Why quantum logic cannot be classical

Mirko Navara

Center for Machine Perception
Faculty of Electrical Engineering
Czech Technical University
16627 Praha, Czech Republic navara@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz/~navara

Classical event structure

σ-algebra of sets, $\mathcal{L} \subseteq 2^{U}$:

- $\quad U \in \mathcal{L}$
- $\left\{A_{i} \mid i \in \mathbb{N}\right\} \subseteq \mathcal{L} \Longrightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{L}$

State (=probability measure) $s: \mathcal{L} \rightarrow[0,1]:$

- $\quad s(U)=1$
- $\quad\left\{A_{i} \mid i \in \mathbb{N}\right\} \subseteq \mathcal{L}, A_{i} \cap A_{j}=\emptyset$ for $i \neq j \Longrightarrow s\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} s\left(A_{i}\right)$
$\mathcal{S}(\mathcal{L}):=$ state space of \mathcal{L}; it is a Choquet simplex
Pure states: extreme points of $\mathcal{S}(\mathcal{L})$
Two-valued states: $\mathcal{S}(\mathcal{L}) \cap\{0,1\}^{\mathcal{L}}$
For σ-algebras:
- pure states $=$ two-valued states $=$ points in the Stone space
- \quad state space (even the space of two-valued states) determines the whole structure

We need disjoint, not all unions!
σ-class of sets, $\mathcal{L} \subseteq 2^{U}$:

- $\quad U \in \mathcal{L}$
- $\quad\left\{A_{i} \mid i \in \mathbb{N}\right\} \subseteq \mathcal{L}, A_{i} \cap A_{j}=\emptyset$ for $i \neq j \Longrightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{L}$

Example 1

$W / L=$ Wins/Loses with|without player JJ

$U=\{W|W, W| L, L|W, L| L\}$
$A=\{\emptyset, \underbrace{\{W|W, W| L\}}_{a}, \underbrace{\{L|W, L| L\}}_{a^{\prime}}, U\}$
$B=\{\emptyset, \underbrace{\{W|W, L| W\}}_{b}, \underbrace{\{W|L, L| L\}}_{b^{\prime}}, U\}$
$\mathcal{L}=A \cup B=\left\{\emptyset, a, a^{\prime}, b, b^{\prime}, U\right\}$
\mathcal{L} is a (nondistributive modular) lattice called MO 2

Pure states:
$s: \mathcal{L} \rightarrow\{0,1\}$

$$
\begin{array}{cc}
s(A) & s(B) \\
\hline 0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}
$$

(S0) $\quad s(U)=1$
(S1) $\quad s\left(x^{\prime}\right)=1-s(x)$
All states:
$s: \mathcal{L} \rightarrow[0,1]$, satisfy (S0), (S1)
$s(A)=p, s(B)=q, \quad p, q \in[0,1]$ arbitrary

Example 2

Example 1 with one more result, $c=$ match cancelled

$$
\begin{aligned}
& A=\left\{\mathbf{0}, a, c,(a \vee c)^{\prime}, a \vee c, a^{\prime}, c^{\prime}, \mathbf{1}\right\} \\
& B=\left\{\mathbf{0}, b, c,(b \vee c)^{\prime}, b \vee c, b^{\prime}, c^{\prime}, \mathbf{1}\right\} \\
& A \cap B=\left\{\mathbf{0}, c, c^{\prime}, \mathbf{1}\right\} \\
& \mathcal{L}=A \cup B=\left\{\mathbf{0}, a, b, c, a \vee c, b \vee c,(a \vee c)^{\prime},(b \vee c)^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}, \mathbf{1}\right\}
\end{aligned}
$$

Pure states:

$s(A)$	$s(B)$	$s(C)$
0	0	0
0	1	0
1	0	0
1	1	0
0	0	1

All states:
$s(A)=p, s(B)=q, s(C)=r, r \in[0,1]$ arbitrary, $p, q \in[0,1-r]$

Example 3:

