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1 Basics of probability theory

1.1 Motivation example

A lot in a lottery is sold for the price of 2 EUR.

1 lot from 1000 wins 1000 EUR, others nothing. (This determines the value of the

lot after the drawing of lots.)

What is the value of the lot before the drawing of lots?

Not 2 EUR, but 1
10001000 = 1 EUR = average value after the drawing of lots.

This is a topic of probability theory.

Question “Lottery”: Why do people participate in lotteries?



Here the rules were clearly described in the same units.

Modification: A lot of a tombola may win various prices whose value is individual

and not exactly determined.

A good evaluation of such a lot requires handling incomplete information and more

advanced arguments. The value of the lot is not exactly determined even after the

drawing of lots.

This is a topic of fuzzy sets theory and fuzzy logic.

1.2 The role of statistics

So far we assumed that the parameters of the probabilistic model are known. This

is rarely the case.



Example: In some games a winning strategy might be: Bet something else than

the others. It is necessary to know the strategy of other players.

Example: In roulette, both sides want to know whether all numbers have the same

probability. How to verify/deny this assumption? What is the risk of a wrong

conclusion?

This is a topic of statistics.

Statistics gives us more: It is a tool for finding those laws of the world which are

not apparent.



1.3 Probability (probability measure)

is a function P which maps events to numbers from [0, 1] and satisfies

(P1) P [true] = 1,

(P2) P

[ ∨
n∈N

An

]
=

∑
n∈N

P [An] if events An, n ∈ N are mutually exclusive.

Consequences:

P [false] = 0, P [¬A] = 1− P [A],

if A =⇒ B, then P [A] ≤ P [B].

(For correctness, we need the collection of events to satisfy some conditions ...)



1.4 Random variable

is a measurable mapping of elementary events into R, i.e.,

an object X described by probabilities P [X ∈ I] = ωX(I) defined for all intervals

I ⊆ R (and for any union of countably many intervals);

ωX is a probability measure determining the distribution of random variable X.

(We restrict attention to so-called perfect measures, but others are not encountered

in practice.) It satisfies:

ωX(R) = 1,

ωX

( ⋃
n∈N

In

)
=

∑
n∈N

ωX(In) if intervals In, n ∈ N are mutually disjoint.

Consequences:

ωX(∅) = 0, ωX(R \ I) = 1− ωX(I),



if I ⊆ J , then ωX(I) ≤ ωX(J) and ωX(J \ I) = ωX(J)−ωX(I).

More efficient representation: we restrict attention to intervals of the form I =
(−∞, t), t ∈ R,

P [X ∈ (−∞, t)] = P [X < t] = ωX((−∞, t)) = FX(t).

FX : R → [0, 1] is the cumulative distribution function (cdf) of a random vari-
able X. This suffices because

[a, b) = (−∞, b) \ (−∞, a),

[a,∞) = R \ (−∞, a),

(−∞, a] =
⋂

b: b>a

(−∞, b),

{a} = (−∞, a] \ (−∞, a),

...

ωX([a, b)) = P [a ≤ X < b] = FX(b)− FX(a),

ωX ([a,∞)) = 1− FX(a),

ωX ((−∞, a]) = P [X ≤ a] = lim
b→a+

FX(b) = FX(a+),

ωX({a}) = P [X = a] = FX(a+)− FX(a),

...



A cumulative distribution function is:

• non-decreasing,

• left continuous,

• satisfies lim
t→−∞

FX(t) = 0, lim
t→∞

FX(t) = 1.

Theorem: These above three conditions are necessary and sufficient for a function

FX to be a cdf of some random variable.





Example: A real number r corresponds to a random variable (denoted also r) with

the Dirac distribution concentrated in r:

ωr(I) =

{
0 if r /∈ I,

1 if r ∈ I,
Fr(t) =

{
0 if t < r,

1 if r ≤ t.

(Fr is a shifted Heaviside function.)



1.5 Random vector (vector random variable)

is a vector of random variables ~X = (X1, . . . , Xn) determined by probabilities

P [X1 ∈ I1 ∧ . . . ∧ Xn ∈ In] = ω ~X
(I1 × . . . × In), where I1, . . . , In are intervals

in R.

It suffices to restrict attention to intervals Ik = (−∞, tk), tk ∈ R,

P [X1 ∈ (−∞, t1) ∧ . . . ∧Xn ∈ (−∞, tn)] = P [X1 < t1 ∧ . . . ∧Xn < tn]

= ω ~X
((−∞, t1)× . . .× (−∞, tn))

= F ~X
(t1, . . . , tn).

F ~X
: Rn → [0, 1] is the cumulative distribution function (cdf) of a random vector

~X. It is

• non-decreasing (in all variables),

• left continuous (in all variables),



• lim
t1→−∞,...,tn→−∞

F ~X
(t1, . . . , tn) = 0, lim

t1→∞,...,tn→∞
F ~X

(t1, . . . , tn) = 1.

Theorem: These are necessary and sufficient conditions.

Is is not sufficient to know the marginal distributions of random variables X1, . . . , Xn,
because they do not bear information about dependence. Independent variables
X1, . . . , Xn allow a simplification to:

F ~X
(t1, . . . , tn) = P [X1 < t1 ∧ . . . ∧Xn < tn] =

n∏
i=1

P [Xi < ti]

1.6 More general random variables

A complex random variable is a random vector with two entries interpreted as a
real and imaginary part.

Sometimes we admit “random variables” achieving non-numeric values which do
not admit any arithmetic or ordering. We can choose a numbering of these values,
but there is no canonical or natural way how to do it, so numerical computations
with these values are meaningless.



1.7 Mixture of random variables

U, V with coefficients c, 1−c ∈ [0, 1] is a random variable X = Mix(c, U ; 1−c, V )

with cdf

FX = cFU + (1− c)FV ,

FX(t) = cFU(t) + (1− c)FV (t).

The corresponding probability measure is ωX = cωU + (1− c)ωV .

A correct intruduction of these notions requires to define the corresponding prob-

ability space. Nevertheless, the distribution is obtained easily and it is usually

sufficient for subsequent procedures.

More generally, the mixture of random variables U1, . . . , Un with coefficients

c1, . . . , cn ∈ [0, 1],
∑n

i=1 ci = 1, is a random variable Mix(c1, U1; . . . ; cn, Un) with

cdf
∑n

i=1 ci FUi
. The corresponding probability measure is

∑n
i=1 ci ωUi

.

This can be generalized to countably many random variables.



Example: Mixture of reals r1, . . . , rn with coefficients c1, . . . , cn is a random vari-

able X = Mix(c1, r1; . . . ; cn, rn),

ωX(I) = P [X ∈ I] =
∑

i:ri∈I

ci, FX(t) =
∑

i:ri≤t

ci.

It can be described by the probability function pX : R → [0, 1],

pX(t) = ωX({t}) = P [X = t] =

{
ci if t = ri,

0 otherwise.

This can be generalized to countably many reals.



1.8 Types of random variables

1. Discrete: (from the previous example) There is a countable set OX such

that ωX(R \ OX) = P [X /∈ OX] = 0. The least such set (if it exists) is

ΩX = {t ∈ R : ωX({t}) 6= 0} = {t ∈ R : P [X = t] 6= 0}.

A discrete random variable can be described by the probability function pX(t) =

ωX({t}) = P [X = t].

It satisfies
∑

t∈R
pX(t) = 1.

2. (Absolute) continuous:

FX(t) =
∫ t

−∞
fX(u) du

for a non-negative function fX : R → [0,∞) called a probability density func-

tion (pdf) of the random variable X.

It satisfies
∞∫
−∞

fX(u) du = 1.



It is not determined uniquely, but two pdfs fX , gX of the same random variable

have a difference such that∫
I
(fX(x)− gX(x)) dx = 0

for all intervals I.

We may choose fX(t) =
dFX(t)

dt if the derivative exists.

ωX({t}) = 0 for all t.

