (FGI-NN). Two descriptors
are geometrically inconsistent when their centres of gravity
are farther than a given threshold (in our case set to 10px).
In [16], it was used in context of synthesised views, but
we have observed that it has some influence on simple two
view matching as well. In our tests we have matched vari-
ous 85 image pairs (image pairs introduced by [7], [15] and
65 pairs selected from clusters generated by [3]) and we es-
timated a homography between them using LO-RANSAC
algorithm [7]. Descriptors are extracted using the Hessian-
Affine+OPE+SIFT. Inliers I C TC are TC with symmetric
reprojection error [5] smaller than 4px, and similarly, valid
correspondences VC C C are all geometrically correct cor-
respondences. We compute precision and recall as:

iy |zl Izl
precision = —— recall = — 2)
|7C| Ve
g g
. —— SN & [——sN
O SNN<0.8 O SNN<0.8
02| ——FGINN 027 ——FGINN
O FGINN<0.8 O  FGINN<08
% oz o2 o6 08 1 % 02 04 06 08 1
Recall Recall
(a) MSER (b) HessianAffine

Figure 6: Precision and recall of SNN and FGINN for
MSER and HessianAffine with QRT-SIFT. Results for 85
image pairs.

Method AP Prec [%] Rec[%] |TC| |Z|
MSER SNN 78.42 7225  79.38 9408 6797
MSER FGI-NN 79.60 70.22  82.43 10039 6940
HesAff SNN 80.12 70.04 82.74 29817 20883
HesAff FGI-NN 81.63 68.12  85.73 31919 21397

Table 6: Precision and recall for SNNr < 0.8 with average
precision (area under the PR curve) for methods for gener-
ating tentative correspondences and two selected detectors
which use SQRT-SIFT as descriptor. Results for 85 image
pairs

We have measured that using the FGI-NN method im-
proves the performance of the system even in the case of
two-view matching without view synthesis. The particular
values of precision and recall for SNNr < 0.8 with aver-
age precision are shown in Table 6. Though it slightly low-
ers the precision, it increases the recall and is able to obtain

more inliers which are important for the accuracy. The FGI-
NN criterion also increases the average precision means that
FGI-NN is a better classifier of tentative correspondences
than SNN without being dependent on the particular SNNr
threshold. The correspondences missed by the SNN method
are usually caused by symmetric features where the SNN
may be on the same DR but with a different orientation. The
precision-recall curve, computed varying the SNNr thresh-
old, is shown in Figure 6.

# dom.orientations [A|| 1 2 3 4
% of DRs ‘44.97 43.09 10.72 1.22

Table 7: Percentage of detected distinguished regions with
a certain number of dominant orientations. Values are com-
puted out of 1.8x10° DRs.

In the next experiment we investigate how dominant ori-
entations of the DRs are matched across the images. At first,
in Table 7, we show the distribution of number of dominant
orientations per a DR detected in the reference images. On
average, each DR is assigned 1.8 dominant orientations.

Dominant orientations |.A|

Matched DRs Matched | Ap|
1 2 3 4
1 62.49% 30.70% 4.63% 0.38%
0.00% 1.37% 0.39% 0.03%

Table 8: Distribution of the DRs in tentative correspon-
dences 7 C according to their number of matched Dominant
orientations (column) and number of matched unigue DRs
from the tested image (row). E.g. a DR which is in the sec-
ond row and third column has three dominant orientations
in 7C where two are matched to the same DR in the tested
image. 7 C are generated using the FGI-NN criterion.

There is clearly a lot of DRs which have more than one
descriptor. But what happens when correspondences are
generated? In Table 8 we show the distribution of the DRs in
TC according to the number of their dominant orientations
in 7C and number of matched DRs in the second image. It
can be seen that for many DRs with multiple dominant ori-
entations, only some of them passed the FGI-NN criterion.

More than 30% of the DRs have 2 dominant orientations
where both of them are matched against a single DR in the
tested image (row 1 column 2). Those 30% of DRs are ac-
tually generating more than 42% of correspondences which
are passed to RANSAC algorithm. This also means that in
our dataset, more than 22% of the correspondences are du-
plicates.

This can be exploited by improving the speed of
RANSAC algorithm by passing less tentative correspon-
dences as sampling two correspondences of same image
regions leads to a degenerate solution. This issue is handled
using “’duplicate filtering” procedure in [17], [16]. However,
if the double correspondence is found as inlier, it may be
counted twice as the fact that two dominant orientation
have been matched may bear a prior of the correspondence
quality. Though, we have not investigated those issues.