$\mathcal{K}=\left\{\mathbf{0}, B, C, D, B^{\prime}, C^{\prime}, D^{\prime}, \mathbf{1}\right\}$, where D means "the fire-fly is not observed from $\mathrm{K}^{\prime \prime}$ $\mathcal{M}=\left\{\mathbf{0}, A, C, E, A^{\prime}, C^{\prime}, E^{\prime}, \mathbf{1}\right\}$, where A means "the fire-fly is observed in the upper part" $\mathcal{J}=\left\{\mathbf{0}, A, B, F, A^{\prime}, B^{\prime}, F^{\prime}, \mathbf{1}\right\}$
$\mathcal{K} \cup \mathcal{M} \cup \mathcal{J}=\left\{\mathbf{0}, A, B, C, D, E, F, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}, \mathbf{1}\right\}$
This is not a lattice.

Pure states:

$s(A)$	$s(B)$	$s(C)$
1	0	0
0	1	0
0	0	1
0	0	0
$1 / 2$	$1 / 2$	$1 / 2$

All states:
$s(A)=p, s(B)=q, s(C)=r, \quad p, q, r \in[0,1], p+q \leq 1, p+r \leq 1, q+r \leq 1$

Example 3 (non-transparent barriers)

$\underset{\times}{\text { D }}$

$\stackrel{\times}{B}$

	P
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Orthomodular lattices

Definition: An orthomodular lattice is a lattice with bounds 0,1 equipped with a unary operation ${ }^{\prime}: \mathcal{L} \rightarrow \mathcal{L}$ (orthocomplementation) such that, for all $a, b \in \mathcal{L}$,

- $a^{\prime \prime}=a$
- $a \leq b \Longrightarrow b^{\prime} \leq a^{\prime}$
- $a \wedge a^{\prime}=\mathbf{0}$
- $a \leq b \Longrightarrow b=a \vee\left(a^{\prime} \wedge b\right)$ (orthomodular law)

Orthogonality: $a \perp b \Longleftrightarrow a \leq b^{\prime}$
(This condition is strictly stronger than the usual $a \wedge b=0$.)
Example: A σ-class of subsets needs not be a lattice; if it is, it is an OML.

Structure of orthomodular lattices

Boolean subalgebra: $\mathcal{M} \subseteq \mathcal{L}$ such that

- $0,1 \in \mathcal{M}$,
- $a \in \mathcal{M} \Longrightarrow a^{\prime} \in \mathcal{M}$,
- $\left(\mathcal{M}, \leq \upharpoonright_{\mathcal{M}},{ }^{\prime} \upharpoonright_{\mathcal{M}}\right)$ is a Boolean algebra.

Compatibility: $a \leftrightarrow b \Longleftrightarrow \exists$ Boolean subalgebra $\mathcal{M}: a, b \in \mathcal{M}$
Block: a maximal Boolean subalgebra
Center: The set of all $a \in \mathcal{L}$ such that $\forall b \in \mathcal{L}: a \leftrightarrow b$
$=$ the set of all "absolutely compatible" elements
$=$ the classical part of the system
$=$ the intersection of all blocks
Atom: $a \in \mathcal{L} \backslash\{0\}$ such that there is no b satisfying $0<b<a$ $\mathcal{A}(\mathcal{L}):=$ the set of all atoms of \mathcal{L}
(σ-additivite) state: $s: \mathcal{L} \rightarrow[0,1]$ such that

- $s(\mathbf{1})=1$
- $\left\{a_{i} \mid i \in \mathbb{N}\right\} \subseteq \mathcal{L}, a_{i} \perp a_{j}$ for $i \neq j \Longrightarrow s\left(\bigvee_{i \in \mathbb{N}} a_{i}\right)=\sum_{i \in \mathbb{N}} s\left(a_{i}\right)$

Orthomodular lattices as families of Boolean algebras

Every OML is the union of its maximal Boolean subalgebras (=blocks)
Hypergraph: a nonempty set (of vertices) and its covering by nonempty subsets (edges)
Greechie diagram: hypergraph whose vertices are atoms and edges are blocks
State on a hypergraph: evaluation of vertices such that the sum over each edge is 1
Problem: Which hypergraphs are Greechie diagrams of OMLs?