3. Mixed: A mixture of the preceding cases;

ΩX 6= ∅, ωX(R \ ΩX) = P [X /∈ OX] 6= 0.

It has neither a probability function, nor a pdf.

4. Other cases: E.g., a random variable with a continuous cdf which cannot be

expressed as an integral. We exclude such cases in the sequel.



1.9 Description of a mixed random variable

A mixed random variable X can be uniquely expressed in the form X = Mix(c, U ; 1−
c, V ), where U is discrete, V is continuous, and c ∈ (0, 1):

c = ωX(ΩX) = ωX({t ∈ R : ωX({t}) 6= 0}),
c ωU({t}) + (1− c) ωV ({t})︸ ︷︷ ︸

0

= c ωU({t}) = ωX({t}),

pU(t) = ωU({t}) =
ωX({t})

c
,

ΩU = ΩX ,

c ωU(I) + (1− c) ωV (I) = ωX(I),

ωV (I) =
ωX(I)− c ωU(I)

1− c
,

FV (t) =
FX(t)− c FU(t)

1− c
.



Alternatively, without the use of a probability measure:

c =
∑
t∈R

P [X = t],

c P [U = t] = P [X = t],

pU(t) = P [U = t] =
P [X = t]

c
,

c P [U ∈ I] + (1− c) P [V ∈ I] = P [X ∈ I],

P [V ∈ I] =
P [X ∈ I]− c P [U ∈ I]

1− c
,

FV (t) =
FX(t)− c FU(t)

1− c
.

(We may continue by a decomposition of the discrete part to a mixture of Dirac

distributions.)

1.10 Quantile function of a random variable

∀α ∈ (0, 1) ∃t ∈ R : P [X < t] ≤ α ≤ P [X ≤ t].



If there are more such numbers, they form an interval from which (usually) the

center is taken; more precisely

QX(α) =
1

2
(sup {t ∈ R | P [X < t] ≤ α}+ inf {t ∈ R | α ≤ P [X ≤ t]}) .

The number QX(α) is called an α-quantile of the random variable X; the function

QX : (0, 1) → R is the quantile function of the random variable X. In particular

QX(1
2) is the median, also further quantiles have their names. Properties of the

quantile function:

• it is nondecreasing,

• QX(α) = 1
2 (QX(α−) + QX(α+)).

Theorem: These conditions are necessary and sufficient.

We may speak of a vertical representation of a random variable by a cdf FX : R →
[0, 1] and a horizontal representation by a quantile function QX : (0, 1) → R.



The inverse transformation:

FX(t) = inf{α ∈ (0, 1) | QX(α) > t}.

Functions FX , QX are mutually inverse whenever they are continuous and increas-

ing (it suffices to check this for one of them).

1.11 How to represent a random variable in a computer

1. Discrete: If it attains only finitely many values tk, k = 1, . . . , n, we need only

these values and their probabilities pX(tk) = ωX({tk}) = P [X = tk]; these

fully describe the probability function by 2n numbers (up to the imprecise

representation of reals in a computer).

If a discrete random variable attains (countably) infinitely many values, we have

to ignore some of them, e.g., those with small probabilities. For each ε > 0 we

may choose finitely many tk, k = 1, . . . , n, so that ωX(R�{t1, . . . , tn}) =

P [X /∈ {t1, . . . , tn}] ≤ ε. A problem remains which value should be assigned

to the remaining (less probable) cases.



2. (Absolute) continuous: The pdf can be approximated by values f(tk) in “suffi-

ciently many” points tk, k = 1, . . . , n, provided that f is “sufficiently smooth”.

We are rather interested in the integrals

FX(tk+1)− FX(tk) =
∫ tk+1

tk
fX(u) du,

from which the cdf can be approximated. We may use directly the values

FX(tk) for the representation. We need a “dense” set of points in places

where the pdf is high.

The points tk, k = 1, . . . , n, may be chosen so that the increments FX(tk+1)−
FX(tk) have given magnitudes. We choose αk ∈ (0, 1), k = 1, . . . , n, and

find tk = QX(αk).

Memory requirements are high, they are dependent on the scale of values of

the random variable and the cdf.

Very often the type of distribution is known and a few parameters suffice to

determine it completely.

Many general cases are treated as mixtures of random variables with known

types of distributions; then we manage with finitely many parameters.



3. Mixed: The same as for a continuous random variable. However, this descrip-

tion for the discrete part is unnecessarily inaccurate.

1.12 Operations with random variables

Here I, J ⊆ R are intervals of countable unions of intervals.

Addition of a constant r corresponds to a horizontal shift:

ωX+r(I + r) = ωX(I), ωX+r(J) = ωX(J − r),

FX+r(t + r) = FX(t), FX+r(u) = FX(u− r),

QX+r(α) = QX(α) + r.





Multiplication by a non-zero constant r corresponds to a similarity transformation:

ωrX(rI) = ωX(I), ωrX(J) = ωX

(
J

r

)
.

For cdf, we have to distinguish several cases:

• r > 0: FrX(rt) = FX(t), FrX(u) = FX

(
u
r

)
, QrX(α) = r QX(α),





• r = −1: F−X(−t) = ω−X((−∞,−t)) = ωX((t,∞)) = 1−ωX((−∞, t]),

at continuity points of the cdf

F−X(−t) = 1 − ωX((−∞, t]) = 1 − P [X ≤ t] = 1 − P [X < t] = 1 −
ωX((−∞, t)) = 1− FX(t),

F−X(u) = 1 − FX(−u), the left limit in discontinuity points (symmetry

w.r.t. point
(
0, 1

2

)
with a correction to left continuity),



Q−X(α) = −QX(1− α),

• r < 0: combination of previous cases.

Mapping by a continuous increasing function h: ωh(X)(h(I)) = ωX(I),

Fh(X)(h(t)) = FX(t),

Qh(X)(α) = h(QX(α)) in points in which the quantile function is continuous.



Mapping by a right continuous non-decreasing function h: Fh(X)(u) =

sup{FX(t) | h(t) < u}.

Mapping by a piecewise monotonic function h:

We may express it as h = h+ − h−, where h+, h− are non-decreasing.

We express X as a mixture of two random variables; the range of the first, resp.

the second, contains only points in which h is non-decreasing, resp. non-increasing.

The result is obtained as a mixture of two random variables resulting from mappings

by function h “componentwise”, i.e., h(Mix(c, U ; 1 − c, V )) = Mix(c, h(U); 1 −
c, h(V )).

Sum of random variables is not uniquely determined unless we assume their inde-

pendence. Even in this case it can be highly non-trivial.

Mixture of random variables – see above. In contrast to the sum, it is uniquely de-

termined by the (marginal) distributions of input random variables and coefficients

of the mixture.



1.13 Computer implementation of a random variable

1. We create a generator of a random (or pseudorandom) variable X with the

uniform distribution on [0, 1].

2. The random variable QY (X) has the same distribution as Y . (It suffices to

apply QY to each realization of the random variable X.)

All continuous distributions are equivalent up to a (non-linear) change of scale.

1.14 Expectation (expected value, mean, mean value)

is defined separately



• for a discrete random variable U :

µU =
∑
t∈R

t · pU(t) =
∑

t∈ΩU

t · pU(t),

• for a continuous random variable V :

µV =

∞∫
−∞

t · fV (t) dt,

• for a mixture of random variables X = Mix(c, U ; 1−c, V ), where U is discrete,

V continuous:

µX = cµU + (1− c)µV .

(This is not a linearity of expectation!)

All three cases can be covered by a single formula for the quantile function

µX =

1∫
0

QX(α) dα.



This can be easily generalized to the expectation of a function of a random variable:

µh(X) =

1∫
0

h (QX(α)) dα.

In particular, for a discrete random variable

µh(U) =
∑

t∈ΩU

h (t) · pU(t).

An analogy for a continuous random variable requires additional assumptions be-

cause the continuity of a random variable need not be preserved by the application

of a function.

