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Abstract

We present a novel visual place recognition method de-
signed for operation in challenging conditions such as en-
countered in day to night or winter to summer matching.
The proposed WxBS Retrieval method is novel in enriching
a bag of words approach with the use of multiple detectors,
descriptors with suitable visual vocabularies, view synthe-
sis, and adaptive thresholding to compensate for large vari-
ations in contrast and richness of features in different con-
ditions.

The performance of the method evaluated on the pub-
lic Visual Place Recognition in Changing Environments
(VPRiCE) dataset was achieved with precision 0.689 and
recall 0.798 and F1-score 0.740. The precision and F1
score are best results so far reported for VPRiCE dataset.
Experiments show that the combination of retrieval and
matching algorithms with detectors and descriptors insen-
sitive to gradient reversal and contrast lead to both high
accuracy and scalability.

1. Introduction
Visual place recognition is not only an interesting prob-

lem in its own right, e.g. in the form of localizing histori-
cal photographs, but also an enabling technology facilitat-
ing applications in areas like autonomous navigation and
augmented reality.

The problem in commonly formalized as identification
of reference images depicting the same scene as the query
which is followed by viewpoint estimation. The time for
preprocessing the potentially large corpus of reference im-
ages is considered to be unlimited. The query is either a
single image, which is most common, or an unorganized set
of images or a sequence. Similarly, the reference ”map”
data may be either images or sequences.

In certain scenarios an approximate location is assumed
known from a GPS, GSM or inertial sensors, limiting the
number of candidate reference images. Due to inaccuracies,

Figure 1: Challenges of the Visual Place Recognition in
Changing Environments Dataset. Query examples (left),
database images highest ranked by the proposed WxBS re-
trieval (right).

the visual search might still involve matching against tens of
thousands of images. We therefore restrict our attention to
place recognition method that are able to handle large num-
bers of reference images - only the earliest place recognition
approaches were based on pairwise wide-baseline matching
of the query and the database images [19]

Fast approximate nearest neighbor search techniques
and distinctive descriptors [13] enabled localization within
thousands of images. Advances in specific image retrieval
based on local features, bag of words and fast spatial verifi-
cation [18, 21] allowed scaling image-based localization to
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much larger datasets. Precision of camera localization has
also improved significantly, benefiting for instance from 3D
structure from motion models and from the use of 2D to 3D
matching [20]. In favorable environments and conditions,
the basic place recognition is a technical rather than a re-
search problem.

However, new challenges surfaced in the retrieval of im-
ages from millions of street level images. The problems
of co-occurring features, and confusing features were dis-
cussed by Chum et al. [6] and Knopp et al. [10]. Place
recognition in urban “canyons” with many repetitive struc-
tures was addressed by Torii et al. [23]. Place recogni-
tion in mountain environments that are often without dom-
inant landmarks was investigated by Baboud et al. [4], and
Baatz et al. [3]. Location recognition in challenging out-
door conditions such as day-to-night or including seasonal
changes is another problem that has received little attention.

In this paper, we present a novel visual place recogni-
tion method called WxBS Retrieval designed for operation
in conditions that at the same time differ significantly in
properties like illumination (day, night), the sensor (visible,
infrared) , viewpoint, appearance (winter, summer), time of
acquisition (historical, current) or the medium (clear, hazy,
smoky) i.e. exhibit “x wide-baselines” - viewpoint, tem-
poral, appearance, etc. WxBS Retrieval draws heavily on
the WxBS-M [15] two-view matching algorithm which pro-
posed a set of features, descriptors, view synthesis steps,
and a matching strategies that performed well on WxBS
problems. The WxBS-M matcher reflects the progress in
recent local feature detectors [16, 24] that present that fea-
ture and descriptors that handle some the challenging con-
ditions. We demonstrate that reusing components validated
in WxBS within a bag-of-words image retrieval system pro-
duces a robust place recognition system.

The WxBS Retrieval is novel in enriching a BoW ap-
proach with the use of multiple detectors, HalfRootSIFT [5]
and RootSIFT [2] descriptors with suitable visual vocabu-
laries, view synthesis and adaptive thresholding to compen-
sate for large variations in contrast and richness of features
in different conditions.

