KLASICKÁ LOGIKA (CL)

SYNTAXE

A ... spočetná množina proměnných
L = {→, 0} ... množina logických spojek:
→ ... (binární) implikace
0 ... (nulární) false

Formule
• všechny prvky A jsou formule
• 0 je formule
• jestliže A, B jsou formule, pak A → B je formule

Přesněji, používáme závorky, např. (A) → (B)

Odvozené spojky:
¬A = A → 0 ... (unární) negace
1 = ¬0 = 0 → 0 ... (nulární) true
A ∧ B = ¬(A → ¬B) ... (binární) konjunkce
A ∨ B = ¬A → B ... (binární) disjunkce
A ↔ B = (A → B) ∧ (B → A) ... (binární) ekvivalence

Logické axiomy

(C1) A → (B → A)
(C2) (A → (B → C)) → ((A → B) → (A → C))
(C3) (¬A → ¬B) → (B → A)

Dedukční pravidlo: Modus ponens

Teorie T ... množina formulí (speciálních axiomů)

Dokazatelná formule (=teorém) v teorii T je formule, k níž existuje důkaz, tj. konečná posloupnost formulí taková, že každá z nich je
• speciální axiom (=prvek T), nebo
• instance logického axioma (vzniklá substitucí), nebo
• výsledek aplikace dedukčního pravidla na předchozí formule v důkazu.

Značení: T ⊢ A, B ⊢ A (pro T = {B}), ⊢ A (pro T = ∅)

Příklad Cl1 B ⊢ A → B

(C1), A ::= B : D₁ = B → (A → B)
Speciální axiom : D₂ = B
Modus ponens(D₂, D₁) : D₃ = A → B

⇒ můžeme přidat dedukční pravidlo RI:

Příklad Cl2 ⊢ A → A

Nechť B je nějaká dokazatelná formule, např. axiom (C1).

(C1) : D₁ = B
RI(D₁) : D₂ = A → B
(C2), C ::= A : D₃ = (A → (B → A)) → ((A → B) → (A → A))
(C1) : D₄ = A → (B → A)
MP(D₄, D₃) : D₅ = (A → B) → (A → A)
MP(D₂, D₅) : D₆ = A → A
⇒ můžeme přidat axiom (AA): $A \rightarrow A$

Důsledek Cor1 $\vdash 0 \rightarrow 0, \vdash \neg 0, \vdash 1$

Příklad Cl3 $\vdash A \rightarrow 1$ pro všechna A:

Cor1 : $D_1 = 1$

RI(D_1) : $D_2 = A \rightarrow 1$

Příklad Cl4 $\{B, \neg B\} \vdash A$ pro všechna A

(C3) : $D_1 = (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

SA : $D_2 = \neg B$

RI(D_2) : $D_3 = \neg A \rightarrow \neg B$

MP(D_3, D_1) : $D_4 = B \rightarrow A$

SA : $D_5 = B$

MP(D_5, D_1) : $D_6 = A$

⇒ můžeme přidat dedukční pravidlo: $B, \neg B \rightarrow A$, ale to moc nevyužijeme

Příklad Cl5 $\vdash 0 \rightarrow A$ pro všechna A (ex falso quodlibet)

(C3) $B := 0$: $D_1 = (\neg A \rightarrow \neg B) \rightarrow (0 \rightarrow A)$

Cl3 $A := \neg A$: $D_2 = \neg A \rightarrow \neg 0$

MP(D_2, D_1) : $D_3 = 0 \rightarrow A$

⇒ můžeme přidat axiom $0 \rightarrow A$, ale ten moc nevyužijeme

Příklad Cl6 $\vdash A \lor \neg A$ pro všechna A (tertium non datur)

Cl2, $A := \neg A$: $D_1 = \neg A \rightarrow \neg A = A \land \neg A$

⇒ můžeme přidat axiom $A \lor \neg A$

Příklad Cl7 $B \vdash A \lor B$ pro všechna A, B

Cl1, $A := \neg A$: $D_1 = \neg A \rightarrow B = A \lor B$

⇒ můžeme přidat dedukční pravidlo ROR: $B \lor A

Věta o dedukci v klasické logice

T ... teorie

A, B ... formule

$T \cup \{A\} \vdash B$, právě když $T \vdash A \rightarrow B$

Důkaz \iff

//BEGIN of proof of $T \vdash A \rightarrow B$

: $D_{i-1} = A \rightarrow B$

//END of proof of $T \vdash A \rightarrow B$

SA : $D_i = A$

MP(D_i, D_{i-1}) : $D_{i+1} = B$

⇒: Indukční přes délku m důkazu $T \cup \{A\} \vdash B$: Případ 1: $m = 1$:

