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Heavily based on tutorial:
Visual Tracking
by Jiri Matas

... Although tracking itself is by and
large solved problem...“,

-- Jianbo Shi & Carlo Tomasi
CVPR1994 --
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Course plan

-~

Day 1: Basics
Visual tracking: not one, but many problems.
The KLT tracker and Optical Flow

Day 2: CNN (mostly not about tracking)
General CNN finetuning

CNN design choices
CNN-based trackers

Day 3: State-of-art

Discriminative Correlation Filters
Long-term trackers

How to evaluate tracker
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Outline of the Day 3 @

Correlation filters trackers family.
Online discriminative tracking.
Long-term trackers.

How to evaluate trackers.
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Tracking with Correlation Filters

Acknowledgement to Joao F. Henriques from
Institute of Systems and Robotics
University of Coimbra
for providing materials for this presentation
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Overview

M Discriminative tracking
M Connection of correlation and the discriminative tracking

M Brief history of correlation filters

W Breakthrough by MOSSE tracker

M Kernelized Correlation Filters
M Discriminative Correlation Filters
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Discriminative Tracking (T. by Detection)
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Classify subwindows

Ll to find target
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Discriminative Tracking

W How to get training samples for the classifier?

W Standard approach:
® bboxes with high overlap with the GT = Pos. samples
® bboxes far from the GT - Neg. samples

m Neg. samples
w Pos. samples
Unspecified

B What with the samples in the unspecified area?
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Connection to Correlation

W Let’s have a linear classifier with weights w ;
L = f \
y = WTX l_ 2 r \

W During tracking we want to evaluate
the classifier at subwindows x; :
S
Yi = W X

B Then we can concatenate y; into
a vectory (i.e. response map)

W This is equivalent to cross-correlation formulation which can be
computed efficiently in Fourier domain
y=X®Ww

* Note: Convolution is related; it is the same as cross-correlation, but
with the flipped imageofw ( - ). «
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Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

N\

y=x®w & 0 §=X"XW

M where:

® y = F(y) is the Discrete Fourier Transform (DFT) of y.
(likewise for X and W)

® X is element-wise product
® * is complex-conjugate (i.e. negate imaginary part).

* Note that cross-correlation, and the DFT, are cyclic
(the window wraps at the image edges).
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Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

y=xXx®Ww o y=X"XW

x_>_>_f‘1 A

x| [ Fl—y
w—> | F 1

A"\

B Can be orders of magnitude faster:

¥ In practice:

® Forn X n images, cross-correlation is O (n%).
® Fast Fourier Transform (and its inverse) are O(n? logn).
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Connection to Correlation

The Convolution Theorem

“Cross-correlation is equivalent to an
element-wise product in Fourier domain”

N\

y=x®w & 0 §=X"XW

® Conclusion:

The evaluation of any linear classifier can be accelerated with the
Convolution Theorem.

B “linear” can become non-linear using kernel trick in some specific
cases(will be discussed later)

¥ Q: How the w for correlation should look like? What about
training?
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Connection to Correlation W

¥ Q: How the w for correlation should look like? What about
training?

Objective

High values

Unspecified?

®
=
]

Low values

B Intuition of requirements of cross-correlation of classifier(filter) w
and a training image X

® A high peak near the true location of the target
® | ow values elsewhere (to minimize false positive)

Tracking with Correlation Filters 13 slides material by Jodo F. Henriques IS'\’



Brief History of Correlation Filters

Minimum Average Correlation Energy (MACE) filters, 1980’s

W Bring average correlation output towards O:
X®w

min [|x ® w||?
W

except for target location, keep the peak value fixed:

subjectto: wix =1

M This produces a sharp peak at target location
with closed form solution:

N\

X * X" X Xis called the spectrum and is real-valued.

X" XX .* _division and product (X) are element-wise.
M Sharp peak = good localization! Are we d%ned? (X)

W =

O *

Tracking with Correlation Filters 14 slides material by Jodo F. Henriques IS'\’
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Brief History of Correlation Filters .

The MACE filter suffers from 2 main issues:
1. Hard constraints easily lead to overfitting.

® UMACE (“Unconstrained MACE”) addresses this by removing the hard
constraints and require to produce a high average correlation response on
positive samples. However, it still suffer from the 2" problem.