Alternative notation of expectation: EX.

It is the horizontal coordinate of the center of gravity of the graph of the cumulative

distribution function, where elements are weigted by the increase of cdf:



Working with expectation, we assume its existence (which is not obvious).

Expectation

• of a vector random variable ~X = (X1, . . . , XN): µ ~X
= (µX1

, . . . , µXN
)



• of a complex random variable X = <(X) + i=(X): µX = <(µX) +

i=(µX)

1.14.1 Properties of expectation

µr = r,

µX+Y = µX + µY , in particular, µX+r = µX + r,

µX−Y = µX − µY ,

µrX = r µX , more generally, µrX+sY = r µX + s µY .

(This is a linearity of expectation.)

µMix(c,U ; 1−c,V ) = cµU + (1− c)µV .

(This is not a linearity of expectation!)

Only for independent random variables

µX·Y = µX · µY .



1.15 Variance (dispersion)

σ2
X = µ

(X−µX)2
= µX2 − µ2

X

µX2 = µ2
X + σ2

X

Alternative notations: DX, var X.

Properties:

σ2
X =

1∫
0

(QX(α)− µX)2 dα.

σ2
X ≥ 0,

σ2
r = 0,

σ2
X+r = σ2

X ,

σ2
rX = r2 σ2

X .



σ2
Mix(c,U ; 1−c,V ) = µMix(c,U ; 1−c,V )2 − µ2

Mix(c,U ; 1−c,V )

= cµU2 + (1− c)µV 2 − (cµU + (1− c)µV )2

= c
(
σ2

U + µ2
U

)
+ (1− c)

(
σ2

V + µ2
V

)
− (cµU + (1− c)µV )2

= cσ2
U + (1− c)σ2

V + cµ2
U + (1− c)µ2

V − (cµU + (1− c)µV )2

= cσ2
U + (1− c)σ2

V + c(1− c) (µU − µV )2

Only for independent random variables

σ2
X+Y = σ2

X + σ2
Y , σ2

X−Y = σ2
X + σ2

Y .

1.16 Standard deviation

σX =
√

σ2
X =

√
µ

(X−µX)2



Properties:

σX =

√√√√√√ 1∫
0

(QX(α)− µX)2 dα.

σX ≥ 0,

σr = 0,

σX+r = σX ,

σrX = |r| σX .

Only for independent random variables

σX+Y =
√

σ2
X + σ2

Y (quadratic mean).



1.17 General moments

k ∈ N

kth general moment (no special notation introduced here): µXk, in particular:

for k = 1: µX1 = µX ,

for k = 2: µX2 = µ2
X + σ2

X .

Alternative notation: mk.

kth centred moment (a kth moment about µX ; no notation introduced here):

µ
(X−µX)k

, in particular:

for k = 1: 0,

for k = 2: σ2
X .



Alternative notation: µk.

µXk =

1∫
0

(QX(α))k dα

µ
(X−µX)k

=

1∫
0

(QX(α)− µX)k dα



1.18 Normalized random variable

has a zero mean and a unit variance.

Normalization is made by the formula

norm X =
X − µX

σX

if it is meaningful.

Do not confuse it with (Gaussian) normal distribution N(µ, σ2) which has the

density

fN(µ,σ2)(t) =
1

σ
√

2π
exp

(
−(t− µ)2

2 σ2

)
.

Its cdf is the Gauss integral. In particular, the pdf of the normalized normal

distribution N(0, 1) (abreviated notation: N) is

fN(0,1)(t) =
1√
2π

exp

(
−t2

2

)
.



1.19 Chebyshev inequality

Theorem:

∀δ > 0 : P [|norm X| < δ] ≥ 1−
1

δ2
,

where norm X = X−µX
σX

(whenever all these expressions are meaningful).

Proof using the quantile function:

σ2
norm X︸ ︷︷ ︸

1

= µ
(norm X)2

− µ2
norm X︸ ︷︷ ︸

0

,

1 = µ
(norm X)2

= µY ,

where Y = (norm X)2. An estimate of the probability β = P [|norm X| < δ] =



P [Y < δ2] = FY (δ2):

1 = µY =

1∫
0

QY (α) dα =

β∫
0

QY (α)︸ ︷︷ ︸
≥0

dα +

1∫
β

QY (α)︸ ︷︷ ︸
≥δ2

dα ≥ (1− β)δ2 ,

β ≥ 1−
1

δ2
.

Proof using a mixture: We may express Y as a mixture Y = (norm X)2 =
Mix(β, L; 1− β, U), where

• L attains only values from [0, δ2),

• U attains only values from [δ2,∞), hence µU ≥ δ2,

• β = FY (δ2).

1 = µY = β µL︸︷︷︸
≥0

+ (1− β) µU︸︷︷︸
≥δ2

≥ (1− β) δ2 .

The equality occurs iff U = δ2, L = 0, i.e., for the discrete distribution



{(µX − δ σX , 1−β
2 ), (µX , β), (µX + δ σX , 1−β

2 )}.

Equivalent forms (ε = δ σX):

∀δ > 0 : P

[∣∣∣∣∣X − µX

σX

∣∣∣∣∣ ≥ δ

]
≤

1

δ2
,

∀ε > 0 : P [|X − µX | ≥ ε] ≤
σ2

X

ε2
,









2 Basic notions of statistics

2.1 Why do we need statistics?

We investigate common properties of many events.

Instead of studying all of them, we take only a sample (because of price, destructive

tests, etc.).

• Estimation of parameters of probability models

• Hypotheses tests



2.2 Random sample, estimates

• population

• sample

The precision of a statistical estimate is determined by the sample size, not by the

size of the population.

Random sample ~X = (X1, . . . , Xn) is a vector of random variables which are

independent and equally distributed.

(We omit indices, e.g., we write FX instead of FXk
.)

By an experiment we obtain the realization of a random sample, ~x = (x1, . . . , xn) ∈
Rn.

n is the sample size.



Statistic is (any) measurable function G defined on a random sample of arbitrary

size. (We compute it from the random variables, not from the parameters of the

distribution which are unavailable.)

“Measurability” means that the probability

P [G(X1, . . . , Xn) < t] = FG(X1,...,Xn)(t)

is defined for all t ∈ R. Statistic – as a function of random variables – is itself also

a random variable.

It is usually used as an estimate of parameters of a distribution (which remain

hidden).

Notation:

θ ... actual parameter (real number),

θ̂ ... its estimate based on a random sample (random variable)

Desirable properties of estimates:



• µ
θ̂

= θ unbiased

• lim
n→∞µ

θ̂
= θ asymptotically unbiased

• efficient = with a low variance; this is evaluated by µ
(θ̂−θ)2

, which reduces to

σ2
θ̂

for an unbiased estimate

• the best unbiased estimate is the most efficient among all unbiased estimates

(nevertheless, there may exist more efficient biased estimates)

• lim
n→∞µ

θ̂
= θ, lim

n→∞σ
θ̂

= 0 consistent

• robust, i.e. resistant to noise (and outliers), “even noisy data lead to a good

estimate”; here an exact criterion is missing, but it is of much practical use



2.3 Sample mean (sample average)

of a random sample ~X = (X1, . . . , Xn) is

X̄ =
1

n

n∑
j=1

Xj

Alternative notation: X̄n (when the sample size is important)

Its realization is denoted by a small case letter:

x̄ =
1

n

n∑
j=1

xj.



Theorem:

µX̄n
=

1

n

n∑
j=1

µX = µX ,

σ2
X̄n

=
1

n2

n∑
j=1

σ2
X =

1

n
σ2

X ,

σX̄n
=

√
1

n
σ2

X =
1
√

n
σX ,

if they exist. (Here µX = µXj
etc.)

Corollary: The sample mean is a unbiased consistent estimate of the mean.

(Independently on the type of distribution.)