©
$m p$
13/42

$$
a \vee b=e \vee f \perp g \vee h
$$

Orthoalgebras

Allowed

Forbidden

In particular, the state space may be empty [Rogalewicz]:

Smaller example with empty state space [Greechie]:

Even smaller example with empty state space [R. Mayet]:

This is the smallest example with empty state space obtained by this technique and it is not unique [MN 08]; it has 19 blocks.
OMLs with ≤ 5 blocks admit states [Riečanová 07].

Bell inequalities

$$
\begin{aligned}
& s(a)+s(b)-s(a \wedge b) \leq 1 \\
& 0 \geq s(a \wedge b)+s(b \wedge c)+s(c \wedge d)-s(a \wedge d)-s(b)-s(c) \\
& s(a)+s(b)+s(c)-s(a \wedge b)-s(a \wedge c)-s(b \wedge c) \leq 1 \\
& s(a \wedge b)+s(b \wedge c)+s(c \wedge d)-s(a \wedge d)-s(b)-s(c) \geq-1
\end{aligned}
$$

The first is equivalent to the valuation property:
$s(a \wedge b)+s(a \vee b)=s(a)+s(b)$
If the OML is not a Boolean algebra and admits a rich set of states, all Bell inequalities are violated.

Crucial example of a quantum structure: Hilbert lattice

H ... a separable Hilbert space (real or complex)
$L(H)$... the set of all closed subspaces of H (equivalently, all projectors of H)

$$
\begin{aligned}
\mathbf{0} & =\{0\}, \\
\mathbf{1} & =H, \\
A \leq B & \Longleftrightarrow A \subseteq B, \\
A \wedge B & =A \cap B, \\
A^{\prime} & =\{x \in H \mid \forall y \in A: y \perp x\}, \\
A \vee B & =\operatorname{Lin}(A \cup B),
\end{aligned}
$$

where Lin denotes the closed linear hull

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

1. For $q \in H,\|q\|=1$, define a vector state

$$
s_{q}\left(\operatorname{Lin}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)\right)=\sum_{i=1}^{n}\left(q \cdot y_{i}\right)^{2}=\sum_{i=1}^{n} \cos ^{2} \varangle\left(q, y_{i}\right)
$$

for any orthonormal basis $\left(y_{1}, \ldots, y_{n}\right)$ of H

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

1. For $q \in H,\|q\|=1$, define a vector state

$$
s_{q}\left(\operatorname{Lin}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)\right)=\sum_{i=1}^{n}\left(q \cdot y_{i}\right)^{2}=\sum_{i=1}^{n} \cos ^{2} \varangle\left(q, y_{i}\right)
$$

for any orthonormal basis $\left(y_{1}, \ldots, y_{n}\right)$ of H
Corollary: $s_{q}(q)=1$

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

1. For $q \in H,\|q\|=1$, define a vector state

$$
s_{q}\left(\operatorname{Lin}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)\right)=\sum_{i=1}^{n}\left(q \cdot y_{i}\right)^{2}=\sum_{i=1}^{n} \cos ^{2} \varangle\left(q, y_{i}\right)
$$

for any orthonormal basis $\left(y_{1}, \ldots, y_{n}\right)$ of H
Corollary: $s_{q}(q)=1$
2. Mixture of vector states $\quad s(P)=\sum_{i} c_{i} s_{q_{i}}(P)$, where $c_{i}>0, \sum_{i} c_{i}=1$.

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

1. For $q \in H,\|q\|=1$, define a vector state

$$
s_{q}\left(\operatorname{Lin}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)\right)=\sum_{i=1}^{n}\left(q \cdot y_{i}\right)^{2}=\sum_{i=1}^{n} \cos ^{2} \varangle\left(q, y_{i}\right)
$$

for any orthonormal basis $\left(y_{1}, \ldots, y_{n}\right)$ of H
Corollary: $s_{q}(q)=1$
2. Mixture of vector states $\quad s(P)=\sum_{i} c_{i} s_{q_{i}}(P)$, where $c_{i}>0, \sum_{i} c_{i}=1$.
3. What else?