2. Enforcing a sharp peak is too strong condition; lead to overfitting
® Gaussian-MACE / MSE-MACE — peak to follow a 2D Gaussian shape

VAN
il.O
> 0.0
® |n the original method (1990’s), the minimization was still subject to the

MACE hard constraint.
(/t later turned out to be unnecessary!)

min [|x ® w — gll>, g=

subjectto: wix =1
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Brief History of Correlation Filters

Sharp vs. Gaussian peaks

. 1.0
Training image: x =
0.0

Naive filter
(W =Xx)
Classifier
(w)
[« Very broad peak is hard to localize
Output (especially with clutter).
(W * X) - State-of-the-art classifiers
(e.g. SVM) show same behavior!
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Brief History of Correlation Filters

Sharp vs. Gaussian peaks

- 1.0
Training image: x =
0.0

Naive filter Sharp peak

(W =X) (UMACE)
Classifier . :
(W) * A very sharp peak is obtained by
emphasizing small image details
(like the fish’s scales here).
- generalizes poorly; fine scale
Output details that are usually not robust
(W * X)

Tracking with Correlation Filters 17 slides material by Jodo F. Henriques IS'\’



Sharp vs. Gaussian peaks

N
Training image: x =
0.0

Naive filter Sharp peak Gaussian peak
(W = X) (UMACE) (GMACE)

;\ | - Agood compromise.

Classifier - ’\l Tiny details are
(w) )=
W ignored.
- focuses on larger,
more robust
Output structures.
(W * X)

Tracking with Correlation Filters 18 slides material by Jodo F. Henriques



Breakthrough by MOSSE tracker

Min. Output Sum of Sq. Errors (MOSSE)
W Presented by David Bolme and colleagues at CVPR 2010

W Tracker run at speed over a
600 frames per second

M very simple to implement

® no complex features only
raw pixel values

® only FFT and element-wise operation

M performance similar to the most sophisticated tracker (at that time)
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Breakthrough by MOSSE tracker

How does it work?

M Use only the “Gaussian peak” objective (no hard constraints)

1.0
min [x @w—gl?, g= - i
0.0

M Found the following solution using the Convolution Theorem:

g" X X
X*XX+ A1
(1 = 10~* is artificially added to prevent divisions by 0)

W =

¥ No expensive matrix operations! = only FFT and element-wise op.

Tracking with Correlation Filters 20 slides material by Jodo F. Henriques IS'\’



Implementation aspects
M Cosine (or sine) window preprocessing

T “

® image edgés smooth to zero

= the filter sees an image as a “cyclic” (important for the FFT)

® gives more importance to the target center.

M Simple update

N —
Wnew BN

Wt = (1 - 77)‘7\’1:—1 + 77"/‘\’new

Train a MOSSE filter Wy ey
using the new image X.

Update previous solution w;_; with
Wpew DY linear interpolation.

Tracking with Correlation Filters 21
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Breakthrough by MOSSE tracker W

Implementation aspects

W Scale adaptation Scale  Inputimage Detection output

X 1.0

X 0.9

® Extract patches with different scales and normalize them
to the same size

® Run classification; use bounding box with the highest response

Tracking with Correlation Filters 22 slides material by Jodo F. Henriques IS'\’



Why MOSSE works?

Ridge Regression Formulation

= Least-Squares with regularization (avoids overfitting!)

W Consider simple Ridge Regression (RR) problem:

min || Xw — y||* + A|lw]|*
w

has closed-form solution: w = (XTX + AI)_lXTy

We can replace X = C(Xx) (circulant data), and y = g (Gaussian targets).

B Diagonalizing the involved circulant matrices with the DFT yields:

{* X ¢ * Exactly the MOSSE solution!
o y =
W= X*XX+ A - good learning algorithm (RR) with lots

of data (circulant/shifted samples).
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Kernelized Correlation Filters

W Circulant matrices are a very general tool which allows to replace standard
operations with fast Fourier operations.

B The same idea can by applied e.g. to the Kernel Ridge Regression:

with K kernel matrix K;; = k(x;, x;) and dual space representation

a=(K+ A1y

B For many kernels, circulant data = circulant K matrix

K = C(K*¥), where KX is kernel auto-correlaton and
the first row of K (small, and easy to compute)

B Diagonalizing with the DFT for learning the classifier yields:

¢ Fast solution in O(nlogn).
fox + 7 = Typical kernel algorithms are

0(n?) or higher!

a =

Tracking with Correlation Filters 27 slides material by Jodo F. Henriques IS'\’
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Kernelized Correlation Filters .

B The K*¢ is kernel correlation of two vectors X and X’

XX/ __ / —1
k™ =x(x', P'7'x)
multiple channels can be concatenated to
B For Gaussian kernel it yie|ds. the vector x and then sum over in this term

/ 1 / — o * S/
0 = exp (~ & (Il + X2 — 277 (%" © %))

M Evaluation on subwindows of image z with classifier &« and model x:
1. K*=C(k*2)
2. f(2)=F k20O a)

W Update classifier & and model x by linear interpolation from the location of
maximum response f(z)

W Kernel allows integration of more complex and multi-channel features
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Kernelized Correlation Filters @

=

KCF Tracker

very few
hyperparameters

code fits on one slide
of the presentation!