Případ 1A: Jestliže B je speciální axiom ($B \in T$) nebo logický axiom (přesněji jeho instance):

$D_1 = B$

(C1), $A := B$: $D_2 = B \rightarrow (A \rightarrow B)$

MP(D_1, D_2) : $D_3 = A \rightarrow B$
Případ 1B: \(B = A \)

\[
\text{Cl2 : } D_1 = A \rightarrow A
\]

Případ 2: \(m > 1 \), věta o dedukci platí pro délku důkazu \(< m \),
\(B \) vzniklo dedukcí (MP) z \(T \cup \{ A \} \):

\[
\begin{align*}
\vdash & : \\
D_j & : \\
D_k & = D_j \rightarrow B \\
\vdash & : \\
\text{MP}(D_j, D_k) : & \; D_m = B
\end{align*}
\]

Délka důkazu \(T \cup \{ A \} \vdash D_j \) je \(< m \)
Délka důkazu \(T \cup \{ A \} \vdash D_k \) je \(< m \)
Indukční předpoklad \(\Rightarrow \)

\[
\begin{align*}
T & \vdash A \rightarrow D_j \\
T & \vdash A \rightarrow D_k \\
T & \vdash A \rightarrow (D_j \rightarrow B)
\end{align*}
\]

Důkaz \(T \vdash A \rightarrow B \):

\[
\begin{align*}
& \text{//BEGIN aplikace věty o dedukci na } T \cup \{ A \} \vdash B \\
& : \\
D_j' & = A \rightarrow D_j \\
& : \\
D_k' & = A \rightarrow (D_j \rightarrow B)
\end{align*}
\]

\[
(C2) \; B := D_j, C := B : \\
\begin{align*}
D_i & = (A \rightarrow (D_j \rightarrow B)) \rightarrow ((A \rightarrow D_j) \rightarrow (A \rightarrow B)) \\
\text{MP}(D_k, D_i) : & \; D_{i+1} = (A \rightarrow D_j) \rightarrow (A \rightarrow B) \\
\text{MP}(D_j', D_{i+1}) : & \; D_{i+2} = A \rightarrow B
\end{align*}
\]

Důsledek Cor2
\(\vdash A \vee B \) pro všechna \(A, B \)

\[
\begin{align*}
\text{Cl4, } A := B : & \; \{ A, \neg A \} \vdash B \\
& \text{(DT) } \vdash \neg \neg A \rightarrow 0 \\
\text{Cl4 : } & \; \{ A, \neg A \} \vdash 0
\end{align*}
\]

\(\Rightarrow \) můžeme přidat dedukční pravidlo LOR:

\[
\begin{array}{c}
\vdash A \rightarrow \neg \neg A \rightarrow A \rightarrow B
\end{array}
\]

\[
\begin{align*}
\text{Důsledek Cor3} & \; \vdash \neg \neg A, \quad \vdash A \rightarrow \neg \neg A \text{ pro všechna } A \\
& \vdash A \rightarrow \neg \neg A \rightarrow 0 \\
& \text{(DT) } \vdash \neg \neg A \rightarrow 0 \\
& \text{(DT) } \vdash A \rightarrow 0
\end{align*}
\]
\[\text{Důsledek Cor4} \quad \neg
\neg A \vdash A, \quad \vdash \neg
\neg A \rightarrow A \text{ pro všechna } A \]

Cor3, \(A := \neg A \):
\[
D_1 = \neg A \rightarrow \neg
\neg A \\
(C3) \quad B := \neg A \:
D_2 := (\neg A \rightarrow \neg
\neg A) \rightarrow (\neg A \rightarrow A) \\
\text{MP}(D_1, D_2) :
D_3 = \neg A \rightarrow A
\]

\[\text{Důsledek Cor5} \quad A \iff \neg A \quad (\text{lze přidat k axiomům}) \]

\[\text{Jak lze důkaz zjednodušit?} \]
\[
B \leftrightarrow C \vdash (A \rightarrow B) \leftrightarrow (A \rightarrow C) \\
B \leftrightarrow C \vdash (B \rightarrow A) \leftrightarrow (C \rightarrow A)
\]

\[\text{SÉMANTIKA} \quad \text{Obecně: Booleova algebra, postačí nám} \]
\[\text{Standardní sémantika} \quad \text{množina pravdivostních hodnot } ... \{0,1\} \]
\[\rightarrow \ldots \text{booleovská implikace} \Rightarrow \]
\[0 \ldots 0 \]
\[\neg \ldots \text{booleovská negace} \]
\[1 \ldots 1 \]
\[\wedge \ldots \text{konjunkce} \]
\[\lor \ldots \text{disjunkce} \]
\[\leftrightarrow \ldots \text{booleovská ekvivalence} \]