In the online localization phase, the local features are
extracted and assigned to the closest visual words. Then,
a shortlist of most similar images is retrieved using the
TF-IDF [21] scoring and spatial verification [18]. Using
shortlist of neighboring query images location hypotheses
are formed via correspondence between a short sequence of
query and database images. Finally, the best location hy-
pothesis is verified by WxBS-M matching algorithm.

In the rest of the paper is structured as follows. First,
the WxBS-M algorithm is briefly introduced . Next, each
of the steps of the proposed WxBS retrieval algorithm for
place recognition is presented in detail. Finally, we evalu-
ate the performance of the underlying WxBS algorithm, the

retrieval part of the system and overall performance of the
WxBS retrieval on the VPRiCE dataset.

2. WxBS-M Matching Algorithm

The proposed system is derived from the WxBS-M [16]
two view matching algorithm intended for challenging en-
vironmental changes. The algorithm 1 is presented in detail
in [15]. For convenience, we shortly explain its most im-
portant parts.

The WxBS-M is an iterative algorithm for matching of
two images. In each step a specific combination of artificial
view synthesis (step 1) and detectors are run on both im-
ages (step 2) to extract affine covariant local features. Next,
the HalfRootSIFT and RootSIFT descriptors are computed
(step 3) and back-projected to the original images. A set
of new tentative correspondences is computed using a vari-
ant of the nearest neighbor SIFT ratio test [13] called first
geometrically inconsistent nearest neighbor test. This helps
to deal with duplicate tentative matches generated because
of view synthesis (step 5). All tentative correspondences
found so far are then verified by a DEGENSAC [7] algo-
rithm, a variant of RANSAC that simultaneously searches
for the most consistent model of epipolar geometry and/or
dominant plane homography. Finally, correspondences con-
sistent with epipolar geometry are verified by requiring geo-
metric consistency of the affine frames (step 7). All steps of
the algorithm are repeated until a preset number of consis-
tent matches is found or until the last iterations is reached,
i.e. when finding the relation of the two images with fur-
ther synthesis steps and different features becomes very un-
likely.

Algorithm 1 WXBS-M – a matcher for wide multiple base-
line stereo
Input: I1, I2 – two images; θm – minimum required num-

ber of matches; Smax – maximum number of iterations.
Output: Fundamental or homography matrix F or H;

a list of corresponding local features.

while (Nmatches < θm) and (Iter < Smax) do
for I1 and I2 separately do

1 Generate synthetic views according to the
scale-tilt-rotation-detector setup for the Iter.

2 Detect local features using adaptive threshold.
3 Extract rotation invariant descriptors with:

3a RootSIFT and 3b HalfRootSIFT
4 Reproject local features to I1.

end for
5 Generate tentative correspondences with 1st

geom. inconsistent rule for RootSIFT and HalfRootSIFT
6 Geometric verification of all TC with modified

DEGENSAC estimating F or H .
7 Check geom. consistency of the LAFs with est. F .

end while
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3. WxBS Retrieval for Place Recognition
The high level overview of two phases of the WxBS re-

trieval algorithm is shown in Algorithm 2 and Algorithm 3.
In the following sections, we present in detail the most im-
portant parts of the WxBS retrieval system which are in bold
font in 2 and 3.

Algorithm 2 WxBS retrieval, offline “mapping” phase

1. Extraction of local features from the database images
for all iterations of the WxBS-M algorithm.
2. Quantization to a BoW vocabulary.
3. Inverted file formation.

Algorithm 3 WxBS retrieval, online “localization” phase

1. Extraction of local features from all iterations of the
WxBs-M algorithm on the query image.
2. Quantization and inverted file traversal with TF-IDF
scoring.
3. Approximate location retrieval – fast spatial verifi-
cation of the TF-IDF shortlist, re-ranking based on the
number of geometrically consistent correspondences.
4. Location hypotheses generation – the top ranked im-
ages in the shortlist form ”seed” hypotheses – short tem-
poral sequences from shortlists of neighboring query re-
sults.
5. WxBS-M based verification and best location selec-
tion by picking the most consistent ”seed” hypothesis.