Use HoG features
(32 channels)

~300 FPS

Open-Source
(Matlab/Python/Java/C)

Training and detection (Matlab)

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = (y) ./ ( (k) + lambda);
end

function y = detect(alphaf, x, z, sigma)
k = kernel_correlation(z, x, sigma);

y = ( (alphaf .* (k)));
end

function k = kernel_correlation(x1l, x2, sigma)

C = (sum( ( (x1)) .* (x2), 3));
d = x1(:)"*x1(:) + x2(:)"*x2(:) - 2 * c;
k = (-1 / sigma”2 * (d) / (d));

end

Sum over channel dimension
in kernel computation

Tracking with Correlation Filters
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From KCF to Discriminative CF trackers

Basic

B Henrigues et al. — CSK

® raw grayscale pixel values as features
W Henriques et al. — KCF

® HoG multi-channel features

Further work
® Danelljan et al. — DSST:

® PCA-HoG + grayscale pixels features

® filters for translation and for scale (in the scale-space pyramid)
W Lietal.—SAMF:

® HoG, color-naming and grayscale pixels features

® quantize scale space and normalize each scale to one size by bilinear inter.
— only one filter on normalized size

Tracking with Correlation Filters 30 slides material by Jodo F. Henriques IS'\’
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W Danelljan et al. =SRDCF:

Discriminative Correlation Filters Trackers

® spatial regularization in the learning process
— limits boundary effect

— penalize filter coefficients depending on their spatial location
® allows to use much larger search region

® more discriminative to background (more training data)

CNN-based Correlation Trackers

B Danelljan et al. — Deep SRDCF, CCOT (best performance in VOT 2016)
¥ Ma et al.

® features : VGG-Net pretrained on ImageNet dataset extracted from third,
fourth and fifth convolution layer

® for each feature learn a linear correlation filter

Tracking with Correlation Filters 31 slides material by Jodo F. Henriques




Beyond Correlation Filters:
Learning Continuous Convolution
Operators for Visual Tracking

Martin Danelljan, Andreas Robinson,

Fahad Shahbaz Khan, Michael Felsberg
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Discriminative Correlation Filters (DCF)

Applications

* Object recognition

* Object detection

* Object tracking
— Among state-of-the-art since 2014
— KCF, DSST, HCF, SRDCEF, Staple ...

LINKOPING
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 3

Discriminative Correlation Filters (DCF)

Single-resolution Coarse output
e feature map scores

l

Limitations:

LINKOPING
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

DCF Limitations:

1. Single-resolution feature map
 Why a problem?

— Combine convolutional layers of a CNN

 Shallow layers: low invariance — high resolution

» Deep layers: high invariance — low resolution
« How to solve?
— Explicit resampling?
« Artefacts, information loss, redundant data

— Independent DCFs with late fusion?

« Sub-optimal, correlations between layers

LINKOPING
II.“ UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

DCF Limitations:
2. Coarse output scores
 Why a problem?
— Accurate localization
* Sub-grid (e.g. HOG grid) or sub-pixel accuracy
» More accurate annotations=> less drift

« How to solve?

— Interpolation?

» Which interpolation strategy?
— Interweaving?

» Costly

LINKOPING
II.“ UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 6

DCF Limitations:
3. Coarse labels
 Why a problem?
— Accurate learning
 Sub-grid or sub-pixel supervision
« How to solve?

— Interweaving?
* Costly

— Explicit interpolation of features?
* Artefacts

LINKOPING
TR e



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 7

Our Approach: Overview  Continuous
J& / filters

Continuous

>

Multi-
resolution
features \

output

LINKOPING
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 8

Multiresolution Features

II LINKOPING
@ UNIVERSITY
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Interpolation Operator

II LINKOPING
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Interpolation Operator

1ol ﬂ/L

Jd{;é}( Nijlx (t;\gn)

oo
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 11

Convolution Operator

LINKOPING
II." UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 12

Training Loss

B(f) = )3 ]||Sf{:cj} y||/ +ZwadH

% /

5 |lg)? = /| P

[Danelljan et al., ICCV 2015]

LINKOPING
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 13

Training Loss — Fourier Domain

m D 2 D
. . 2
E(f)=) o ||y F'Xba—g|| +)_|w*f
=1 d=1 2 d=1
N ?.g .
lgll7- =) |g[k]I>
—00
T

X 1 —i 2
o = (g.e) = 7 | gle FHat
0
Ng—1

XUk = 3 alfnle Nt

n=0
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 14

Training Loss — Fourier Domain

2

D A
—I—Z w * fa

2 d=1

E(f)=) aj

J=1

2
{2
£

D
> fXTbg — g5
d=1

ll

(A"TA + WHW) £ = AFTy

II LINKOPING
o UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 15

Localization

II LINKOPING
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 16

Localization

II LINKOPING
o UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 17

How to set Y; and b, ?

