All you need is a good init

TRAINING A VERY DEEP NET AND THE PER-LAYER GAIN

Layer gain $G_L = var(O_L)/var(I_L)$, where $var(I_L)$ – variance of layer input, $var(O_L)$ – variance of layer output.

- Very deep neural networks are powerful but hard to train.
- Observation: regardless of the non-linearity used, deep net trains well, if its **product of per-layer gains** equals to one: $G_{DNN} = \prod_{i=1}^{n} G_{L_i} \approx 1$
- Initialization satisfying Eq. (1) exists only for linear and ReLU networks. We propose an initialization algorithm applicable to any feedforward network.

PROBLEM: HOW TO START TRAINING A VERY DEEP NET

Common initialization methods lead to the same layer gain G_L for each convolutional and fully-connected layer, which works if input variance is 1 and no other types of layers are present. If a significant number of other type of layers is present:

- a) Layer gain $G_L < 1 \rightarrow$ vanishing variance
- Layer gain $G_L > 1 \rightarrow$ exploding variance

general network with various activation functions, poolings, skip connections, etc.

STATE OF THE ART

Machine learning basics: centered and normalized (mean = 0, var = 1) input is good. **Glorot & Bengio (2010):** keep input (and output) of each layer normalized, propose weight initialization formula for linear net. modifies the Glorot formula for ReLU net. He et. al (2015): **Batch Norm (2015)**: explicitly calculate mean and variance for each batch and use them for normalization. Do it every forward pass. many functions (Maxout, ELU, etc.) are superior to ReLU. **Recurring theme:**

Dmytro Mishkin and Jiří Matas Center for Machine Perception Czech Technical University in Prague

(1)

KEEPING PRODUCT OF PER-LAYER GAINS \approx 1: LAYER-SEQUENTIAL UNIT-VARIANCE ORTHOGONAL INITIALIZATION

Algorithm 1. Layer-sequential unit-variance orthogonal initialization. L – convolution or fully-connected layer, W_L – its weights, O_L – layer output, ε – variance tolerance, T_i – iteration number, T_{max} – max number of iterations.

Pre-initialize network with orthonormal matrices as in Saxe et.al. (2013) for each convolutional and fully-connected layer *L* do **do** forward pass with mini-batch

calculate $var(O_L)$ $W_L^{i+1} = W_L^i / \sqrt{var(O_L)}$ until $|var(O_L) - 1.0| < \varepsilon$ or $(T_i > Tmax)$ end for

The LSUV algorithm does not deal with biases and initializes them with zeros

CIFAR-10	0/100 RESU	MNIST RESULTS					
Accuracy on CIFAR-1	Error on MNIST w/o data augmentation						
Network	CIFAR-10, [%]	CIFAR-100,[%]	Network	layers	params	Error, %	
Fitnet4-LSUV	93.94	70.04 (72.34 †)	FitNet-like networks				
Fitnet4-OrthoInit	93.78	70.44 (72.30†)	HighWay-16	10	39K	0.57	
Fitnet4-Hints	91.61	64.96	FitNet-Hints	6	30K	0.51	
Fitnet4-Highway	92.46	68.09	FitNet-Ortho	6	30K	0.48	
ALL-CNN	92.75	66.29	FitNet-LSUV	6	30K	0.48	
DSN	92.03	65.43	FitNet-Ortho-SVM	6	30K	0.43	
NiN	91.19	64.32	FitNet-LSUV-SVM	6	30K	0.38	
Maxout	90.62	65.46	State-of-art-networks				
MIN	93.25	71.14	DSN-Softmax	3	350K	0.51	
Extreme	DSN-SVM	3	350K	0.39			
Large ALL-CNN	95.59	n/a	HighWay-32	10	151K	0.45	
Fractional MP (1 test)	95.50	68.55	Maxout	3	420K	0.45	
Fractional MP (12 tests)	96.53	73.61	MIN	9	447K	0.24	

COMPARISON OF THE INITIALIZATIONS FOR DIFFERENT ACTIVATIONS												
CIFAR-10 FITNET						CIFAR-10 RESIDUAL FITNET						
Init method	Maxout	ReLU	VLReLU	tanh		Init method	maxout	ReLU	VLReLU	tanh		
LSUV	93.94	92.11	92.97	89.28		LSUV	94.16	92.82	93.36	89.17		
OrthoNorm	93.78	91.74	92.40	89.48		OrthoNorm	n/c	91.42	n/c	89.31		
Xavier	91.75	90.63	92.27	89.82		Xavier	n/c	92.48	93.34	89.62		
MSRA	n/c†	90.91	92.43	89.54		MSRA	n/c	n/c	n/c	88.59		
OrthoNorm MSRA-scaled	_	91.93	93.09	-		_	_	_	—	-		

The authors were supported by The Czech Science Foundation Project GACR P103/12/G084 and CTU student grant SGS15/155/OHK3/2T/13

- [1] Saxe, Andrew M., McClelland, James L., and Ganguli, Surya. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In Proceedings of ICLR, 2014.
- [2] Romero, Adriana, Ballas, Nicolas, Kahou, Samira Ebrahimi, Chassang, Antoine, Gatta, Carlo, and Bengio, Yoshua. Fitnets: Hints for thin deep nets. In Proceedings of ICLR, May 2015.
- [3] Glorot, Xavier and Bengio, Yoshua. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the AISTATS 2010.
- [4] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the ICCV, 2015 5] Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training b reducing internal covariate shift. In Proceedings of the ICML, 2015.

REFERENCES