3.1. Extraction of Local Features

The local feature extraction step follows closely the
WxBS-M matcher [15]. The Hessian-Affine and MSER de-
tectors are employed as they have been shown to provide a
solid base for solving hard matching problems. The local
features are detected on a set of affine-warped views gener-
ated from (and including) the original image. The process
can be viewed as an extension of the isotropic scale pyra-
mid to an anisotropic pyramid, where image is scaled only
along one axis.

The view synthesis setup adopted from [15] is the
one suggested for matching images with high illumination
changes. Experiments with the WxBS dataset showed that
in most natural scenes with highly textured objects like
trees, leaves etc., if MSER detector fails without the view
synthesis, it is highly likely to fail with view synthesis as
well. Thus, from 3rd iteration, only Hessian-Affine detec-
tor is used. The detector and synthesis configurations used
are shown in Table 1. The local features from each view
are then reprojected to the original image, forming a single
array. All used detectors estimate local shape of the feature
up to an unknown orientation. To fix the orientation, the

Table 1: Detector and view synthesis configurations of
WxBS-M as applied in the location hypothesis verification
and propagation step. Each configuration defines a combi-
nation of detector and view synthesis parameters.

Iter. Detector(s) and view synthesis setup
1 MSER,{S} = {1; 0.25; 0.125}, {t} = {1}, ∆φ = 360◦/t
2 MSER,{S} = {1; 0.25; 0.125}, {t} = {1; 3; 6; 9},

HessAff, {S} = {1}, {t} = {1}, ∆φ = 360◦/t
3 HessAff, {S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 360◦/t
4 HessAff, {S} = {1}, {t} = {1; 2; 4; 6; 8}, ∆φ = 120◦/t

gravity vector assumption [17] commonly used in retrieval
and visual localization is used instead of the dominant ori-
entation estimation for the retrieval part.

It is important to note that view synthesis improves per-
formance even for pairs of images with no or negligible dif-
ference in viewpoint. Many of the VPRiCE live-to-memory
pairs have transformations near to identity and yet many of
those have been solved only in the 2nd or 3rd view synthe-
sis iteration. The view synthesis can be viewed as a method
to increase the density of detected features which makes the
matching process more robust to large changes of various
image formation factors.

Adaptive thresholding. One of the main problems in
matching of day to night, infrared or multimodal images
is the low number of detected features. In recent work of
Stylianou et al. [22], it has been confirmed that the main
source of failures in day-night matching is low number of
stable features. The problem is acute in dark low contrast
like in infrared or badly illuminated images. To improve the
performance, under low contrast conditions, the following
enhancements of the baseline detectors were performed.

First, all detector local extrema are considered without
thresholding the value and sorted according to the magni-
tude of the response. If the number of detected features
with response magnitude ≥ Θ is greater than given Rmin,
the output is the same as for the baseline detector, else the
top Rmin features are used to populate the list.

Finally, to compensate for the decreasing image area
in view synthesis, the threshold is adjusted as Rcurr =
Rmin · S/t, where S is the scale factor and t is the simu-
lated tilt of the image (c.f. [16] for the details). The Rmin
thresholds were set experimentally so that the average num-
ber of detected Hessian-Affine points and MSER regions on
the various types of images was RHA=2000andRMSER=500
respectively. This approach gives better matching perfor-
mance on low-contrast images than IIDOG [15]

For WxBS retrieval, all features are generated at once
both in offline and online phase of the algorithm and stored
for later BoW quantization and further location hypotheses
verification – unlike in the WxBS algorithm where match-
ing proceeds in iterations until enough inliers to either ho-

3



mography or fundamental matrix are found, or all iterations
are exhausted.

Feature description. For the feature description, Root-
SIFT [2] has been chosen, a modified version of SIFT [13]
descriptor which outperformed SIFT both in the WxBS ex-
periments [15] and image retrieval [2]. To facilitate match-
ing of multimodal images where gradient orientations are
preserved at discontinuities up to a reversal we have cho-
sen HalfRootSIFT [5] over InvertedRootSIFT [9] following
conclusive results of experiments in [15]. Furthermore in
the case of fixed dominant orientation, Inverted-RootSIFT
and HalfRootSIFT are equally computationally expensive,
Inverted-RootSIFT produces a low number of matches com-
plementary to RootSIFT and cannot handle partial gradient
reversal.