» Use periodic summation of functions ¢: R — R:

gr(t)= > g(t—nT)

n=-—00
« Gaussian function for y;

* Cubic spline kernel for b,

* Fourier coefficients ¢;, b; with Poisson’s summation
formula:

N

grlk] = F74(

N|=

LINKOPING
hv o,



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 18

Object Tracking Framework: Features

* VGG network
— Pre-trained on ImageNet

— No fine-tuning on application specific data

LINKOPING
II.“ UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 19

Object Tracking Framework: Optimization
Solving (AT A+ WHW) £ = AHTy

SRDCF: Gauss-Seidel

® Explicit computation of
(A" A+ WHW)

© Sparse matrix handling

® O(D?)

© “Infinite” memory

© Warm starting: trivial

C-COT: Conjugate Gradient

© Only need to evaluate
(A"TA +WHW) £

© No sparse matrix handling

© O(D)

© Finite memory

© Warm starting: non-trivial

© Tuning of pre-conditioners

LINKOPING
v o,




Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 20

Object Tracking Framework: Pipeline

« Simple:
... — Track — Train — Track — Train — ...

» No thresholds
* No hidden “tricks”

LINKOPING
v o,



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 21

Experiments: Object Tracking

» 3 datasets: OTB-100, TempleColor, VOT2015
 Layer fusion on OTB:

‘ Layer 0 Layer 1 Layer 5 ’ Layers 0, 1 Layers 0, 5 Layers 1, 5 ‘ Layers 0, 1, 5

Mean OP | 58.8 78.0 60.0 77.8 70.7 81.8 82.4
AUC 49.9 65.8 51.1 65.7 59.0 67.8 68.2

« Compared to explicit resampling in DCF
— Performance gain: +7.4% AUC
— Efficiency gain: —80% data size

LINKOPING
v o,



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 24

Experiments: VOT2016

EAO A R Arank Rrane AO  EFO  Tmpl.

0.311 0.490 0.233 36.000 1.000 0.428 1483 DM

1. QO C-COT 0.331 0.539 0.238 12.000 1.000 0.469 0.507 D M
2. 0.325 0.554 0.268 4.000 2.000 0.485 1.049 S M
3. 0.321 0.577 0.291 1.000 3.000 0.515 0475 S M
4.
d.

{> Staple

0.295 0.544 0.378 5.000 10.000 0.388 11.144 D C

[Matej et al., ECCV VOT workshop 2016]
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Object Tracking: Speed

« With CNN features: slow ~1 FPS (no GPU)

« With HOG features: ~ real time at SRDCF
performance

LINKOPING
II.“ UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Feature Point Tracking Framework

« Grayscale pixel features, D = 1

* Uniform regularization, w(t) = /3

Y
D ey 0 X[k

A |b[Kk]g; K]
O A
2 Z?1O‘J‘X k|olk ” + 2

26
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Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 27

Experiments: Feature Point Tracking

* The Sintel dataset

Precision plot

1
_9
£ 508
©
2o
° 5
S s
c =04F} Ours (0.886) J
2 < Ours-FF (0.871)
& 902} —— MOSSE (0.879)
L —KLT (0.773)
0 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Endpoint error threshold [pixels]

II LINKOPING
@ UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking 30

Conclusions

« Continuous domain learning formulation
— Multi-resolution deep feature maps
— Sub-pixel accurate localization
— Sub-pixel supervision
 Superior results for two applications
— Object tracking

— Feature point tracking

II LINKOPING
o UNIVERSITY
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Discriminative Correlation Filter with
Channel and Spatial Reliability

https://arxiv.org/abs/1611.08461
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https://arxiv.org/abs/1611.08461

\‘Q‘S Discriminative Correlation Filter with Channel and Spatial Reliability

M State-of-the-art results, outperforms even trackers based on deep
NN

W Simple features:
® HoG features (18 contrast sensitive orientation channels)
® binarized grayscale channel (1 channel)

® color names (“mapping of RGB to 10 channels)

B Single-CPU single-thread, matlab implementation @13 fps
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CSR-DCF

W Algorithm (repeats 1,2)
W Training:
® Estimate object segmentation - object mask
® Learn correlation filter using the object mask as constraints
® Update generative weights for the feature channels
M Localization:
® Compute response map from the weighted feature channels responses
® Update discriminative weights for the feature channels
® Estimate best position (max peak location + subpixel localization)
® Estimate scale (standard approach used in correlation tracking)

Training — - Localization
Reliability map L

Tracking with Correlation Filters ) o 60 ) T slides material by Jodo F. Henriques IS'\’



CSR-DCF @

Channel Regularized
M Online weighting scheme of features
M The feature channels are weighted by:

® their absolute contribution to the correct label response during filter
learning, i.e. generative weighting
(the higher contribution to the correct response the better)

® ratio of first and second max peaks of the filter response during tracking, i.e.
discriminative weighting
(the larger difference between first and second peak the better)

Localization:

Tracking with Correlation Filters slides material by Jodo F. Henriques IS'\’



