Exercise from fuzzy intersections.
Exercise 4.1 Fuzzy sets A, B have the following vertical representations:

$$
\begin{gathered}
\mu_{A}(x)= \begin{cases}\frac{x-1}{3}, & x \in[1,4] \\
1, & x \in[4,6] \\
7-x, & x \in[6,7] \\
0, & \text { otherwise }\end{cases} \\
\mu_{B}(x)= \begin{cases}\frac{x-2}{3}, & x \in[2,5] \\
\frac{8-x}{2,}, & x \in[5,6] \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Find their standard, product, and Eukasiewicz intersections.
Exercise from fuzzy algebras.
Exercise 4.2 Decide whether the equality

$$
\alpha \dot{\vee}(\alpha \wedge \beta)=\alpha
$$

holds for all α, β for the following choices of operations $\wedge, \dot{\vee}$:

1. $\mathrm{S}_{\mathrm{s}}, \stackrel{\mathrm{s}}{\mathrm{V}}$,
2. $\stackrel{\wedge}{\mathrm{P}}, \stackrel{\mathrm{S}}{\stackrel{\mathrm{V}}{ }}$,
3. $\stackrel{\wedge}{\mathrm{P}}, \stackrel{\mathrm{L}}{\vee}$,
4. $\hat{L}, \stackrel{\mathrm{P}}{\stackrel{\mathrm{V}}{ }}$,
5. $\stackrel{\wedge}{\mathrm{P}}, \stackrel{\mathrm{S}}{\stackrel{\mathrm{V}}{ }}$,
6. $\stackrel{\wedge}{\mathrm{L}}, \stackrel{\mathrm{L}}{\mathrm{V}}$.