From Table 8 it can be observed that most of the inco-
herent correspondences, i.e. ref. image DRs matched to
different DRs in the matched image, does not pass to the list
of TC, thus the Lowe’s (FGI)SNN ratio works well for the
multiple orientation matching by itself.

6 Conclusions

It has been shown shown that a careful implementation of
existing affine invariant feature detectors has a speed com-
parable to existing similarity covariant detectors. Further-
more, using a simplified patch extraction method the speed
of the affine feature extraction becomes comparable to their
approximations, such as SURF. The speed leads to slight de-
crease in the scale invariance of the extracted patches.

The process of patch description is made faster by a sim-
ple approximation of the arctan2 function. We have created
a simple approximations of arctan2 which uses a look-up
table and the terms of speed outperforms the approximations
used in different computer vision libraries.

We have investigated the Lowe’s second nearest neigh-
bour criterion in the context of multiple orientation matches.
We confirmed that using the first geometrically inconsistent
nearest neighbour increases the number of inliers as it allows
to match symmetric features. Furthermore, we have inves-
tigated the way how the second nearest neighbour works in
case of multiple orientations and proposed some improve-
ments which can speed up RANSAC.
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Figure 7: Comparison of the performance of different patch
extraction algorithms using Mikolajczyk’s matching score
protocol [15]. Measurements on synthetic datasets are com-
puted as an average over generated image pairs from 32 var-
ious images. Line colour distinguishes different detectors
and line style signifies the patch extraction algorithm.



A Few Things One Should Know About Feature Extraction, Description and Matching

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Karel Lebeda, Jiri Matas, and Ondrej Chum. Fixing
the locally optimized RANSAC. In British Machine
Vision Conference, 2012.

Sung-Won Lee, Ki-Seok Kwon, and In-Cheol Park.
Pipelined cartesian-to-polar coordinate conversion
based on srt division. Circuits and Systems I1: Express
Briefs, IEEE Transactions on, 54(8):680-684, 2007.

Stefan Leutenegger, Margarita Chli, and Roland Y
Siegwart. BRISK: Binary robust invariant scalable
keypoints. In IEEE International Conference on Com-
puter Vision (ICCV), pages 2548-2555. IEEE, 2011.

David G. Lowe. Distinctive image features from scale-
invariant keypoints. [International Journal of Com-
puter Vision, 60(2):91-110, 2004.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide baseline stereo from maximally stable extremal
regions. In British Machine Vision Conference, pages
384-393, 2002.

Herbert A Medina. A sequence of polynomials for ap-
proximating arctangent. The American Mathematical
Monthly, 113(2):156-161, 2006.

K. Mikolajczyk and C. Schmid. An affine invariant
interest point detector. In Proceedings of the 7th Euro-
pean Conference on Computer Vision, pages 128—142,
2002.

K. Mikolajczyk and C. Schmid. A performance evalua-
tion of local descriptors. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 27(10):1615-
1630, 2005.

Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia
Schmid, Andrew Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool. A comparison of affine
region detectors. International Journal of Computer
Vision, 65(1/2):43-72, 2005.

Dmytro Mishkin, Michal Perdoch, and Jiri Matas.
Two-view matching with view synthesis revisited. In
Proceedings of the 28th Conference on Image and Vi-
sion Computing New Zealand, 2013.

Jean-Michel Morel and Guoshen Yu. Asift: A new
framework for fully affine invariant image compari-
son. SIAM Journal on Imaging Sciences, 2(2):438—
469, 2009.

M. Peraoch, O. Chum, and J. Matas. Efficient repre-
sentation of local geometry for large scale object re-
trieval. In IEEE Computer Vision and Pattern Recog-
nition, pages 9-16. IEEE, 2009.

Sreeraman Rajan, Sichun Wang, Robert Inkol, and
Alain Joyal. Efficient approximations for the arct-
angent function. Signal Processing Magazine, IEEE,
23(3):108-111, 2006.

[20] Edward Rosten and Tom Drummond. Machine learn-

ing for high-speed corner detection. In European Con-
ference on Computer Vision, volume 1, pages 430-
443, May 2006.

[21] Andrea Vedaldi and Brian Fulkerson. VLFeat: an open

and portable library of computer vision algorithms. In
Proceedings of the international conference on Multi-
media, pages 1469-1472, 2010.



	Introduction
	Related Work
	Speeding up patch extraction process
	The standard patch extraction process
	Speeding up the affine patch extraction process
	Matching performance of patch extraction variants

	Speeding up the SIFT
	Matching features in multiple-orientation context
	Conclusions
	Acknowledgement