\[\text{Ohodnocení} \] \(\text{Lze libovolně zvolit pro proměnné, jednoznačně se rozšiřuje na všechny formule.} \]

\[\text{Tautologie} \quad \text{je formule } A, \text{která je vždy ohodnocena 1} \]
\[\text{Značení:} \models A \]
\[\text{Pro každou teorii } T, T \models A \text{ značí } e(A) = 1 \text{ pro všechna ohodnocení splňující } \forall B \in T : e(B) = 1. \]
\[\text{Kontradikce} \quad \text{je formule, která je vždy ohodnocena 0.} \]
\[\text{Formule je splnitelná, jestliže je ohodnocena 1 pro aspoň jedno ohodnocení.} \]
\[\text{Slabá korektnost} \quad \text{Každá dokazatelná formule je tautologie, tj. jestliže } \models A, \text{ pak } T \models A. \]
\[\text{Silná korektnost} \quad \text{Pro každou teorii } T: \text{ jestliže } T \models A, \text{ pak } T \models A. \]
\[\text{Slabá úplnost} \quad \text{Každá tautologie je dokazatelná, tj. jestliže } T \models A, \text{ pak } T \models A. \]
\[\text{Silná úplnost} \quad \text{Pro každou teorii } T: \text{ jestliže } T \models A, \text{ pak } T \models A. \]

\[\text{ZÁKLADNÍ LOGIKA (BASIC LOGIC, BL)} \]
\[\text{JAKO PŘÍKLAD VÍCEHODNOTOVÉ VÝROKOVÉ LOGIKY} \]

\[\text{SYNTAX} \]
\[A \ldots \text{spočetná množina výrokových proměnných} \]
\[L = \{\rightarrow, 0, \wedge\} \ldots \text{množina logických spojek:} \]
\[\rightarrow \ldots \text{(binární) implikace} \]
\[0 \ldots \text{(nullární) false} \]
\[\wedge \ldots \text{(binární) konjunkce (NOVÁ SPOJKA)} \]
\[\text{Formule} \quad \text{konstruovány obvyklým způsobem} \]
\[\text{Odvozené spojky:} \]
\[\neg A = A \rightarrow 0 \ldots \text{(unární) negace} \]
\[1 = \neg 0 = 0 \rightarrow 0 \ldots \text{(nullární) true} \]
\[A \leftrightarrow B = (A \rightarrow B) \wedge (B \rightarrow A) \ldots \text{(binární) ekvivalence} \]
\[A \triangle B = A \wedge (A \rightarrow B) \]
\[A \triangledown B = ((A \rightarrow B) \rightarrow B) \triangle ((B \rightarrow A) \rightarrow A) \]
\[\text{obecně nemá disjunkci } A \vee B \]
Logické axiomy

(A1) \((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)) \)

(A2) \(A \land B \rightarrow A \)

(A3) \(A \land B \rightarrow B \land A \)

(A4) \(A \land (A \rightarrow B) \rightarrow B \land (B \rightarrow A) \)

(A5a) \((A \rightarrow (B \rightarrow C)) \rightarrow (A \land B \rightarrow C) \)

(A5b) \((A \land B \rightarrow C) \rightarrow (A \land B \rightarrow (A \rightarrow B \rightarrow C)) \)

(A6) \((A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (C \rightarrow A)) \)

(A7) \(0 \rightarrow A \)

Dedukční pravidlo: Modus ponens \(r_{MP} : \frac{A, A \rightarrow B}{B} \)

Teorie = množina formulí (speciálních axiomů)

Důkazy a dokazatelné formule (=teorémy) jsou definovány obvyklým způsobem

Značení: \(\vdash A, \quad \mathcal{T} \vdash A \)

Příklad 1 \((C1) \) \(A \rightarrow (B \rightarrow A) \) je dokazatelná v BL:

\[
(A2) : \quad D_1 = A \land B \rightarrow A \\
(A5b), C := A : \quad D_2 = (A \land B \rightarrow A) \rightarrow (A \rightarrow (B \rightarrow A)) \\
MP(D_1, D_2) : \quad D_3 = A \rightarrow (B \rightarrow A)
\]

\(\Rightarrow (C1) \) lze přidat k axiomům BL

Tvrzení 1 Důsledek (A1):

\[
\{A \rightarrow B, \quad B \rightarrow C\} \vdash A \rightarrow C
\]