Chebyshev inequality for X̄n implies

P
[∣∣∣X̄n − µX

∣∣∣ ≥ ε
]
≤

σ2
X̄n

ε2
=

σ2
X

n ε2
→ 0 for n →∞.

This holds under more general assumptions (Xj need not have the same distribu-

tion) – the weak law of large numbers.



This is often called an “precise sum of imprecise numbers”. This is not correct

because the sum
∑n

j=1 Xj has variance n σ2
X →∞. The relative error of the sum

decreases, the absolute error increases.

The distribution of the sample mean may be much more complex than the original

one; an easy description exists only in special cases.

Theorem: The sample mean of the normal distribution N(µX , σ2
X) has the normal

distribution N
(
µX , 1

nσ2
X

)
; it is the best unbiased estimate of the mean.

(Later on, we shall see a more efficient biased estimate.)

An analogous theorem holds for other distributions at least asymptotically:



Central Limit Theorem: Let Xj, j ∈ N, be independent equally distributed random

variables with mean µX and standard deviation σX 6= 0. Then the normalized

random variables

Yn =

√
n

σX
(X̄n − µX)

converge to the normalized normal distribution in the following sense:

∀t ∈ R : lim
n→∞FYn(t) = FN(0,1)(t).

2.4 Sample variance (sample dispersion)

of a random sample ~X = (X1, . . . , Xn) is the statistic

S2
X =

1

n− 1

n∑
j=1

(Xj − X̄n)2.

Alternative notation: S2
X (The upper index 2 does not mean a square!)



Its realization is denoted by a small case letter:

s2
X =

1

n− 1

n∑
j=1

(xj − x̄n)2.

A single-pass formula is more practical:

S2
X =

1

n− 1

n∑
j=1

X2
j −

n

n− 1
X̄2

n =
1

n− 1

n∑
j=1

X2
j −

1

n(n− 1)

 n∑
j=1

Xj

2

.

Theorem:

µS2
X

= σ2
X .

Proof: From the single-pass formula for S2
X :

µS2
X

=
n

n− 1
µX2 −

n

n− 1
µX̄2

n
=

n

n− 1

(
σ2

X + µ2
X − σ2

X̄n
− µ2

X̄n

)
=

n

n− 1

(
σ2

X + µ2
X −

1

n
σ2

X − µ2
X

)
= σ2

X .



Theorem: The sample variance is an unbiased consistent estimate of variance

(provided that the original distribution has a variance and the fourth centered

moment).

The distribution of the sample variance may be much more complex than the

original one.

In particular, for the distribution N(0, 1) and n = 2:

X̄ =
X1 + X2

2
, X1−X̄ = −(X2−X̄) =

X1 −X2

2
has the distribution N

(
0, 1

2

)
,

S2
X = (X1 − X̄)2 + (X2 − X̄)2 = 2

(
X1 −X2

2

)2
=

(
X1 −X2√

2

)2

= U2,

where U = X1−X2√
2

has the distribution N (0, 1).

This is called the χ2-distribution with 1 degree of freedom.



2.4.1 Distribution χ2

with η degrees of freedom is the distribution of the random variable Y =
η∑

j=1
U2

j ,

where Uj are independent random variables with the normalized normal distribu-

tion N(0, 1).

Notation: χ2(η).

Its pdf is

fY (y) =


y

η
2−1 e

−y
2

2
η
2 Γ
(

η
2

) for y > 0,

0 otherwise,

where Γ(z) =
∞∫
0

tz−1e−t dt, in particular Γ(n + 1) = n! for all n ∈ N.





Pdf’s of χ2 distributions with 1, 2, . . . , 10 degrees of freedom and their square

roots (“distances from the target”).



Theorem: Let X, Y be independent random variables with distributions χ2(ξ), χ2(η),

respectively. Then X + Y has the distribution χ2(ξ + η).

Theorem: A random variable Y with distribution χ2 with η degrees of freedom

satisfies

µY = η, σ2
Y = 2η.

(We do not normalize this distribution.)

2.4.2 Sample variance

of a normal distribution N(µX , σ2
X) satisfies:

(n− 1) S2
X

σ2
X

has distribution χ2(n− 1).



3



Pdf’s of the distributions of sample variances from the normalized normal

distribution with sample sizes 2, 3, . . . , 10 and

3 = 21 + 1, 22 + 1, . . . , 27 + 1 = 129.



Corollary: The variance of the sample variance is

σ2
S2

X
=

2

n− 1
σ4

X ,

where σ4
X =

(
σ2

X

)2
.

Theorem: For a random sample ~X = (X1, . . . , Xn) from a normal distribution X̄

is the best unbiased estimate of the mean, S2
X is the best unbiased estimate of the

variance, and statistics X̄, S2
X are consistent and independent.

However, there is a biased estimate of variance which is more efficient:

2.4.3 Alternative estimate of variance

σ̂2
X =

1

n

n∑
j=1

(Xj − X̄n)2 =
n− 1

n
S2

X



Theorem: σ̂2
X is a biased consistent estimate of the variance.

Proof:

µ
σ̂2

X

=
n− 1

n
σ2

X → σ2
X ,

σ̂2
X has a variance less than that of S2

X , their proportion is
(

n−1
n

)2
.

Efficiency cannot be compared in general; for a normal distribution:

1. efficiency of the estimate S2
X :

σ2
S2

X
=

2

n− 1
σ4

X

2. efficiency of the estimate σ̂2
X :

µ
(σ̂2

X−σ2
X)2

= σ2

σ̂2
X

+
(

1

n
σ2

X

)2

=
(

n− 1

n

)2 2

n− 1
σ4

X +
1

n2
σ4

X =
2n− 1

n2
σ4

X .



As
2n− 1

n2
<

2

n
<

2

n− 1
,

the estimate σ̂2
X is more efficient than S2

X (which is the best unbiased one!).

2.5 Sample standard deviation

of a random sample ~X = (X1, . . . , Xn) is the statistic

SX =
√

S2
X =

√√√√√ 1

n− 1

n∑
j=1

(Xj − X̄n)2.

Alternative notation: S

Its realization is denoted by a small case letter:

sX =

√√√√√ 1

n− 1

n∑
j=1

(xj − x̄n)2.



Theorem:

µSX
≤ σX .

Equality does not hold if σX > 0, thus it is a biased estimate of the standard

deviation!

Proof:

σ2
X = µS2

X
= µ

(SX)2
= µ2

SX
+ σ2

SX︸ ︷︷ ︸
≥0

≥ µ2
SX

σX ≥ µSX

Theorem: The sample standard deviation is a consistent estimate of the stan-

dard deviation (provided that the original distribution has a variance a 4th central

moment).





Pdf’s of the distributions of sample standard deviation from the normalized

normal distribution with sample sizes 2, 3, . . . , 10 and

3 = 21 + 1, 22 + 1, . . . , 26 + 1 = 65.



2.6 Sample kth general moment

of a random sample ~X = (X1, . . . , Xn) is the statistic

MXk =
1

n

n∑
j=1

Xj
k.

Alternative notation: Mk

Its realization is denoted by a small case letter:

mXk =
1

n

n∑
j=1

xj
k.

Theorem:

µM
Xk

= µ
Xk .

(I.e., it is an unbiased estimate of the kth general moment.)

Theorem: The sample kth general moment is a consistent estimate of the kth

general moment (provided that X has a kth and a 2kth general moment).



Proof:

σ2
M

Xk
=

1

n2
nσ2

Xk =
1

n
σ2

Xk =
1

n

(
µ(Xk)2 − µ2

Xk

)
=

1

n

(
µX2k − µ2

Xk

)
.

2.7 Histogram and empirical distribution

Let us take a (non-random) vector ~x = (x1, . . . , xn) ∈ Rn (obtained usually as

a realization of a random sample). The order of entries is irrelevant, but their

repetition is important. More economical representation of large vectors with a

low number of different entries can be obtained by recording only the range H =

{x1, . . . , xn} and the frequencies nt, t ∈ H. These data are usually represented

by the frequency table or a graph called a histogram.