CSR-DCF

Spatial Regularization

W GrabCut based segmentation on
estimated location (or initial position)
— pisel-wise object mask

W Correlation filter is trained using the
object mask, i.e. pixels that does not
belong to the target are disabled

M Advantages:

M Reduces influence of bounding box object representation for object that
undergoes e.g. rotation, deformation or aspect ratio change

M Allows for large search region
(i.e. large movement), since
the filter training is
focused by the object mask

Tracking with Correlation Filters 62 slides material by Joad'F. Henriques



CSR-DCF

M Results for standard benchmarks: VOT2015 (left) and VOT2016 (right)

ASMS @m)m‘ @ oxcr SODLT ccot () esT (19 ByEy OSSAT
CSR- OLDP rajssc SsPST qq e 088'; mFCF SHCT SSKCF QQ? M
oAt @met @ Soock srdof q - pDC 66Tv2 (1) siamrRN () staple Q L1 %%
snacr (D veem () 5 cker struck Q \\ 03,?;’,, Sracr@ N () sreT STAPLEp Q ;\\i\'i 03%
EBT nsamf () scebt sumshift QQ o T onT - @ mor (@) sroce @) Tonn Q\ o _ 38
N\ LR > carng ] z
-------------- A_/l\.!\_\ b D.2§ ceraeenes L 02%
......... dé 0.13 o &6 0.13
60 50 40 30 20 10 700 70 60 50 40 30 20 10 700
Rank Rank
@ CSR-DCF % CCOT —@® TCNN * SSAT MLDF % Staple
Staple+ © DDC X EBT @® SRBT @ DNT
: . Overal
Tracker Published at EAO A.,, Rav fps P
CSR-DCF  This work. 0.338 0.51 0.85 13.0 _ /,// ; S~ o
CCOT ECCV2016 0.331 052 085 0.55 (“"’f‘*""}«/: . ;\-\,““""”“7’
CCOT* ECCV2016 0274 052 [1.18 1.0 . =\ '
SRDCF ICCV2015 0247 052 1.50 7.3 Al e \ o
KCF PAMI2015 0.192 048  2.03 115.7 o X "y “‘
DSST PAMI2016 0.181 045 252 186 Moion| TN A / . /"‘dﬂ""gg’“
Struck ICCV2011 0.142 042 337 8.5 @ os . \"' : P){ / (025,099
, .
AR g
Sod —
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CSR-DCF

M Results for standard
benchmark: OTB2015

M Speed analysis

\ Precision plots \
g "
== CSR-DCF [0.733] [ .g
5o ol 7.2 e SRDCF [0.725] | 06| | e CSR-DCF [0.587]
. &= 2577|444 MUSTER [0.709] g +=+ MUSTER [0.572]
7’ == Struck [0.599] = Struck [0.463]
Q. os ,/ — TLD [0.550] 04 |— scm[0.446)
SCM [0.540] @ LD [.427]
s CXT [0.521] === CXT [0.414]
0z § = CSK[0.496] 02 |mm ASLA[0.410]
« = ASLA[0.491] ==+ LSK [0.386]
=== LSK [0.478] === CSK [0.386]

Filter update
12ms

Tracking with Correlation Filters
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/%{/\5 Discriminative Correlation Filters - SummaryW

W state-of-the-art performance on standard benchmark
B more efficient than competing DNN approaches

W cost function: discriminative, kernel based
W optimization:
® efficient for translation
® response not only at the location of the maximum

W issues with non-square objects

transformations beyond translation handled ad-hoc
W outputs a global transformation:

® providing only an approximate flow field

® segmentation not part of the standard formulation

Tracking with Correlation Filters 65 slides material by Jodo F. Henriques IS'\’



Other Tracking-by-Detection Trackers: Struck|© [

Each group shows the support
vectors (SVs) corresponding to
a single frame.

Sam Hare, Amir Saffari, Philip H. S. Torr, Struck: Structured Output Tracking with Kernels,
ICCV 2011

66/150


http://www.samhare.net/research/struck

Tracking as Detection:

® Tracking as binary classification

S. Avidan. Ensemble tracking. CVPR 2005.
J.Wang, et al. Online selecting discriminative tracking
features using particle filter. CVPR 2005.

object
VS.
background

Slide credit: Helmut Grabner



Online discriminative tracking W

® Tracking as binary classification @ Object and background changes are
S. Avidan. Ensemble tracking. CVPR 2005. rObUStIy handled by on-line
J.Wang, et al. Online selecting discriminative tracking updatlng'

features using particle filter. CVPR 2005.

object

VS.
background

Slide credit: Helmut Grabner



Boosting for Feature Selection 2

Object Detector

P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. CVPR 2001.

Fixed Training set
General object sign(ay-
detector

Combination of simple image features
using Boosting as Feature Selection

Object Tracker

On-Line Boosting for Feature Selection

On-line update H. Grabner and H. Bischof. On-line boosting
Object vs. Background and vision. CVPR, 2006.