\(\Rightarrow \) lze přidat dedukční pravidlo TI: \(\frac{A \rightarrow B, \quad B \rightarrow C}{A \rightarrow C} \) (tranzitivita implikace)

Příklad 2 \(\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C)) \)

(Exchange rule, exchange axiom)

\[
(A1) A := B \land A, \\
B := A \land B : \quad D_1 = (B \land A \rightarrow A \land B) \rightarrow ((A \land B \rightarrow C) \rightarrow (B \land A \rightarrow C)) \\
(A3) A := B : \quad D_2 = B \land A \rightarrow A \land B \\
MP(D_2, D_3) : \quad D_3 = (A \land B \rightarrow C) \rightarrow (B \land A \rightarrow C) \\
(A5a) : \quad D_4 = (A \rightarrow (B \rightarrow C)) \rightarrow (A \land B \rightarrow C) \\
(A5b) A := B : \quad D_5 = (B \land A \rightarrow C) \rightarrow (B \rightarrow (A \rightarrow C)) \\
TI(D_4, D_3) : \quad D_6 = (A \rightarrow (B \rightarrow C)) \rightarrow (B \land A \rightarrow C) \\
TI(D_6, D_5) : \quad D_7 = (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))
\]

Příklad 3 \(\vdash A \rightarrow A \)

Nechť \(B \) je nějaká dokazatelná formule, např. axiom (A1).

\[
(A1) : \quad D_1 = B \\
Př. 2, C := A : \quad D_2 = (A \rightarrow (B \rightarrow A)) \rightarrow (B \rightarrow (A \rightarrow A)) \\
(C1) : \quad D_3 = A \rightarrow (B \rightarrow A) \\
MP(D_3, D_2) : \quad D_4 = B \rightarrow (A \rightarrow A) \\
MP(D_1, D_4) : \quad D_5 = A \rightarrow A
\]

Věta o dedukci v základní logice

\(\mathcal{T} \) ... teorie
\(A, B \) ... formule
\[\mathcal{T} \cup \{ A \} \vdash B, \text{ právě když } \exists n \in \mathbb{N} : (\mathcal{T} \vdash A^n \rightarrow B), \]

kde \(A^n = (A \land (A \land \cdots (A \land A) \cdots)) \)

Podle (A5a), (A5b),
\((A^n \rightarrow B) \leftrightarrow (A \rightarrow (A \rightarrow \cdots (A \rightarrow B) \cdots)) \)

Sémantika Obecně BL-algebra, zde pouze
Standardní sémantika množina pravdivostních hodnot \([0, 1] \)
\(\land \) ... spojité fuzzy konjunkce \(\land \)
\(\rightarrow \) ... příslušná residuovaná implikace \(\rightarrow \)

\(0 \ldots 0 \)
Ani standardní sémantika není jednoznačná, závisí na volbě spojité konjunkce.

Interpretace odvozených spojek:
\(\neg \) ... \(\neg \), kde \(\neg a = a \rightarrow 0 \)

\(1 \ldots 1 \)
\(\land \) ... \(\land \), kde \(a \leftrightarrow b = (a \rightarrow b) \land (b \rightarrow a) \)

\(\land \) ... \(\land \)
\(\lor \) ... \(\lor \)

Cvičení Ověřte, že interpretace \(\land, \lor \) je nezázávislá na volbě konjunkce.

Ohodnocení Ize libovolně zvolit pro proměnné, jednoznačně se rozšířuje na všechny formule.

Konjunkce \(\land \) je zavedena zvlášť, její sémantiku nelze odvodit z implikace (pomocí jiných operací).

Jedno z mnoha možných zobecnění pojmu tautologie:
1-tautologie je formule \(A \), která je vždy ohodnocena 1 (pro všechna možná ohodnocení s hodnotami v libovolné BL-algebře, speciálně pro liobovolnou spojitou konjunkci jako interpretaci \(\land \) and její residuovanou implikaci jako interpretaci \(\rightarrow \)).

Značení: \(\models A \)
Pro každou teorii \(\mathcal{T} \), \(\mathcal{T} \models A \) značí \(e(A) = 1 \) pro všechna ohodnocení splňující \(\forall B \in \mathcal{T} : e(B) = 1 \).

Korektnost Každá dokazatelná formule je 1-tautologie, tj. jestliže \(\vdash A \), pak \(\models A \).

Slabá úplnost Každá 1-tautologie je dokazatelná, tj. jestliže \(\models A \), pak \(\vdash A \).