3.2. Approximate Location Retrieval

The initial approximate location is estimated by retriev-
ing one or a sequence of images in the large database.
A standard bag of words (BoW) specific image retrieval
pipeline with spatial verification is used. First a vocabu-
lary is trained on local features extracted from a set of rep-
resentative images. In our challenging setup, both features
sensitive and insensitive to gradient reversal are used and
clustered separately using approximate k-Means. A result-
ing visual vocabulary is then used in an approximate near-
est neighbor (ANN) search, and all local features in the map
images are assigned to the closest visual word. The output
of this offline phase is an inverted file with a list of occur-
rences of each visual word in each of the “map” images. A
set of labels of features in each image with their geometry
data is also stored separately for spatial verification.

In the localization, online phase, the local features are
extracted for each unseen – query – image, and assigned
using ANN search to the closest visual word. Then, the
inverted file is sought and collisions of query labels and
database images are scored using TF-IDF weights [21]. A
shortlist of locations is formed from the top ranking images.
Then, a spatial verification is used to fit an affine transfor-
mation between the local features in the query and each
of the short-listed images as in [18]. Images are re-ranked
based on the number of the matching visual words consis-
tent with the affine transformation. For the details of the
BoW retrieval system c.f . [18].

3.3. Location Hypotheses Formation

The image retrieval phase provides fast localization in
a large database of images. The retrieval performance de-
pends on the specificity or distinctiveness of the scene. Nat-
urally, not all scenes in real world scenario satisfy this re-
quirement. Fortunately, an autonomous system is usually
collecting a stream of images at a fixed rate, or a set of key

frames is produced by a SLAM system while building a lo-
cal 3D model of the scene. The same assumption also holds
for the VPRiCE “map” images, they are obtained in a sys-
tematic way and consecutive images correspond to nearby
locations.

We exploit these assumptions and instead of locating a
single image, we search for a short sequence-to-sequence
correspondences, denoted in the following as seeds. A seed
is a mapping of sequence of n query images to n images
in the map. The length of the seed n on query side de-
fines the latency of the localization system. The seed on the
database side is formed as sequence of consecutive match-
ing images in the top ranks of retrieved shortlists. A sim-
ple dynamic programming algorithm is used to obtain (see
Alg. 4), and score (Alg. 5) possible hypotheses that corre-
spond to stationary pose, motion in forward or opposite di-
rection as recorded in the map at potentially different speed
(see example of used hypotheses in Figure 3)

The scoring of the seed also takes into account whether
the neighboring images in the “map” database and in the
“live” stream belong to a sequence (predicate SEQ or not
NOTSEQ. For the map part, this was verified and stored by
WxBS-M in the offline phase by pairwise WxBS-M verifi-
cation of neighboring images. For the live stream, this re-
quires an additional WxBS-M verification with the previous
image.

3.4. Best Location Hypothesis Selection

The image retrieval uses BoW representation to ef-
ficiently find a shortlist of matching candidates. The
matches verified in spatial verification are based only on co-
occurring quantized labels of visual words and are thus af-
fected by quantization noise. Additionally, the affine trans-
formation used in the spatial verification might not be ap-
propriate for significant changes of viewpoint. The signif-
icantly smaller number of images in seed hypotheses (usu-
ally 3-10) allows verification by a more expensive process
of iterative WxBS-M pairwise matching [15], Algorithm 1.
The view synthesis and local feature generation were al-
ready performed for all “map” images and query image,
and thus only steps 5 . . . 7 of Alg. 1 are performed. Note
that more reliable descriptor matching and geometric veri-
fication by DEGENSAC is carried out.

The high level location verification algorithm is outlined
in Alg. 7, if keeps track if the last seed hypothesis verifica-
tion succeeded for one of the motion models. The WxBS-
M matching algorithm is called in Alg. 6. When a motion
model still holds, it is sufficient to match any of the pairs in
seed mapping. When the previous location was not avail-
able, all elements with the best scored seed are verified.

The criterion for the best match is the number of non-
duplicate tentative correspondences which are consistent
with estimated homography by LO-RANSAC [12]. The lo-
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Figure 2: VPRICE database. Examples of images from the same location.

Figure 3: Examples of used adjacency models

cal affine frame consistency check (LAF-check) is applied
for elimination of the incorrect correspondences. We use
coordinates of the closest and furthest ellipse points from
the ellipse center of both matched local affine frames to
check whether the whole local feature is consistent with es-
timated geometry model.