Slide credit: Helmut Gré®fiep



Tracking by online Adaboost

-

update classifier (tracker)

from time t to t+1

analyze map and set new
object position

evaluate classifier on sub-patches

search Region

create confidence map

; Aj'
V7av

¥
v

il N e "(‘ ‘
D ";{‘:«'If).":'at{" ‘l ')

\A 7 W o _.
iy '(‘6’{;-"}{"’(".’ 20

H. Grabner et. al., Real-Time Tracking via On-line Boosting . BMVC, 2006.

Slide credit: Helmut Grd®Hlep
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Tracking by online Adaboost &

« Realtime performance
— Fast feature computation Confidence Map
— Efficient update of classifier

Max. IanfidlenlceIVaIue
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Tracking by online Adaboost

H. Grabner et. al., Real-Time Tracking via On-line Boosting . BMVC, 2006.
Slide credit: Helmut Grdbtep



Failure modes

Slide credit: Helmut Grabner



-

Why does it fail... o’

evaluate classifier on sub-
patches

from time t to t+1

arning!

Slide credit: Helmut Grabner



Constant self-adaptation leads to/'~
drifting
Tracked Patches Confidence

Slide credit: Helmut Grabner



g@

nstan f- ion rifting [~
« A poor update at time-step k may lead to poor localization at k+1

* This leads to even a
poorer update, etc.

Image credit: Helmut Gra@bHéep



Do not trust all learning examples W

negatives positives
L

1
li;;

4

Assume all negative examples are really
negative

Assume positive examples might contain some
negatives
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Do not trust all learning examples s

( F Y
= = = OAB(1

SemiBoost
)| m— 0\ Track(45)

s MILTrack

e Note that the online Adaboost failed in this run on the

David sequence!
e Be sure that TMIL authors worked to show this, but it also

says a lot about robustness of 0AB to initialization!
 Code for TMIL available here.

Babenko et al.,"Robust Object Tracking with Online Multiple Instance Learning", TPAMI2011



http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml

6
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.

« Key-point-based tracking:
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« Correlation filter tracking:
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— [6] Henriques, Caseiro, Martins, Batista, High-Speed Tracking with Kernelized Correlation
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— [7] Danelljan, M., Hager, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for
robust visual tracking, BMVC2014
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The TLD (PN) Long-Term Tracker
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-

The TLD (PN) Long-Term Tracker £

includes:
 adaptive tracker(s) (FOT)
 object detector(s)

e Pand N event recognizers for unsupervised learning generating (possibly
incorrectly) labelled samples

 an (online) supervised method that updates the detector(s)

Operation:

1. Train Detector on the first patch

2. Runs TRACKER and DETECTOR in parallel

3. Update the object DETECTOR using P-N learning

82/150



TLD a.k.a. PN Tracker a.k.a. “The Predator”

Predator: Camera That Learns

Zdenek Kalal, Jin Matas, Krystian Mikolajczyk
University of Surrey, UK
Czech Technical University, Czech Republic

Z. Kalal, K.Mikolajczyk, J. Matas: Tracking-Learning-Detection. IEEE T PAMI 34(7): 1409-1422 (2012)
83/150




i)

P-event: “Loop” =

i

* exploits temporal structure Tracker responses

Loop Failure

* turns drift of adaptive trackers into a

* Assumption:
If an adaptive tracker fails, it is unlike

* Rule:

Patches from a track starting and enc
model (black), ie. are validated by th« j i
added to the model

ﬂﬂ \\ '. u
= £ R > PP
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N-event: Uniqueness Enforcement ot

* exploits spatial structure

* Assumption:
Object is unique in a single frame.

* Rule:
If the tracker is in model, all other
detections within the current frame
(red) are assumed wrong — prune
from the model

85/150



The Detector @

« Scanning window
« Randomized forest

* Trees implemented as ferns e
[Lepetit 2005] f----f"

* Real-time training/detection I (3
20 fps on 320x240 image (@) | loie)

« High accuracy, 8 trees of depth . E] @ 55

1 O E vy 2bit Binary Pattems

« 2bit Binary Patterns Combined = Hj j
Haar and LBP features S
* Tree depth controls complexity & . s %:
discriminability; currently not 3
adaptive B B ) ﬁ
1

SN




IE? L1

87/150



18008

GELILR

E] [
L8 [=]
L]

s o
il LAl

88/150



10800000 AnARADOR  ADANGADD




o

o O -
T
1

-150  -100 -50 0 50 100 150 200

More TLD videos 90/150
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Evaluation of Trackers



Tracking: Which methods work?

93/150



Tracking: Which methods work?

Method ‘of Roésv e Meon Shlft |
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What works? “The zero-order tracker” ©

95/150



Compressive Tracker (eccv’12). Different runs.