Silná úplnost [Hájek 1998]

Pro každou teorii \(\mathcal{T} \): jestliže \(\mathcal{T} \models A \), pak \(\mathcal{T} \vdash A \).
(Uvažujeme všechna ohodnocení s hodnotami v BL-algebrách.)

Každá formule, která je ohodnocena 1 pro všechna standardní ohodnocení (s hodnotami v \([0, 1] \) a pro libovolnou spojítou konjunkci) je dokazatelná.

Cvičení Které axiomy klasické logiky jsou 1-tautologie BL (a tedy dokazatelné v BL)?

Exchange axiom dovoluje přepsat (A1):
\((B \rightarrow C) \leftrightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \)

Příklad 4 \(\vdash A \rightarrow (B \rightarrow A \land B) \)

Pr. 3 :
\(D_1 = A \land B \rightarrow A \land B \) \((A5b), C := A \land B : D_2 = (A \land B \rightarrow A \land B) \rightarrow (A \rightarrow (B \rightarrow A \land B)) \)
\(\text{MP}(D_1, D_2) : D_3 = A \rightarrow (B \rightarrow A \land B) \)

Důsledek: \(\{ A, B \} \vdash A \land B \)
\(A \vdash B \rightarrow A \land B \)
Příklad dedukce \[A \vdash B \rightarrow A \land (A \land B) \]

SA : \[D_1 = A \]

Pr. 4, \[B := A \land B : \]
\[D_2 = A \rightarrow (A \land B \rightarrow A \land (A \land B)) \]
\[MP(D_1, D_2) : \]
\[D_3 = A \land B \rightarrow A \land (A \land B) \]
\[(A5b),\]
\[C := A \land (A \land B) : \]
\[D_4 = (A \land B \rightarrow A \land (A \land B)) \rightarrow (A \rightarrow (B \rightarrow A \land (A \land B))) \]
\[MP(D_3, D_4) : \]
\[D_5 = A \rightarrow (B \rightarrow A \land (A \land B)) \]
\[MP(D_1, D_5) : \]
\[D_6 = B \rightarrow A \land (A \land B) \]

Zde \[\vdash A \rightarrow (B \rightarrow A \land (A \land B)), \]
aleť \[\vdash A \land A \rightarrow (B \rightarrow A \land (A \land B)) \]
\[\vdash A \rightarrow (A \rightarrow (B \rightarrow A \land (A \land B))) \]
\[\vdash A \rightarrow (A \land B \rightarrow A \land (A \land B)) \]

(substituce \(B := A \land B \) v Příkladu 4)

Cvičení
Dokažte v BL: \((A \rightarrow B) \land (A \rightarrow C) \rightarrow (A \rightarrow B \land C) \)

1. Jak vyplyvají vlastnosti interpretace konjunkce z logických axiomů?

2. Jak lze důkazy zjednodušit?

Důsledek (A1):
\[B \leftrightarrow C \vdash (A \rightarrow B) \leftrightarrow (A \rightarrow C) \]
\[B \leftrightarrow C \vdash (B \rightarrow A) \leftrightarrow (C \rightarrow A) \]

(Dosud nemůžeme podobně pracovat s konjunkcí.)

Komutativita \(\land \) plyně z (A3).

Okrajová podmínka:
Příklad 4, \[A := 1: \]
\[1 \rightarrow (B \rightarrow 1 \land B) \]

MP:
\[B \rightarrow 1 \land B \]

obrácená implikace plyně z (A2)

Asociativita \(\land \):

Následující formule jsou ekvivalentní (A5):
\[(A \land B) \land C \rightarrow D \]
\[A \land B \rightarrow (C \rightarrow D) \]
\[A \rightarrow (B \rightarrow (C \rightarrow D)) \]

Použijeme ekvivalenci podformulí:
\[B \rightarrow (C \rightarrow D) \]
\[B \land C \rightarrow D \]
\[A \rightarrow (B \land C \rightarrow D) \]
\[A \land (B \land C) \rightarrow D \]

Dokázali jsme:
\[((A \land B) \land C \rightarrow D) \leftrightarrow (A \land (B \land C) \rightarrow D) \]

pro všechna \(D, \) speciálně pro \(D := (A \land B) \land C : \)
\[((A \land B) \land C \rightarrow (A \land B) \land C) \leftrightarrow \]
\[(A \land (B \land C) \rightarrow (A \land B) \land C) \]

MP:
\[A \land (B \land C) \rightarrow (A \land B) \land C \]
a pro \(D := A \land (B \land C) \) i obrácenou implikaci, tedy
\[A \land (B \land C) \leftrightarrow (A \land B) \land C \]

Monotone \(\land \) jako ostrá vlastnost znamená
\[B \rightarrow C \vdash B \land A \rightarrow C \land A \]