Algorithm 4 GENERATESEEDHYPOTHESES

Input: nprev motion model from previous image or ∅.
Output: set of seed motion models Sm

N := ((0, 1, 2, ...), (0, 0, 1)...) – seed ”motion” models
if nprev 6= ∅ then Sm := N [ nprev ]
else Sm := N

4. Experimental Evaluation
In the experimental validation, two principal compo-

nents of the system are evaluated: the initial location hy-
potheses formation using image retrieval and the WxBS re-
trieval algorithm with verification of location hypotheses.

4.1. VPRiCE dataset

For the location retrieval, the dataset from Visual Place
Recognition in Changing Environments (VPRiCE) 2015
challenge [1] comes at hand with a wide range of realis-
tic outdoor sequences. To address specifically each of the

Algorithm 5 SCOREHYPOTHESES

Input: sm - seed motion model, Ti - shortlists of query images,
lidx live image index, midx memory image index.

Output: sc - seed hypothesis score, s - seed hypothesis mapping
live indices to memory indices.

m := sm + midx – compute abs. indices in memory
l := sm + lidx – compute abs. indices in live
sc :=

∑
mi ∈ Ti −

∑
mi 6∈ Ti

sc +=
∑

SEQ(mi,mi+1)−
∑

NOTSEQ(mi,mi+1)
sc +=

∑
SEQ(li, li+1)−

∑
NOTSEQ(li, li+1)

s = l↔ m

Algorithm 6 VERIFYHYPOTHESES

Input: s - seed hypothesis mapping
Output: M - result of verification

function VERIFYHYPOTHESES(S)

if SeedProp then M :=
n⋃

i=1

WXBSMATCH(li,mi)

else M :=
n⋂

i=1

WXBSMATCH(li,mi) return M

end function

Algorithm 7 Location verification
Input: Retrieval shortlists Ti for query images Ii, i ∈
{0, 1, ..},sprev - previous verified seed hypothesis mapping.

Output: s - seed hypothesis mapping

for each lidx ∈ Live sequence do
1. Sm := GENERATESEEDHYPOTHESES(nprev)
2. SC := SCOREHYPOTHESES(Sm,Ti,lidx, midx)
3. M := VERIFYHYPOTHESES(S), S: SC(S) > scmin

4. if M then Store s, nprev := MOTIONMODEL(s), best
matching motion model

else
5. if nprev 6= ∅ then
nprev := ∅; GoTo 1.
else Store lidx↔−1, nprev := ∅

end for
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challenges of changing environments we also use the WxBS
dataset proposed in [16].

The VPRiCE 2015 challenge aims at focusing efforts of
the visual place recognition community. It consists of two
parts memory and live with 7778 images of outdoor environ-
ments under various viewing conditions. The memory part
of the dataset consists of the images the robot observed dur-
ing its first visit of the environment. It is the reference, the
images from the live part of the dataset have to be matched
against. The footage has been recorded from trains, cars,
buses, bikes, or pedestrians and represents memory - offline
map and live - online localization of an autonomous vehi-
cle or robot. The order of appearance of places is not the
same in the live and memory part of the dataset (the robot
takes different routes through the environment). Examples
of matching locations in the VPRiCE datasets are shown in
Figure 2.

4.2. Image Retrieval Experiment

The following experiment was performed to tune the pa-
rameters and performance of the image retrieval system.
We have considered images from both the memory and live
parts of the Visual Place Recognition in Changing Environ-
ments (VPRiCE) dataset to capture the variability of the
challenging environmental changes. In practice, it is also
expected that a robot will receive a representative set of im-
ages covering targeted environments and operational condi-
tions. The WxBS detection employed Hessian Affine [17]
and MSER detectors [14]. RootSIFT (RS) and HalfRoot-
SIFT (HRS) descriptors were computed with up-right as-
sumption. All local features were used to create two visual
vocabularies one for RS and one for HRS descriptors. The
RS vocabulary (1M visual words) was further split per fea-
ture type to light, dark, saddle Hessian points and MSER+
and MSER- proportionally to their average occurrence in
the images and each part clustered separately. Light and
dark blobs, and MSER+/- were merged together to allow
clustering of features with gradient reversals for HRS rep-
resentation. This split significantly speeds up quantization
and has negligible effect on retrieval performance. Finally,
an inverted file was built and additional geometry data of
each feature were stored for spatial verification. During
evaluation, each query image was indexed into the visual
word vocabularies and a shortlist of thousand most simi-
lar images formed using TF-IDF scoring and inverted file.
Each image in shortlist was verified using spatial verifica-
tion, by finding the best affine transformation between the
query and database image. The affine transformations were
constrained to those preserving up-right orientation. The
number of colliding labels, consistent with affine transfor-
mation (inliers) between query and each image in the short-
list, was used to get the final ranking of the shortlisted im-
ages.