Normalization results in relative frequencies rt = nt
n , t ∈ H. As

∑
t∈H rt = 1, they

define a probability function pEmp(~x)(t) = rt of the so-called empirical distribution

Emp(~x). It is a discrete distribution with at most n values which describes vector ~x.



2.7.1 Properties of the empirical distribution

(Index Emp(~x) denotes parameters of any random variable with this distribution..)

µEmp(~x) =
∑
t∈H

t rt =
1

n

∑
t∈H

t nt =
1

n

n∑
i=1

xi = x̄

µEmp(~x)k =
∑
t∈H

tk rt =
1

n

∑
t∈H

tk nt =
1

n

n∑
i=1

xk
i

σ2
Emp(~x) =

∑
t∈H

(
t− µEmp(~x)

)2
rt =

1

n

∑
t∈H

(t− x̄)2 nt =
1

n

n∑
i=1

(xi − x̄)2 =
n− 1

n
s2
X

General moments of the empirical distribution equal the sample general moments
of the original distribution.
Their computation from the histogram may be simpler than from the original real-
ization of a random sample (if there are repeated values).

The variance of the empirical distribution is the alternative estimate of variance
σ̂2

X = n−1
n S2

X , not the sample variance S2
X .



2.8 Sample median

is the median of the empirical distribution, QEmp(~x)(
1
2). It gives us information

different from the sample mean, often more useful (among others, it is more robust

- resistent to noise and outliers). Besides, we know how it is mapped by a monotonic

function.

Why it is used less than the sample mean:

• The computational complexity is higher; ordering of values requires time pro-

portional to n ln n, the sample mean only n.

• Memory requirements are higher – we need to remember all data, 2 registers

suffice for the sample mean.

• The possibility of decentralization and parallel computation are very limited.



2.9 Interval estimates

So far, the actual value of a parameter, θ, has been estimated by a point estimate θ̂

(which is a random variable). Instead of it we search now for an interval estimate,

so-called confidence interval I which is a minimal interval such that

P [θ ∈ I] ≥ 1− α,

where α ∈ (0, 1
2) is the probability of exceeding the bounds of the interval I; 1−α is

the confidence coefficient. Usually we search for an upper, resp. lower one-sided

estimate,

I = (−∞, Q
θ̂
(1− α)], resp. I = [Q

θ̂
(α),∞),

or the (symmetric) two-sided estimate,

I =
[
Q

θ̂

(
α

2

)
, Q

θ̂

(
1−

α

2

)]
.

For this, we need to know the distribution of the estimate θ̂.



2.10 Interval estimates of parameters of a normal distribution

N(µ, σ2)

2.10.1 Estimate of the mean for a known variance σ2

We estimate µ by the sample mean X̄ with the distribution N

(
µ, σ2

n

)
.

The normalized random variable
√

n
σ (X̄ − µ) has the distribution N(0, 1) = N ;

P

[√
n

σ
(X̄ − µ) ∈ (−∞, QN(1− α)]

]
= 1− α

= P

[√
n

σ
(X̄ − µ) ≤ QN(1− α)

]

= P

[
µ ≤ X̄ +

σ
√

n
QN(1− α)

]

= P

[
µ ∈

(
−∞, X̄ +

σ
√

n
QN(1− α)

]]
.



Similarly, other interval estimates are derived:(
−∞, X̄ +

σ
√

n
QN(1− α)

]
,[

X̄ −
σ
√

n
QN(1− α),∞

)
,[

X̄ −
σ
√

n
QN

(
1−

α

2

)
, X̄ +

σ
√

n
QN

(
1−

α

2

)]
,

where X̄ − σ√
n
QN(1− α) = X̄ + σ√

n
QN(α)

(QN(α) = −QN(1− α) usually cannot be found in tables).

In applications, we replace the sample mean X̄ by its realization x̄.

2.10.2 Estimate of the mean for an unknown variance

We estimate µ by the sample mean X̄ with the distribution N

(
µ, σ2

n

)
,

σ2 by the sample variance S2;
(n−1) S2

σ2 with the distribution χ2(n− 1).



We test the random variable
√

n
S (X̄ − µ) analogously; however, its distribution is

not normal, although X̄, S are independent.

2.10.3 Student t-distribution [Gossett]

with η degrees of freedom is the distribution of the random variable

U√
V
η

,

where U has the distribution N(0, 1),

V has the distribution χ2(η),

U, V are independent.

Notation: t(η).

Symmetry w.r.t. zero =⇒ Qt(η)(1− α) = −Qt(η)(α)

For a high number of degrees of freedom we replace it by a normal distribution.





Pdf’s of the normalized normal distribution and the Student distribution with 5

degrees of freedom (original and normalized).



2.10.4 Estimate of the mean for an unknown variance II

In our case:

U =

√
n

σ
(X̄ − µ) has N(0, 1),

V =
(n− 1) S2

σ2
has χ2(n− 1), η = n− 1,

U√
V
η

=

√
n

σ (X̄ − µ)√
S2

σ2

=

√
n

S
(X̄ − µ) has t(n− 1).

This induces interval estimates(
−∞, X̄ +

S
√

n
Qt(n−1)(1− α)

]
,[

X̄ −
S
√

n
Qt(n−1)(1− α),∞

)
,[

X̄ −
S
√

n
Qt(n−1)(1−

α

2
), X̄ +

S
√

n
Qt(n−1)(1−

α

2
)

]
.



In applications, we replace the sample mean X̄ by its realization x̄ and the sample

standard deviation SX by its realization sX .

2.10.5 Estimate of a variance

We estimate σ2 by the sample variance S2;
(n−1)S2

σ2 has the distribution χ2(n−1);

P

[
(n− 1) S2

X

σ2
∈ (−∞, Qχ2(n−1)(1− α)]

]
= 1− α

= P

[
(n− 1) S2

X

σ2
≤ Qχ2(n−1)(1− α)

]

= P

 (n− 1) S2
X

Qχ2(n−1)(1− α)
≤ σ2


= P

σ2 ∈

 (n− 1) S2
X

Qχ2(n−1)(1− α)
,∞

 .

We obtained a lower estimate.



Similarly, other interval estimates are derived:−∞,
(n− 1) S2

Qχ2(n−1)(α)

 , (n− 1) S2

Qχ2(n−1)(1− α)
,∞

 , (n− 1) S2

Qχ2(n−1)

(
1− α

2

), (n− 1) S2

Qχ2(n−1)

(
α
2

)
 .

In applications, we replace the sample variance S2
X by its realization s2

X .

2.10.6 Interval estimates of continuous distributions which are not normal

can be converted to a normal distribution by a non-linear transformation

t 7→ F−1
N (FX(t)) = QN(FX(t))

(FX(X) has the uniform distribution on [0, 1]).



2.11 Parameters estimation

The distribution of X depends on a vector of parameters, Θ = (θ1, . . . , θi) ∈
Ω, where Ω ⊆ Ri is the parameter space, i.e., the set of all possible values of

parameters; we denote the probability function by pX(t|Θ), etc.

The task is to find an estimate Θ̂ = (θ̂1, . . . , θ̂i) using a realization ~x = (x1, . . . , xn).

2.11.1 Method of moments

For k = 1, 2, . . ., the kth general moment is a function of Θ,

µXk(Θ) = µXk(θ1, . . . , θi)

(which can be computed from the probability model).

It can be estimated by the realization of the sample general moment, mXk.



The method of moments recommends the estimate (θ̂1, . . . , θ̂i) such that

µXk(θ̂1, . . . , θ̂i) = mXk =
1

n

n∑
j=1

xj
k, k = 1, 2, . . . .

To achieve a unique solution for i variables, we usually need (the first) i equations

for k = 1, 2, . . . , i.