Důkazeme monotonii \(\land \) jako fuzzy vlastnost (to je silnější vlastnost):
\[(B \rightarrow C) \rightarrow (B \land A \rightarrow C \land A) \]

Důkaz:
Následující formule jsou ekvivalentní a všechny jsou dokazatelné, neboť první z nich je instancí (A2) (není-li uvedено jinak, používáme (A5)):
(C → B) ∧ (C ∧ A) → C ∧ A
levou stranu nahradíme formuli, o níz už víme, že je ekvivalentní:
(C ∧ (C → B)) ∧ A → C ∧ A
C ∧ (C → B) → (A → C ∧ A)
tepře nyní můžeme nahradit levou stranu ekvivalensí formuli z (A4):
B ∧ (B → C) → (A → C ∧ A)
(B ∧ (B → C)) ∧ A → C ∧ A
levou stranu nahradíme ekvivalentní formuli:
(B → C) ∧ (B ∧ A) → C ∧ A
(B → C) → (B ∧ A → C ∧ A)
Důsledek:
B ↔ C ⊢ B ∧ A ↔ C ∧ A
B ↔ C ⊢ A ∧ B ↔ A ∧ C

GÖDELOVA LOGIKA
Syntaxe:
Axiomy (A1)–(A7) a

(G) A → A ∧ A

Důsledek: A ↔ A ∧ A

Standardní sémantika:
∧ ... idempotentní = standardní fuzzy konjunkce = min
→ ... residuum A ≥: Godelova implikace →
¬ ... Godelova zobecněná negace A:

\[A = \begin{cases} 1 & \text{if } x = 0, \\ 0 & \text{otherwise} \end{cases} \]

V Gödelově logice neexistuje spojka, interpretovaná jako standardní fuzzy negace.

Pouze v Gödelově logice platí klasická věta o dedukci (protože A^n ↔ A):

Věta o dedukci v Gödelově logice
T ... konečná teorie
A, B ... formule
T ∪ {A} ⊢ B, právě když T ⊢ A → B

Standardní úplnost Gödelovy logiky
(\[A \leq A \) (tj. teorémy jsou právě 1-tautologie vzhledem k [0, 1] s Gödelovými operacemi).

Pro každou konečnou teorii T: (T ⊢ A) \iff (T \models A).

teorému CL \iff tautologie CL

\[\uparrow \iff \uparrow \]

teorému GL \iff 1-tautologie GL

\[\uparrow \iff \uparrow \]

teorému BL \iff 1-tautologie BL

SOUČINOVÁ LOGIKA (PRODUCT LOGIC)
Syntaxe:
Axiomy (A1)–(A7) a

(P1) ¬¬C → ((A ∧ C → B ∧ C) → (A → B))
(P2) A ∧ (A → ¬A) → 0

Poznámka: e(¬¬C) = 1, právě když e(C) \neq 0 a
¬¬C ⊢ (A ∧ C → B ∧ C) ↔ (A → B)

Alternativa: Místo (P1), (P2) stačí jediný axiom (Cintulův):
(P) ¬¬A → ((A → A ∧ B) → B ∧ ¬¬B)

Standardní sémantika:
∧ ... součinová (nebo libovolná striktní) fuzzy konjunkce \[\land \]

8
→ ... residuum \textcircled{\wedge}, Goguenova implikace \rightarrow
\neg ... Gődlova negace \textcircled{\neg}

V součinové logice neexistuje spojka, interpretovaná jako standardní fuzzy negace.

Standardní úplnost součinové logiky

(\vdash A) \iff (\models A) (tj. teorémy jsou právě 1-tautologie vzhledem k \([0,1]\) se součinovými operacemi).

Pro každou konečnou teorii \(T\): \(T \vdash A \iff T \models A\).

LUKASIEWICZOVA LOGIKA

Syntaxe:

Axiom (A1)–(A7) a

(L) \quad \neg\neg A \rightarrow A

Důsledek: \quad \neg\neg A \leftrightarrow A

Alternativní axiomatizace [Lukasiewicz & Tarski] (pouze \(\to, 0\), konjunkce jako odvozená spojka \(A \land B = \neg(\neg A \rightarrow \neg B)\)):

(L1) \quad A \rightarrow (B \rightarrow A)
(L2) \quad (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)]
(L3) \quad (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)
(L4) \quad [(A \rightarrow B) \rightarrow B] \rightarrow [(B \rightarrow A) \rightarrow A]

(L1)=(C1) (platí v BL, viz Příklad 1)
(L2)=(A1), (L3)=(C3)
(L4)=Lukasiewiczův axiom