A ground truth similar to Oxford buildings protocol [18]
was created for tuning of the image retrieval system. We
have manually labeled three sets of memory images for each
of the challenging queries from live part of VPRiCE dataset:
Good - correct, closest location image, Ok - images nearby
correct location with substantial scene overlap, and Junk -
images from the correct location with minimal (horizon) or
low overlap. The 52 query images were selected to propor-
tionally cover the live part of the dataset and were further
split to groups to see performance on different setups (Car,
Train, Campus, Campus IR, Bike).

For the evaluation, a mean average precision measure
(mAP) among all the queries was used. The average pre-
cision was computed as the area under the precision-recall
curve, considering the ranks of Good and Ok images as
positive examples, ignoring Junk images and counting all
other as negative examples. Results with three different se-
tups: using only HRS labels, only RS labels and aggregating
matches from both HRS and RS are shown in Table 2.

Table 2: Image retrieval scores (mAP) on selected se-
quence from the VPRiCE dataset for three different descrip-
tor choices – RootSIFT (RS), HalfRootSIFT (HRS), both.
The mAP is computed using Oxford Buildings style ground
truth.

Sequence HRS RS HRS+RS
Bike 0.002 0.002 0.003
Campus-Day 0.947 0.906 0.935
Campus-IR 0.428 0.564 0.600
Car 0.498 0.486 0.478
Train 0.309 0.319 0.390
Total mAP 0.440 0.463 0.504

Table 3: Location recognition results according to the
VPRICE protocol for different stages of the proposed
method – reference round truth, +/-1 frame error tolerance.

Method Precision Recall F1
BoW HalfRootSIFT 0.530 0.890 0.665
BoW Half&RootSIFT 0.538 1.000 0.700
BoW Half&RootSIFT
+ MODS + adj. model 0.821 0.825 0.823

Competitors
MAPIR (CNN) [8] 0.747 0.836 0.789
Bonn (CNN) [11] 0.726 0.758 0.741

4.3. Evaluation on VPRiCE dataset

The main goal of the proposed system is to accurately
recognize location of an image or a short sequence of im-
ages. To measure the overall performance we follow the
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Table 4: Location recognition results according to the
VPRICE protocol (with sequenced partial ground truth) for
different stages of the proposed method per sequences. ±
1 stands for taking match as correct, if predicted number
differs from ground truth by one

Method Prec Rec Prec ±1 Rec ±1
Train1

BoW (HRS) 0.477 0.477 0.594 0.594
BoW (HRS, RS) 0.562 0.562 0.682 0.682
BoW, WxBS-M, seed 0.983 0.983 0.984 0.983

Train2-TN
BoW (HRS) 0.000 1.000 0.000 1.000
BoW (HRS, RS) 0.000 1.000 0.000 1.000
BoW, WxBS-M, seed 0.802 1.000 0.802 1.000

Train3
BoW (HRS) 0.508 0.508 0.636 0.636
BoW (HRS, RS) 0.564 0.564 0.688 0.688
BoW, WxBS-M, seed 0.712 0.712 0.740 0.740

Train4
BoW (HRS) 0.512 0.512 0.652 0.652
BoW (HRS, RS) 0.616 0.616 0.744 0.744
BoW, WxBS-M, seed 0.731 0.731 0.915 0.915

Campus-Day
BoW (HRS) 0.235 0.235 0.560 0.560
BoW (HRS, RS) 0.240 0.240 0.600 0.600
BoW, WxBS-M, seed 0.790 0.790 0.995 0.995