Applicability of method of moments

Possible problems:

1. There is no solution =⇒ try a reduction of the number of equations.

2. There are infinitely many solutions =⇒ try to include more equations.

3. There is more than one solution (e.g., of a system of quadratic equations).

4. There is a unique solution, but it is hard to find it.

5. The system is ill-conditioned (typically for a large number of parameters).

6. We have found a unique solution, but it does not satisfy the assumptions of

the model, Θ /∈ Ω (e.g., the parameters cannot be arbitrary numbers) =⇒
NO HOPE! Always check the solution!



7. All equations are considered equally important; this is sometimes strange (typ-

ically for a large number of parameters).

8. Non-numerical data are excluded (except for those which can be reasonably

numbered).

Advantage:

1. Applicable to discrete, continuous, and mixed distributions without any change.



2.11.2 Method of maximum likelihood

For a discrete distribution

The probability of the realization,

p ~X
(~x|Θ) = P [X1 = x1 ∧ . . . ∧Xn = xn|Θ]

=
n∏

j=1

P
[
Xj = xj|Θ

]
=

n∏
j=1

pX(xj|Θ) = `(Θ),

is a function ` : Ω → [0, 1], Ω ⊆ Ri, of Θ = (θ1, . . . , θi) called the likelihood of a

discrete distribution. We maximize it or rather the log-likelihood,

L(Θ) = ln `(Θ) =
n∑

j=1

ln pX(xj|Θ).

(The case pX(xj|Θ) = 0 has to be excluded, but it does not correspond to the

maximum likelihood.)

Example: The empirical distribution is the maximum likelihood estimate of discrete

distribution (if it is not restricted by additional conditions).



For a continuous distribution

Here each realization has a zero probability; instead of it, we use the pdf, but

we obtain a completely different notion,

f ~X
(~x|Θ) =

n∏
j=1

fX(xj|Θ) = `(Θ).

Nevertheless, also this function ` : Ω → [0,∞), Ω ⊆ Ri, is called the likelihood of

a continuous distribution and

L(Θ) = ln `(Θ) =
n∑

j=1

ln fX(xj|Θ)

the log-likelihood.

(The case fX(xj|Θ) = 0 has to be excluded, but it does not correspond to the

maximum likelihood.)

For a mixed distribution

Undefined!



Applicability of method of maximum likelihood

Possible problems:

1. There is more than one solution. (Possibly different values of parameters lead

to the same distribution – does this mind?)

2. The solution need not exist. (This may happen only if the likelihood is not

continuous or the parameter space is not closed.)

3. There is a unique solution, but it is hard to find it (local maxima need not be

global).

4. The task is ill-conditioned.

5. The values of likelihood may be very small.

6. It cannot be used to mixed distributions!



Advantages:

1. It is easier “not to get lost” when looking for and optimum rather than a

solution of a system of equations.

2. It respects the meaning of data of different nature.

3. It can be used also to non-numerical data.



3 Tests of hypotheses

3.1 Basic notions and principles

We test a hypothesis about the value of a parameter θ of a distribution (using a

criterion or test statistic T ).

Example: Parameter θ achieves only 2 values, 0 for “normal” population, 1 for

“anomal” elements. Both classes have known distributions with different means

µ0, µ1, where µ0 < µ1. Random sample ~X is made from one of the classes, we

have to guess which one. For that, we use (not necessarily) T = X̄ as an estimate

of the mean. We choose c ∈ (µ0, µ1) and classify the sample by 0 for T ≤ c, 1 for

T > c. Two types of errors are possible:

1. class 0 is classified by 1, with probability α(c) (non-increasing function of c),

2. class 1 is classified by 0, with probability β(c), (non-decreasing function of c).



Possible criteria for the choice of the bound c:

• α(c) = β(c),

• min
c

(α(c) + β(c)),

• min
c

e(α(c), β(c)), e.g., min
c

(aα(c) + bβ(c)), i.e., minimization of a payment

function,

• α(c) = a small value fixed in advance.

Usually the latter option is taken because of

• technical reasons (easier task),

• we do not need the distribution of the anomal class,



• usually the task is complicated by allowing more than two values of the pa-

rameter.



Example: Should we stop the distribution of a medicine because of suspected

undesirable side-effects?

Null hypothesis H0: The producer is innocent, the risk does not increase.

Alternative hypothesis H1: The producer is guilty, the risk increases.

Beside good decisions we risk:

Type I error: We reject a valid null hypothesis (we accuse an innocent).

Type II error: We do not reject an invalid null hypothesis (we dismiss a culprit).

By the choice of the bound we decrease the risk of one error and increase the other.

Accepted solution: A critical value c of a test is taken so that the risk of type I

error is (less than or equal to) a given small probability α ∈ R called a significance

level.



Usually 1% or 5% is used (always α � 1
2).

Values of the criterion exceeding the critical value (which correspond to results

not much probable under the assumption of the null hypothesis) are considered

statistically significant and then we reject the null hypothesis.

In the opposite case, we accept (=do not reject) the null hypothesis, but also

we do not confirm it becuase this could cause a type II error with an unknown

probability β.

The power of a test is evaluated according to 1− β, i.e., the risk of type II error

for a given risk of type I error.

The following notions are distinguished in the literature:

• a simple hypothesis: the null hypothesis corresponds to a single value of the

parameter,



• a compound hypothesis: the null hypothesis corresponds to more values of

the parameter,

and also

• a simple alternative: the alternative hypothesis corresponds to a single value

of the parameter,

• a compound alternative: the alternative hypothesis corresponds to more values

of the parameter.

Often the null and alternative hypotheses are formulated so that they do not cover

all possible cases. It is safer to avoid this case by taking for the null hypothesis the

negation of the alternative hypothesis.

E.g., if H1 : θ > c, we do not take H0 : θ = c but H0 : θ ≤ c. (The highest risk

of type I error usually occurs for θ = c, hence the procedure is the same.)



For a compound hypothesis we require that the risk of type I error is at most α for

all values of the parameter satisfying the null hypothesis.

(Statistical significance does not imply practical significance.)

Solution: The null hypothesis is rejected if and only if the value of the criterion

does not belong to the (1 − α)-confidence interval. Thus the critical value is the

bound of the confidence interval.

Conversely, one may ask about the achieved significance (P), i.e., the significance

level for which the critical value equals the observed value of the criterion. (The

lower value, the more significant result.) This is the usual output of a program; it

can be compared to any desired significance level and, moreover, it gives additional

information about the distance from the critical value.

Typical form of a test: Test statistics T with a known distribution (more exactly,

its realization, t) is compared to the quantile of the respective distribution and the

null hypothesis is rejected for extreme values (low probable when the null hypothesis

holds):



H0 H1 rejected for significance

θ ≤ c θ > c t > QT (1− α) 1− FT (t)
θ ≥ c θ < c t < QT (α) FT (t)
θ = c θ 6= c t > QT (1− α

2) or t < QT (α
2) 2min (FT (t), 1− FT (t))

The following combinations of a null and an alternative hypotheses is encountered

in the literature:

H0 H1

θ = c θ > c
θ = c θ < c

They are solved the same way as the first two cases mentioned above.



3.2 Tests of mean of normal distribution

3.2.1 For known variance σ2

T :=
X̄ − c

σ

√
n

is compared to quantiles of the normalized normal distribution:

H0 is rejected for achieved significance

µ ≤ c t > QN(1− α) 1− FN(t)
µ ≥ c t < −QN(1− α) = QN(α) FN(t)
µ = c |t| > QN(1− α

2) 2min (FN(t), 1− FN(t))



3.2.2 For unknown variance

T :=
X̄ − c

SX

√
n

is compared to quantiles of the Student distribution with n−1 degrees of freedom:

H0 is rejected for achieved significance

µ ≤ c t > Qt(n−1)(1− α) 1− Ft(n−1)(t)

µ ≥ c t < −Qt(n−1)(1− α) Ft(n−1)(t)

µ = c |t| > Qt(n−1)(1−
α
2) 2min

(
Ft(n−1)(t), 1− Ft(n−1)(t)

)



3.3 Tests of variance of normal distribution

T :=
(n− 1) S2

X

c

is compared to quantiles of the χ2-distribution with n− 1 degrees of freedom:

H0 is rejected for achieved significance

σ2 ≤ c t > Qχ2(n−1)(1− α) 1− Fχ2(n−1)(t)

σ2 ≥ c t < Qχ2(n−1)(α) Fχ2(n−1)(t)

σ2 = c t < Qχ2(n−1)(
α
2) or 2min

(
Fχ2(n−1)(t), 1− Fχ2(n−1)(t)

)
t > Qχ2(n−1)(1−

α
2)



3.4 Comparison of two normal distributions

Assumption: Independent samples

(X1, . . . , Xm) from N(µX , σ2
X),

(Y1, . . . , Yn) from N(µY , σ2
Y ).