Standardní sémantika:

\(\land \ldots\) Lukasiewiczova (nebo libovolná nilpotentní) fuzzy konjunkce \textcircled{\land}

→ ... residuum \textcircled{\lor}, Lukasiewiczova implikace \rightarrow

\neg ... standardní fuzzy negace \textcircled{\neg x} = 1 - x

e[(A \rightarrow B) \rightarrow B] = e(A) \lor e(B) \quad (v \text{ (L4)})

Standardní úplnost Lukasiewiczovy logiky

(\vdash A) \iff (\models A) (tj. teorémy jsou právě 1-tautologie vzhledem k \([0,1]\) s Lukasiewiczovými operacemi).

Pro každou konečnou teorii \(T\): \(T \vdash A \iff T \models A\).
RACIONÁLNÍ PAVELKOVA LOGIKA (RPL)

Záměr: Vyjdeme z částečné pravdivých předpokladů typu \((A, r)\), \(A\) formule, \(r \in [0, 1]\). Ptáme se, nakolik je zaručena platnost závěrů.

Motivace: Z předpokladů \((A, r)\), \(A \rightarrow B\) plyne \((B, r)\):

\[
(A, r), \ (A \rightarrow B, 1) \vdash (B, r)
\]

Předpoklady:
\((A, r)\) znamená, že připouštíme pouze taková ohodnocení \(e\), pro která \(e(A) \geq r\).

\(A \rightarrow B\) znamená, že připouštíme pouze taková ohodnocení \(e\), pro která \(e(A) \leq e(B)\).

Zobecnění: I předpoklad \(A \rightarrow B\) může být splněn pouze se stupněm \(s \in [0, 1]\), píšeme \((A \rightarrow B, s)\) a dedukční pravilo Modus ponens zobecníme na

\[
(A, r), \ (A \rightarrow B, s) \vdash (B, r \land s)
\]

HÁJKOVA FORMULACE RACIONÁLNÍ PAVELKOVY LOGIKY

Požadavek \((A, r)\), chápaný jako \(e(A) \geq r\), vyjádříme pomocí implikace (platné se stupněm 1)

\[
r \rightarrow A
\]

nadstavíme jazyka, která je vždy ohodnocena \(r\).

Aby zůstal jazyk spočetný, omezíme se na (hustou) spočetnou množinu konstant, konkrétně

\[
\{ r : r \in \mathbb{Q} \cap [0, 1] \}
\]

(odtud příklad „racionální“). Již dříve jsme měli konstanty 0, 1.

Vyjdeme z Lukasiewiczovy logiky, neboť u jiných to nevede k dobrým výsledkům kvůli nespojité operaci.

Axiomy: (L1)–(L4), navíc „násobíka“ (book-keeping axioms)

\[
(r \rightarrow s) \leftrightarrow t, \text{ kde } r, s \in \mathbb{Q} \cap [0, 1], \ t = r \land s
\]

(to je spočetně mnoho axiomů obsahujících pouze konstanty).

Dedukční pravidlo

\[
\frac{r \rightarrow A, \ s \rightarrow (A \rightarrow B)}{t \rightarrow B}
\]

dostaneme jako důsledek Modus ponens z Lukasiewiczovy logiky.

VLASTNOSTI RACIONÁLNÍ PAVELKOVY LOGIKY

Věta o dedukci z Lukasiewiczovy logiky zůstává v platnosti.

Stupeň pravdivosti (truth degree) formule \(A\) v teorii \(\mathcal{T}\):

\[
\|A\|_\mathcal{T} := \inf \{e(A) : e \text{ ohodnocení, } (\forall B \in \mathcal{T} : e(B) = 1)\}
\]

Stupeň dokazatelnosti (provability degree) formule \(A\) v teorii \(\mathcal{T}\):

\[
|A|_\mathcal{T} := \sup \{r \in [0, 1] : \mathcal{T} \vdash r \rightarrow A\}
\]

Věta o úplnosti RPL: \(\|A\|_\mathcal{T} = |A|_\mathcal{T}\)

Teorie \(\mathcal{T}\) je

- konzistentní (consistent), jestliže \(\mathcal{T} \not\vdash 0\), ekvivalentně, jestliže \(\forall r < 1 : \mathcal{T} \not\vdash r\);
- úplná, jestliže \(\forall A \forall r \in [0, 1] : \mathcal{T} \vdash A \rightarrow r\) nebo \(\mathcal{T} \vdash r \rightarrow A\).

Lemma: Teorie \(\mathcal{T}\) je inkonzistentní, právě když \(\forall A : \mathcal{T} \vdash A\).

