Exercise from properties of fuzzy logic 1

Exercise 6.1 Verify that the interpretation of

$$A \underset{\scriptscriptstyle \mathrm{S}}{\wedge} B = A \wedge (A \to B)$$

$$A \stackrel{\mathrm{s}}{\vee} B = ((A \to B) \to B) \underset{\mathrm{s}}{\wedge} ((B \to A) \to A)$$

in basic logic is min, max for any choice of the continuous fuzzy conjunction.

Solution: For an evaluation e, we have to prove that the values $\alpha = e(A)$, $\beta = e(B)$, satisfy

$$\alpha \mathop{\wedge}_{\mathsf{S}} \beta = \alpha \mathop{\wedge}_{\mathsf{C}} (\alpha \mathop{\rightarrow}_{\mathsf{C}} \beta) \tag{1}$$

$$\alpha \lor \beta = ((\alpha \to \beta) \to \beta) \land ((\beta \to \alpha) \to \alpha)$$
(2)

(1): Case 1: $\alpha \leq \beta$. Trivial, value α .

Case 2: $\alpha > \beta$. As the fuzzy conjunction \wedge is continuous, the supremum

$$\alpha \xrightarrow{\cdot} \beta = \sup\{\gamma : \alpha \land \gamma \le \beta\}$$

is a maximum, achieved for some γ^* , and $\alpha \wedge \gamma^* = \beta$. The whole expression is β .

(2):

The formula is symmetric w.r.t. α, β . Without loss of generality, we may assume $\alpha \geq \beta$. Then

$$(\beta \to \alpha) \to \alpha = 1 \to \alpha = \alpha$$
.

It remains to prove that $(\alpha \rightarrow \beta) \rightarrow \beta \geq \alpha$. Again, $\alpha \rightarrow \beta$ is a maximal γ^* such that $\alpha \wedge \gamma^* = \beta$.

$$(\alpha \to \beta) \to \beta = \gamma^* \to \beta = \max\{\delta : \gamma^* \land \delta \le \beta\} \ge \alpha.$$

The last inequality follows from the fact that α belongs to the set over which we maximize. Notice that equality is not always obtained; it may happen that $\gamma^* = \beta$ and $\gamma^* \rightarrow \beta = 1 > \alpha$. This is the case of Gödel logic (standard fuzzy operations) if $\alpha > \beta$ and also product logic (product operations) if $\alpha > \beta = 0$.