
Common initialization methods lead to the same layer gain 𝐺𝐿 for each convolutional 
and fully-connected layer, which works if input variance is 1 and no other types of 
layers are present.  If a significant number of other type of layers is present: 
a) Layer gain 𝐺𝐿 < 1 → vanishing variance 
b) Layer gain 𝐺𝐿 > 1 → exploding variance

Deriving layer gain 𝐺𝐿 provably ensuring GDNN = ς𝑖=1
𝑛 𝐺𝐿𝑖 = 1 is a  hard task for 

general network with various activation functions, poolings, skip connections, etc.

All you need is a good init
KEEPING PRODUCT OF PER-LAYER GAINS ¼ 1:

LAYER-SEQUENTIAL UNIT-VARIANCE ORTHOGONAL INITIALIZATION
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COMPARISON OF THE INITIALIZATIONS FOR DIFFERENT ACTIVATIONS
STATE OF THE ART

PROBLEM: HOW TO START TRAINING A VERY DEEP NET

Machine learning basics: centered and normalized (mean = 0, var = 1) input is good.
Glorot & Bengio (2010):  keep input (and output) of each layer normalized, propose 

weight initialization formula for linear net.
He et. al (2015):                   modifies the Glorot formula for ReLU net.
Batch Norm (2015):           explicitly calculate mean and variance for each batch 

and use them for normalization. Do it every forward pass.
Recurring theme:                many functions (Maxout, ELU, etc.) are superior to ReLU. 

CIFAR-10 FITNET

Algorithm 1. Layer-sequential unit-variance orthogonal initialization. 𝑳 − convolution 
or fully-connected layer, 𝑊𝐿 − its weights, 𝑂𝐿 − layer output, 𝜀 − variance tolerance, 
𝑇𝑖 − iteration number, 𝑇𝑚𝑎𝑥 − max number of iterations. 

Pre-initialize network with orthonormal matrices as in Saxe et.al. (2013)
for each convolutional and fully-connected layer 𝑳 do

do forward pass with mini-batch
calculate  v𝑎𝑟(𝑂𝐿)

𝑊𝐿
𝑖+1 = ൗ𝑊𝐿

𝑖 𝑣𝑎𝑟(𝑂𝐿)

until 𝑣𝑎𝑟 𝑂𝐿 − 1.0 < 𝜀 or (𝑇𝑖 > 𝑇𝑚𝑎𝑥)
end for

*The LSUV algorithm does not deal with biases and initializes them with zeros

GOOGLENET TRAINING 
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MNIST RESULTS

TRAINING A VERY DEEP NET  AND THE PER-LAYER GAIN
Layer gain 𝐺𝐿 = Τ𝑣𝑎𝑟 𝑂𝐿 𝑣𝑎𝑟 𝐼𝐿 , where 𝑣𝑎𝑟 𝐼𝐿 − variance of layer input,
𝑣𝑎𝑟 𝑂𝐿 − variance of layer output.
1. Very deep neural networks are powerful but hard to train.
2. Observation: regardless of the non-linearity used, deep net trains well, if its 

product of per-layer gains equals to one:  GDNN = ς𝑖=1
𝑛 𝐺𝐿𝑖 ≈ 1 (1)

3. Initialization satisfying Eq. (1) exists only for linear and ReLU networks. We 
propose an initialization algorithm applicable to any feedforward network.

*original AlexNet initialization, zero-mean Gaussian with std = 0.01; biases set to 1 in conv2, conv4, conv5; biases in other layers set to 0. 

CAFFENET TRAINING 

CIFAR-10/100 RESULTS

CIFAR-10 RESIDUAL FITNET
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