Fuzzy negations, complements, and intersections

Exercise 3.1

Fuzzy sets A, B have the following vertical representations:

$$
\begin{gathered}
\mu_{A}(x)= \begin{cases}\frac{x-1}{2}, & x \in[1,3] \\
1, & x \in[3,6] \\
4-\frac{x}{2}, & x \in[6,8] \\
0, & \text { otherwise },\end{cases} \\
\mu_{B}(x)= \begin{cases}\frac{x-2}{3}, & x \in[2,5] \\
\frac{8-x}{2}, & x \in[5,6] \\
0, & x \in[6,8]\end{cases} \\
\text { otherwise } .
\end{gathered}
$$

1. Find for which λ the formula

$$
\neg_{\lambda} \alpha=1-\sqrt{1-(1-\alpha)^{\lambda}}
$$

defines a fuzzy negation \neg_{λ}. Draw a graph.
2. Find a fuzzy disjunction dual to the product conjunction with respect to the negation from part 1.
3. Find the fuzzy complement of A with respect to the negation $\underset{\lambda}{\neg}$ from part 1.
4. Find the standard, product, and Eukasiewicz intersections of A and B.