3.4.1 Tests of variances of two normal distributions [Fisher]

If σ2
X = σ2

Y , then S2
X ≈ S2

Y . The test statistic is chosen as

T :=
S2

X

S2
Y

.



The F-distribution (Fisher–Snedecor distribution) with ξ and η degrees of free-
dom is the distribution of a random variable

F =

U
ξ
V
η

,

where U, V are independent random variables with distributions χ2(ξ), χ2(η), re-
spectively.

Notation: F (ξ, η)

If σ2
X = σ2

Y = σ2, then we put

U :=
(m− 1)S2

X

σ2
has χ2(m− 1),

V :=
(n− 1)S2

Y

σ2
has χ2(n− 1),

ξ := m− 1, η := n− 1,

F =

U
ξ
V
η

=

(m−1)S2
X

(m−1)σ2

(n−1)S2
Y

(n−1)σ2

=
S2

X

S2
Y

= T.



We test T for the distribution F (m− 1, n− 1):

H0 is rejected for achieved significance

σ2
X ≤ σ2

Y t > QF (m−1,n−1)(1− α) 1− FF (m−1,n−1)(t)

σ2
X ≥ σ2

Y t < QF (m−1,n−1)(α) FF (m−1,n−1)(t)

σ2
X = σ2

Y t < QF (m−1,n−1)(
α
2) or 2min(FF (m−1,n−1)(t),

t > QF (m−1,n−1)(1−
α
2) 1− FF (m−1,n−1)(t))

For each significance level, we need a two-dimensional table of quantiles indexed

by ξ, η; usually only one half is tabulated, for the second half we need the formula

QF (ξ,η)(β) =
1

QF (η,ξ)(1− β)

(notice the reverse order of the degrees of freedom!) or we have to consider
S2

Y
S2

X

instead of
S2

X
S2

Y

.



3.4.2 Tests of means of two normal distributions with known variance σ2

X̄m has N

(
µX ,

σ2

m

)
,

Ȳn has N

(
µY ,

σ2

n

)
,

X̄m − Ȳn has N

(
µX − µY , σ2

(
1

m
+

1

n

))
.

Under the assumption µX = µY ,

T :=
X̄m − Ȳn

σ
√

1
m + 1

n

has N (0, 1) .

We test T for N(0, 1) (see Section 3.2.1).



3.4.3 Tests of means of two normal distributions with (the same) unknown

variance

Assumption: σ2
X = σ2

Y = σ2

As the first step, we have to verify this assumption (see Section 3.4.1).

(In fact, we cannot verify it; we try to reject it and if this fails, we continue.

Otherwise, the test becomes more complicated, see [Mood et al.].)

We have two estimates S2
X , S2

Y of the same value σ2; we take their average

weighted by the sample sizes (minus 1 for one degree of freedom lost by com-

puting the sample mean):

(m− 1)S2
X

σ2
has χ2(m− 1),

(n− 1)S2
Y

σ2
has χ2(n− 1),

(m− 1)S2
X + (n− 1)S2

Y

σ2
has χ2(m + n− 2),



its mean is m + n− 2, the mean of

(m− 1)S2
X + (n− 1)S2

Y

(m + n− 2) σ2
=

S2

σ2

is 1 and

S2 :=
(m− 1)S2

X + (n− 1)S2
Y

m + n− 2

is an unbiased estimate of σ2,

S :=

√√√√(m− 1)S2
X + (n− 1)S2

Y

m + n− 2
.

X̄m has N

(
µX ,

σ2

m

)
,

Ȳn has N

(
µY ,

σ2

n

)
,

X̄m − Ȳn has N

(
µX − µY , σ2

(
1

m
+

1

n

))
.



Under the hypothesis µX = µY ,

X̄m − Ȳn

σ
√

1
m + 1

n

has N (0, 1) ,

(m + n− 2)S2

σ2
=

(m− 1)S2
X + (n− 1)S2

Y

σ2
has χ2(m + n− 2),

T :=
X̄m − Ȳn

S
√

1
m + 1

n

=

X̄m−Ȳn

σ
√

1
m+1

n√
S2

σ2

has t(m + n− 2).

We test T for t(m + n− 2) (see Section 3.2.2).



3.5 Tests of means of two normal distributions for paired samples

(according to M.I. Schlesinger)

Example: Compare the mean temperatures at two places.

The standard test of means of two normal distributions is very weak because of high

variance; however, the changes are almost synchronized. Thus the two samples are

not mutually independent. We always measure both variables at the same time.

Assumption: Random variables Xj, Yj (j = 1, . . . , n) have normal distributions

N(µj, σ
2) with a constant variance σ2 and variable means µj = µXj

= µYj
.

We may use variables Uj := Xj − µj, Vj := Yj − µj (j = 1, . . . , n) which are

independent and have the distribution N(0, σ2).

Random variables ∆j := Xj − Yj = Uj − Vj (j = 1, . . . , n) are independent and

have the distribution N(0, 2σ2).

The sample mean ∆̄ has N

(
0, 2σ2

n

)
.



3.5.1 For known variance σ2

The unknown parameters of the joint distribution are µ1, . . . , µn, but we do not

need them.

Following Section 3.2.1 (with c = 0), we test

T :=
∆̄

σ

√
n

2
=

X̄ − Ȳ

σ

√
n

2

for N(0, 1).

3.5.2 For unknown variance

The unknown parameters of the joint distribution are Θ = (σ2, µ1, . . . , µn), but

we need to estimate only σ2 = σ2
X .



Instead of it, we can work directly with the sample (∆1, . . . , ∆n) from a normal

distribution.

Following Section 3.2.2 (with c = 0), we test

T :=
∆̄

S∆

√
n

for t(n− 1).

Exercise: Maximum likelihood estimate of the parameters:

`(Θ) =
n∏

j=1

1√
2πσ

exp

(
−(xj − µj)

2

2σ2

)
·

n∏
j=1

1√
2πσ

exp

(
−(yj − µj)

2

2σ2

)
,

L(Θ) = −
n∑

j=1

(xj − µj)
2

2σ2
−

n∑
j=1

(yj − µj)
2

2σ2
− 2n ln σ − 2n ln

√
2π,

0 =
∂L(Θ̂)

∂µ̂j
=

∂

∂µ̂j

(
−

(xj − µ̂j)
2

2σ̂2
−

(yj − µ̂j)
2

2σ̂2

)

=
1

σ̂2

(
(xj − µ̂j) + (yj − µ̂j)

)
=

1

σ̂2

(
xj + yj − 2µ̂j

)
,

µ̂j =
xj + yj

2
, j = 1, . . . , n.



The estimates µ̂j (j = 1, . . . , n) are not consistent.

We substitute them:

L(Θ̂) = −
n∑

j=1

(xj − yj)
2

4σ̂2
− n ln σ̂2 − 2n ln

√
2π,

0 =
∂L(Θ̂)

∂
(
σ̂2
) =

n∑
j=1

(xj − yj)
2

4σ̂4
−

2n

σ̂2
,

σ̂2 =
1

2n

n∑
j=1

(xj − yj)
2 =

1

2n

n∑
j=1

δj
2,

where δj is the realization of ∆j. The estimate σ̂2 is consistent.