™
=
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VOT community evolution
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VOT challenge evolution

VOT2013 ranks, A, R 16, s. manual |:| manual per frame
VOT2014 ranks, A, R, EFO | 25, s. manual O manual per frame
VOT2015 EAO, A, R, EFO 60, fully auto O manual per frame
VOT2016 EAO, A, R, EFO 60, fully auto ,fi; auto per frame

e Gradua
e Gradua

e Gradua

&

increase of dataset size VOT VOT V

27
38
62 VOT, 24 VOT-TIR
70 VOT, 24 VOT-TIR

iﬁ%ﬁj VOT

wisual chject rack)

refinement of dataset construction

refinement of performance measures

e Gradual increase of tested trackers

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016



Class of trackers tested C

 Single-object, single-camera

e Short-term:
—Trackers performing without re-detection

« Causality:
—Tracker is not allowed to use any future frames

* No prior knowledge about the target
—Only a single training example - BBox in the first frame

* Object state encoded by a bounding box

99/150



Construction (1/3): Sequence candidates

( )
ALOV (315 seq.)
[Smeulders et al.,2013]

§ J
e
OTB (~50 seq.)

[Wu et al.,2013]
\_ J
( )

PTR (~50 seq.)
[Vojir et al.,2013]

. J

(530 newtquenceg ES6 Se( Uencg
from VOT2015

g committee ﬁ Q]

J

(Filtered out: A 4 )
*  Grayscale sequences VOT Automatic Dataset
* <400 pixels targets . _
443 I:> +  Poorly-defined targets Construction Protocol:
seguences * Artificially created sequences cluster + sample

— AN Y

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 100/39



Construction (2/3): Clustering

* Approximately annotate targets

* 11 global attributes estimated

automatically for 356 sequences

(e.g., blur, camera motion, object motion)

Cluster similar sequences

-

Feature encoding

Affinity Propagation
[Frey, Dueck 2007]

e Cluster into K =28 groups (automatic selection of K)

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 101/39



Construction (3/3): Sampling

Cluster similar Sample diverse

° ReqUIrement: sequences challenging set

 Diverse visual attributes O O
* Challenging subset —

e Global visual attributes: computed

O 00000

* Tracking difficulty attribute: Applied FoT, ASMS, KCF trackers

 Developed a sampling strategy that sampled
challenging sequences while keeping the global
attributes diverse.

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 102/39
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Object annotation

* Automatic bounding box placement
1. Segment the target (semi-automatic)

2. Automatically fit a bounding box by optimizing a cost function

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 104/39



~ Sequence ranking

« Among the most challenging sequences

Matrix (Af = 0.33, My = 57) Rabbit(A; = 0.31, My = 43) Butterfly (4 = 0.22, My = 45)
.c-:_ .
'

 Among the easiest sequences

Singerl (Af = 0.02, M = 4) Octopus (Af = 0.01, My = 5) Sheep (4 = 0.02, M = 15)

Kristan et al., VOT2016 results 105/42



VO
viaual abiact track - Challenges Support Publications

Participate Program People ECCV2016, Amsterdam, the Netherlands

Dataset

VOT2016

VOT2016 Challenge

News and updates

July 14th, 2016: - Workshop day

The VOT workshop will be held on October 10th. 4

i

You find the old news here.

Call for participation and for papers

We are happy to announce the 4th VOT Workshop, that will take place in conjunction with ECCV 2016. The event follows the three
highly sucessful workshops VOT2013 (ICCV2013), VOT2014 (ECCV2014), and VOT2015 (ICCV2015). -:\.

Researchers from industry as well as academia are invited to participate. The challenge aims at single-object short-term trackers
that do not apply pre-learned models of object appearance (model-free). Trackers do not necessarily need to be capable of

automatic re-initialization, as the objects are visible over the whole course of the sequences. r -1
We are also announcing the second VOT thermal imagery fracking sub-challenge VOT-TIR2016. The details of the VOT2016 and

VOT-TIR2016 sub-challenge will be available soon.

The results of the VOT2016 and VOT-TIR2016 challenges will be presented at the ECCV2016 VOT workshop. | 9 2l

visual object tracking challenge

The VOT committee also solicits full-length papers describing:

Main novelty — better ground truth.
« Each frame manually per-pixel segmented
« B-boxes automatically generated from the segmentation



VOT Results: Realtime

2013 2014 2015

PLT (~169 fps) FoT (~190 fps) ASMS (~172 fps)

FoT (~156 fps) PLT (~112 fps) BDF (~300 fps)

CCMS(~57 fps) KCF (~36 fps) FoT (~190 pfs)
Ekpeﬂméntl FOI KCF > FoT <l<1
e P A ENEELE By /