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

1. For $q \in H,\|q\|=1$, define a vector state

$$
s_{q}\left(\operatorname{Lin}\left(\left\{y_{1}, \ldots, y_{n}\right\}\right)\right)=\sum_{i=1}^{n}\left(q \cdot y_{i}\right)^{2}=\sum_{i=1}^{n} \cos ^{2} \varangle\left(q, y_{i}\right)
$$

for any orthonormal basis $\left(y_{1}, \ldots, y_{n}\right)$ of H
Corollary: $s_{q}(q)=1$
2. Mixture of vector states $\quad s(P)=\sum_{i} c_{i} s_{q_{i}}(P)$, where $c_{i}>0, \sum_{i} c_{i}=1$.
3. What else?

Nothing!

Gleason's Theorem [Gleason 57]: For $\operatorname{dim} H \geq 3$, all states are mixtures of vector states.

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Gleason's Theorem

Crucial case: $H=\mathbb{R}^{3}$ (simplified proof by [Cooke, Keane, Moran 85]).
Corollary 1: The restriction of a state to 1D subspaces is continuous (proved by [von Neumann 1932] even for \mathbb{R}^{2}, error found by [Hermann 1935],

Corollary 2: A finitely-valued state is constant on 1D subspaces, i.e., it is a dimension function.

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Gleason's Theorem

Crucial case: $H=\mathbb{R}^{3}$ (simplified proof by [Cooke, Keane, Moran 85]).
Corollary 1: The restriction of a state to 1D subspaces is continuous (proved by [von Neumann 1932] even for \mathbb{R}^{2}, error found by [Hermann 1935],

Corollary 2: A finitely-valued state is constant on 1D subspaces, i.e., it is a dimension function.

Crucial corollary: There is no two-valued state (=hidden variable) (answer to a question by [Einstein, Podolsky, Rosen 35], simplified proofs by [Bell 64, Bell 66], [Kochen, Specker 67], ... , [Peres 95]).
$m p$

1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Gleason's Theorem

Crucial case: $H=\mathbb{R}^{3}$ (simplified proof by [Cooke, Keane, Moran 85]).
Corollary 1: The restriction of a state to 1D subspaces is continuous (proved by [von Neumann 1932] even for \mathbb{R}^{2}, error found by [Hermann 1935],

Corollary 2: A finitely-valued state is constant on 1D subspaces, i.e., it is a dimension function.

Crucial corollary: There is no two-valued state (=hidden variable) (answer to a question by [Einstein, Podolsky, Rosen 35], simplified proofs by [Bell 64, Bell 66], [Kochen, Specker 67], ... , [Peres 95]).

There is no colouring of non-zero vectors by two colors (blue, red) such that each orthogonal basis contains exactly one red vector

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Constructions proving Geometrical Lemmas
MGL

Constructions proving the non-existence of two-valued states in \mathbb{R}^{3}

It is possible to find a finite set of vectors whose orthogonality relations exclude the possibility of a two-valued state.

The smallest example known uses 31 vectors, the following uses 33 vectors:

1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26

Constructions proving the non-existence of two-valued states in \mathbb{R}^{4}

Theorem: [Cabello] There is no two-valued state on $\mathcal{L}\left(\mathbb{R}^{4}\right)$.
Take 36 vectors in $\mathbb{R}^{4}(\overline{1}$ denotes -1$)$:

1000	1000	0100	1111	1111	$111 \overline{1}$	$11 \overline{1} \overline{1}$	$111 \overline{1}$	$11 \overline{1} 1$
0100	0010	0010	$11 \overline{1} \overline{1}$	$1 \overline{1} 1 \overline{1}$	$11 \overline{1} 1$	$1 \overline{1} 1 \overline{1}$	$1 \overline{1} 11$	$1 \overline{1} 11$
0011	0101	1001	$1 \overline{1} 00$	$10 \overline{1} 0$	$1 \overline{1} 00$	1001	$10 \overline{1} 0$	$100 \overline{1}$
$001 \overline{1}$	$010 \overline{1}$	$100 \overline{1}$	$001 \overline{1}$	$010 \overline{1}$	0011	0110	0101	0110