3.6 χ2 goodness-of-fit test

We test a hypothesis that a random variable has some distribution. As we can only

reject hypotheses, we shall never confirm that it is really so.

We test a discrete distribution (which could be a discretization of a continuous

distribution).

H0 : The random variable has a discrete distribution to k classes with probabilities

p1, . . . , pk.

Our test is based on a random sample of size n. We do not need the order of

results, only their frequencies ni, resp. relative frequencies ni
n (i = 1, . . . , k). We

compare the frequency ni to the theoretical frequency npi. The test statistic is

T :=
k∑

i=1

(ni − npi)
2

npi
.

For n →∞, its distribution converges to χ2(k−1). The null hypothesis is rejected

for T ≥ Qχ2(k−1)(1− α).



An empirical distribution is the (discrete) distribution whose probabilities of results

equal the observed relative frequencies ni
n . It is the maximum likelihood estimate.

3.6.1 Modifications

Problem: We test for a distribution which is only an estimate of the actual one.

This causes an unspecified additional error. The theoretical frequencies of the

classes must not be too small (say, below 5) to justify our conclusion.

Modification: If the theoretical frequency of some classes is too small, we join

them with others (possibly “close” ones).

Problem: The distribution may depend on unknown parameters.

Modification 1: We estimate the parameters using a different sample.



Modification 2: We estimate the parameters using the same sample. This reduces

the degrees of freedom; we have to test for χ2(k − 1− q), where q is the number

of estimated parameters.

Problem: We want to test goodness-of-fit to a continuous or mixed distribution.

Modification: We first discretize the distribution, i.e., we split all possible results

to k disjoint classes. Elements from one class should be “close” in order to achieve

an acceptable power of the test. All theoretical frequencies have to be sufficiently

large and – preferably – approximately equal.

3.6.2 χ2 goodness-of-fit test of equality of two distributions

(see [Mood et al.])

H0 : Two random variables have the same discrete distribution.



Sample sizes are m, n, frequencies are mi, ni (i = 1, . . . , k). We assume a distri-

bution with unknown theoretical probabilities pi (i = 1, . . . , k).

k∑
i=1

(mi − npi)
2

npi
converges to χ2(k − 1),

k∑
i=1

(ni − npi)
2

npi
converges to χ2(k − 1),

T :=
k∑

i=1

(mi − npi)
2

npi
+

k∑
i=1

(ni − npi)
2

npi
converges to χ2(2(k − 1)).

Unknown parameters pi may be estimated by maximum likelihood,

pi =
mi + ni

m + n
;

only k − 1 of them are independent (because
k∑

i=1
pi = 1), hence the resulting

number of degrees of freedom is 2(k − 1) − (k − 1) = k − 1 and we test T for

χ2(k − 1). The null hypothesis is rejected for T ≥ Qχ2(k−1)(1− α).



3.6.3 χ2 goodness-of-fit test of independence of two distributions

(see [Likeš, Machek])

H0 : Two discrete random variables (with unknown distributions) are independent.

X attains k values with probabilities p1, . . . , pk,

Y attains m values with probabilities q1, . . . , qm.

A realization of a two-dimensional sample ((x1, y1), . . . , (xn, yn)) consists of cou-

ples of realizations of random variables X, Y ; we again need only the frequencies

nij (i = 1, . . . , k; j = 1, . . . , m). These are usually organized into a so-called

contingence table. The number of classes is k m.

Under the independence assumption, the probabilities of results are piqj (i =

1, . . . , k; j = 1, . . . , m),

T :=
k∑

i=1

m∑
j=1

(nij − npiqj)
2

npiqj
converges to χ2(km− 1).



Unknown parameters pi, qj can be estimated by maximum likelihood,

pi =

m∑
j=1

nij

n
, qj =

k∑
i=1

nij

n
;

only (k − 1) + (m − 1) are independent (because
k∑

i=1
pi = 1,

m∑
j=1

qj = 1), hence

the resulting number of degrees of freedom is k m − 1 − (k − 1) − (m − 1) =

(k − 1)(m − 1) and we test T for χ2((k − 1)(m − 1)). The null hypothesis is

rejected for T ≥ Qχ2((k−1)(m−1))(1− α).



3.7 Correlation, its estimate and testing

(see [Likeš, Machek])

Correlation %X,Y of random variables X, Y (with non-zero variances) is the mean

of the product of normalized random variables X−µX
σX

· Y−µY
σY

,

%X,Y =
µ(X−µX)(Y−µY )

σXσY
∈ [−1, 1].

It vanishes for random variables which are independent, but also for some others;

then we call them uncorrelated.

The extreme values ±1 correspond to a linear dependence between X and Y .

Using a two-dimensional sample ((X1, Y1), . . . , (Xn, Yn)) we may estimate the

correlation by the sample correlation



RX,Y =

n∑
j=1

(Xj − X̄)(Yj − Ȳ )√√√√( n∑
j=1

(Xj − X̄)2
)(

n∑
j=1

(Yj − Ȳ )2
)

=

n
n∑

j=1
XjYj −

(
n∑

j=1
Xj

)(
n∑

j=1
Yj

)
√√√√√
n

n∑
j=1

X2
j −

(
n∑

j=1
Xj

)2
n

n∑
j=1

Y 2
j −

(
n∑

j=1
Yj

)2


.

(The former is the formula for the cosine of the angle between vectors

Xj − X̄, Yj − Ȳ ∈ Rn. The latter is a single-pass formula.)

3.7.1 Test of correlation of two normal distributions

Assumption: A two-dimensional random variable (X, Y ) has a (two-dimensional)

normal distribution, n ≥ 3.



H0 : %X,Y = 0 (X, Y are uncorrelated).

The test statistic is

T :=
RX,Y

√
n− 2√

1−R2
X,Y

;

if the variables X, Y are uncorrelated, the test statistic T has the distribution

t(n− 2) and we proceed as in Section 3.2.2.

3.8 Nonparametrical tests

They do not require any knowledge about the distribution, but they are less pow-

erful.



3.8.1 Sign test

We distinguish only the sign of the difference from a fixed value c. Thus we lose

a quantitative information and the possibility to test, e.g., the mean. Instead of

that, we test the median QX(1
2).

H0 : QX(1
2) = c

Under the null hypothesis, differences of both signs should be equally probable.

Zero differences are excluded from the sample. The test statistic T is the number

of positive differences. It is tested for the binomial distribution Bin
(
n, 1

2

)
. The

null hypothesis is rejected for

T < Q
Bin
(
n,12

) (α

2

)
or T > Q

Bin
(
n,12

) (1−
α

2

)
.

(Similarly for one-sided tests.) The computation of quantiles is complex, but they

are tabulated (depending on n and the significance level).

It is easier to compute the achieved significance.



For large n, we apply the central limit theorem and we test

T0 :=
2T − n
√

n

for N(0, 1).

The sign test can be used also to comparison of two medians of a paired sample.

In contrast to the mean, the median always exists (however, it is difficult to define

it uniquely).



3.8.2 Wilcoxon test (of one sample)

H0 : X has a distribution symmetric around c

(Then c is both the median and the mean.)

From a realization (x1, . . . , xn) we compute the sequence (z1, . . . , zn), where zj =

xj − c. We order it according to increasing absolute values
∣∣∣zj

∣∣∣ =
∣∣∣xj − c

∣∣∣. Thus

we determine the order rj of the jth element. If more differences are equal, we

assign to them the same order equal to the arithmetic mean. The test statistic is

T1 :=
∑

j:zj>0

rj

or

T2 := min

 ∑
j:zj>0

rj,
∑

j:zj<0

rj

 ;

we compare it to the tabulated critical value for this test.



4 What is missing here

4.1 More about mappings and sums of random variables

4.2 Characteristic function of a random variable

Problems of statistical research – see Rogalewicz

4.3 Proof of the Central Limit Theorem
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