TN SRS e S - ; Do a

0 CCEMS L el “ ASMS

20 02? borbtiribiba Tiorralized
rev 0.1} 8 AR scores |

SR N B S § i - ionom

“““““““““ " L e % 02 04 06 08 1

 Flow-based, Mean Shift-based, Correlation filters

* Engineering, use of basic features

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 107/39



VOT 2016: Results
. C-COTOinghtIy ahead of TCNN (1) C'CO\
(2) TCNN\

- Most accurate: SSAT™ (3) SSAT ———
- Most robust: C-COT and MLDF ¥/ Eg; SfaLE.Fe\ggm ﬁ@v
- R,
Overlap curvmes | AR-raw plot

09 | O

0.8 F

SSAT  TCNN '

- >~
O
(4%
R =
>
02 } O
01 k < Pooled AR values |
.0 Sequence length ~— . . R.DbUS'[nB:'E‘»S (S = 1.00.00)
101 10 2 103 0 0.2 0.4 0.6 0.8 1

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016 108/42



VOT 2016: Tracking speed

* Top-performers slowest
e Plausible cause: CNN O 3¢

e Real-time bound: Staple+

* Decent accuracy,
 Decent robustness

0.4 pr—r—v—rrrre

~ EAO vs. speed
035 | C-COT TCNN -

SSATO MLDF
0.3 :I_ «$

¢
0.25 f D

4_*_& A'qé‘

02 f X A
Xt &y

¥*

Staple]
+

015 f -+ gt

X
* >

Bo

<
4

EAO

01 | -
m
0.05 F |
Normalized speed (EFO)

4 PRy | 2

a2 aa 'Y a a a2 a2 o aal
100 101 10 2

| SSAT  TCNN ‘
0.6 } S il
RO O

os o< 4 M Lok

af X HRR |

0.3 -3 * Stap|e+ ‘
1

0.2 §

0.1 »<I Pooled AR values !

| Robustness (S = 100.00)

0 ! 1 1

Note: the speed in some
Matlab trackers has been
significantly underestimated
by the toolkit since it was
measuring also the Matlab
restart time. The EFOs of
Matlab trackers are in fact
higher than stated in this

™=

0.2 0.4 0.6 0.8 1

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016
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VOT public resources

* Resources publicly available: VOT page

VoI

Submit to the ECCV VOT 2016 Workshop!

Home Challenges Support Publications

The VOT challenges provide the visual tracking community with a precisely defined and repeatable way of comparing short-term trackers as well as a common plz

the evaluation and advancements made in the field of visual trackina.

 Raw results of all tested trackers
 Relevant methodology papers

e 2016: Submitted trackers code/binaries

Documentation

» Toolkit documentation
« TraX protocol technical report

Resources

The workshop presentations, report papers, and raw results needed to reprod
VOT benchmark on its corresponding sub-page.

* VOT2013 resources
* VOT2014 resources
* VOT2015 resources

Tutorials and guides

These tutorials cover various topics on how to use VOT toolkit in your experin

Setting up the workspace
Integrate a tracker

* All fully annotated datasets (2013-2016) o

 Documentation, tutorials, forum

Perform evaluation and submit results
Analyzing results and generating reports
» Reproducing the 2016 TPAMI paper results
« Using different set of sequences with VOT toolkit

9 Did not find a tutorial for your task?

Look at the Frequently Asked Questions or contact us on the supp¢

110/39

Matej Kristan, matej.kristan@fri.uni-lj.si, DPAEV Workshop, ECCV 2016



6

Summary

-~

“Visual Tracking” may refer to quite different problems.

The area is just starting to be affected by CNNs.

Robustness at all levels is the road to reliable performance

Key components of trackers:

— target learning (modelling, “template update”)

— integration of detection and temporal smoothness assumptions
— representation of the image and target

Be careful when evaluating tracking results

111/150



What if there are several objects to track?

e

C' @ Secure https://motchallenge.net

Multiple Object Tracking Benchmark

Ahome @datav Eresuitss Hvis % VQA Asubmit~ @OFAQ L people *login . signup

Welcome to MOTChallenge: The Multiple Object Tracking Benchmark!

In the recent past, the computer vision community has relied on several centrallzed benchmarks for performance evaluation of humerous

tasks including object detection, pedestrian detection, 3D reconstruction, optical flow, single-object short-term tracking, and stereo estimation.
Despite potential pitfalls of such benchmarks, they have proved to be extremely helpful to advance the state-of-the-art in the respective
research fields. Interestingly, there has been rather limited work on the standardization of multiple target tracking evaluation. One of the few
exceptions is the well-known PETS dataset, targeted primarily at surveillance applications. Even for this widely used benchmark, a common
technique for presenting tracking results to date involves using different subsets of the available data, inconsistent model training and varying
evaluation scripts.

With this benchmark we would like to pave the way for a unified framework towards more meaningful quantification of multi-target tracking.

Milan et.al, 2016. MOT16: A Benchmark for Multi-Object Tracking 112/150



THANK YOU.
Questions, please?