Each of the 9 column represents an orthogonal basis of \mathbb{R}^{4} and each vector occurs twice. The number of vectors of unit state in this table must be both even and odd (9)—a contradiction.

m	p
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30

Corollaries for group-valued states

Theorem: There is no nontrivial \mathbb{Z}_{2}-valued state, s, on $\mathcal{L}\left(R^{4}\right)$ which satisfies $s(\mathbb{1})=1$.
Theorem: If $n \geq 4$, then there is no nontrivial \mathbb{Z}_{2}-valued state on $\mathcal{L}\left(R^{n}\right)$.
For $n \geq 5$ it follows from the above construction.
The refinement for $n=4$ is due to [Harding, Jager, Smith]
Open problem: Are there nontrivial \mathbb{Z}_{2}-valued states on $\mathcal{L}\left(R^{3}\right)$?

References

[Bell 64] Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1 (1964), 195-200.
[Bell 66] Bell, J.S.: On the problem of hidden variables in quantum theory. Rev. Mod. Phys. 38 (1966), 447-452.
[Birkhoff, vonNeumann 36] Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37 (1936), 823-843.
[Cooke, Keane, Moran 85] Cooke, R., Keane, M., Moran, W.: An elementary proof of Gleason's theorem. Math. Proc. Cambridge Philos. Soc. 98 (1985), 117-128.
[Dvurečenskij 93] Dvurečenskij, A.: Gleason's Theorem and Its Applications. Kluwer, Dordrecht/Boston/London \& Ister Sci., Bratislava, 1993.
[Einstein, Podolsky, Rosen 35] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 (1935), 777-780.

References

[Gleason 57] Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6 (1957), 885-893.
[Greechie 71] Greechie, R.J.: Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971), 119-132.
[Gudder 66] Gudder, S.P.: Uniqueness and existence properties of bounded observables. Pacific J. Math. 19 (1966), 81-93.
[Harding, Jager, Smith] Harding, J., Jager, K., Smith, D.: Group-valued measures on the lattice of closed subspaces of a Hilbert space. Internat. J. Theoret. Phys. 44, no. 5 (2005), 539-548.
[MN 95] Navara, M.: Uniqueness of bounded observables. Ann. Inst. H. Poincaré Theor. Physics 63 (1995), no. 2, 155-176.
[Kalmbach 83] Kalmbach, G.: Orthomodular Lattices. Academic Press, London, 1983.
[MN 92] Navara, M.: Descriptions of state spaces of orthomodular lattices. Math. Bohem. 117 (1992), 305-313.
[MN 00] Navara, M.: State spaces of orthomodular structures. Rend. Istit. Mat. Trieste 31 (2000), Suppl. 1, 143-201.
[MN 04] Navara, M.: Piron's and Bell's geometrical lemmas. Internat. J. Theoret. Phys. 43 (2004), No. 7, 1587-1594.
[MN 08] Navara, M.: Small quantum structures with small state spaces. Internat. J. Theoret. Phys. 47 (2008), No. 1, 36-43.
[Pták, MN 04] Navara, M., Pták, P.: For $n \geq 5$ there is no nontrivial Z_{2}-measure on $L\left(R^{n}\right)$. Internat. J. Theoret. Phys. 43 (2004), No. 7, 1595-1598.
[Pták, Pulmannová 91] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht/Boston/London, 1991.
[Riečanová 07] Riečanová, Z.: The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks. Preprint, 2007.
[Shultz 74] Shultz, F.W.: A characterization of state spaces of orthomodular lattices. J. Comb. Theory A 17 (1974), 317-328.

Details of pictures

$$
0
$$