Campus-IR
BoW (HRS) 0.120 0.120 0.390 0.390
BoW (HRS, RS) 0.145 0.145 0.420 0.420
BoW, WxBS-M, seed 0.140 0.140 0.330 0.330

Car
BoW (HRS) 0.083 0.085 0.166 0.170
BoW (HRS, RS) 0.092 0.094 0.180 0.185
BoW, WxBS-M, seed 0.201 0.207 0.414 0.426

Bike
BoW (HRS) 0.017 0.017 0.045 0.045
BoW (HRS, RS) 0.026 0.026 0.062 0.062
BoW, WxBS-M, seed 0.065 0.065 0.072 0.072

TOTAL, Sequence GT
BoW (HRS) 0.343 0.324 0.458 0.435
BoW (HRS, RS) 0.362 0.343 0.476 0.451
BoW, WxBS-M, seeds 0.623 0.657 0.710 0.761

TOTAL, full reference GT
BoW (HRS) 0.380 0.853 0.530 0.890
BoW (HRS, RS) 0.403 1.000 0.538 1.000
BoW, WxBS-M, adj.model 0.689 0.798 0.821 0.825
BoW (HRS, RS) 0.403 1.000 0.538 1.000
BoW, WxBS-M, adj.model 0.689 0.798 0.821 0.825

VPRiCE evaluation protocol. The goal is to output for
each query image in the live part of the dataset the index
of the closest location from the memory images. Some lo-
cations might not be present in the memory and the system

should report −1. The performance is assessed in terms
of precision, recall and F1 score. The precision was com-
puted as the number of correct answers (positive or nega-
tive) out of all queries, recall then as the number of cor-
rect positive answers. The overall official results of our
method are presented in Table 3. We have evaluated sep-
arately the initial location hypotheses generation (labeled
BoW (HRS) and BoW (HRS, RS)) by simple considering the
top ranking image from the retrieval shortlists. The BoW
(HRS) method uses only HalfRootSIFT vocabulary, while
the BoW (HRS, RS) uses both HalfRootSIFT and RootSIFT
features. Finally, the proposed seeds hypotheses and verifi-
cation method is denoted by BoW + WxBS-M + seeds takes
the shortlists of the retrieval BoW (HRS,RS) and verifies
them with the location verification algorithm (Alg. 7).

To provide deeper insight into performance of the algo-
rithms, we split the live dataset into continuous sequences
and labeled them by acquisition setups. The official se-
quenced ground truth was not available at the time of sub-
mission, thus we have manually selected the ground truth
response for each of the subset live images. The setups rep-
resent different challenges of the VPRiCE dataset. The re-
sults are summarized in Table 4. The WxBS retrieval sys-
tem reported ground truth location with precision 0.623 and
recall 0.657. It is clear that some of the sequences (Train,
Campus-Day) are almost solved by the algorithm, while
other (Car, Bike) are still too challenging. The seeds based
hypothesis verification improves most of the sequences.

The preliminary evaluation protocol of the VPRiCE
dataset requires algorithm to report the closest position.
Some parts of the dataset were sampled quite coarsely, e.g.
in the CAR sequence are images 20-30m apart. The subse-
quent “live” sequences are of course not perfectly synchro-
nized even when they tend to follow the same frequency
of sampling. Additional sources of noise as different view-
point, slightly different trajectory make it a very hard task
even for the human observer to pick the closest position.
Additionally, if the algorithm sticks to an “earlier” or “later”
frame consistently for some time, it is easy to fall in an of-
by-one error w.r.t ground truth. Thus we have decided to
report modified recall and precision values in the last two
columns (labeled Prec ±1 and Rec. ±1 of Table 4, i.e. the
result is counted as matching when it is within one frame
difference from the ground truth location. The locations
within ±1 frame were found with precision 0.821 and re-
call 0.825, and within ±5 frames – precision 0.923 and re-
call 0.841.

5. Conclusions
The WxBS retrieval system for outdoor localization

based on large scale image retrieval and WxBS matching
has been presented. Its performance was evaluated on the
public Visual Place Recognition in Changing Environments
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(VPRiCE) dataset achieving ground truth location precision
0.689 and recall 0.798. Locations within ±1 frame were
found with precision 0.821 and recall 0.825.
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