Lemma: Jestliže \(\mathcal{T} \not\vdash r \rightarrow A\), pak \(\mathcal{T} \cup \{A \rightarrow r\}\) je konzistentní.

Lemma: Nechť teorie \(\mathcal{T}\) je konzistentní a úplná. Pak
\[\forall A : |A|_\tau = \sup \{ r \in [0,1] : T \vdash r \to A \} = \inf \{ s \in [0,1] : T \vdash A \to s \}; \]
\[|\cdot| \] komutuje s logickými spojkami, tj. \[|A \to B|_\tau = |A|_\tau \to |B|_\tau \] (speciálně \[|\neg A|_\tau = 1 - |A|_\tau \]);
funckce \(e \) definovaná jako \(e(A) = |A|_\tau \) je ohodnocení.

KOMPAKTNOST LOGIK

Formulace:

Věta o kompaktnosti I: Teorie je splnitelná, právě když každá její konečná podmnožina je splnitelná.

Věta I platí v klasické logice, BL, Gödelově, Lukasiewiczově a součinové logice i v RPL. V klasické logice je ekvivalentní formulace:

Věta o kompaktnosti II: Formule je dokazatelná v teorii, právě když je dokazatelná v nějaké její konečné podteorii.

Věta II platí v klasické logice, BL, Gödelově, Lukasiewiczově a součinové logice, ale nikoli v RPL.

Příklad:
\[\forall n \in \mathbb{N} : r_n := 1 - \frac{1}{n}, A \text{ formule, která není dokazatelná (např. proměnná)} \]
\[T = \{ r_n \to A : n \in \mathbb{N} \}, \]
\[|A|_T \geq \sup \{ 1 - \frac{1}{n} : n \in \mathbb{N} \} = 1, \]
ale A nelze dokázat ze žádné konečné podteorie.

KLASICKÁ PREDIKÁTÓVÁ LOGIKA

Predikát přiřazuje objektům pravdivostní hodnoty
\[\forall x P(x) \text{ lze chápat jako konjunkci} \]
\[P(x_1) \land P(x_2) \land \ldots \]
\[\exists x P(x) \text{ lze chápat jako disjunkci} \]
\[P(x_1) \lor P(x_2) \lor \ldots \]

SYNTAXE Logické symboly:
\[A = \{ x, y, \ldots \} \text{ ... spočetná množina proměnných} \]
\[L = \{ \to, 0 \} \text{ ... množina logických spojek} \]
\[\forall, \exists \ldots \text{ kvantifikátory} \]

Speciální symboly:
\[\mathcal{P} \ldots \text{ neprázdná množina predikátů (s přiřazenými aritami)} \]
popř. funkční symboly (zde neuvažujeme)
popř. objektové konstanty (zde neuvažujeme; lze je nahradit nulárními predikáty)

Formule
\[P(x_1, \ldots, x_n), \text{kde } P \text{ je predikát arity } n \text{ a } x_1, \ldots, x_n \text{ jsou proměnné} \]
\[0 \]
\[A \to B, \text{kde } A, B \text{ jsou formule} \]
\[\forall x A, \text{kde } A \text{ je formule} \]
\[\exists x A, \text{kde } A \text{ je formule} \]
Výskyt proměnné:
\[\text{vázaný} \]
\[\text{volný} \]

Příklad:
\[\forall x Q(x, y) \text{ ... } x \text{ vázaná, } y \text{ volná} \]
\[x \land \forall x P(x) \text{ ... první výskyt } x \text{ volný, ostatní vázané} \]

Formule
\[\text{uzavřená (=} \text{sentence): bez volných proměnných} \]
\[\text{otevřená: bez vázaných proměnných} \]
Ztotožňujeme formule, které se liší pouze značením vázaných proměnných.

SÉMANTIKA Interpretace \(M \):
\[\mathcal{D}_M \ldots \text{ neprázdná množina (universum; mohla by být různá pro různé proměnné)} \]
\[\text{interpretace predikátu arity } n \ldots n-ární relace } \mathcal{D}_M^n \to \{0,1\} \]
Ohodnocení (v interpretaci M): $e_M : A \rightarrow D_M$
se rozšiřuje jednoznačně na všechny formule.
Nová pravidla:

\[(e_M(\forall x A) = 1) \iff e_M'(A) = 1 \quad \text{pro všechna} \quad \text{ohodnocení} \quad e_M' : A \rightarrow D_M, \quad \text{která se liší od} \quad e_M \quad \text{pouze v} \quad x\]

ekvivalentně: $e_M(\forall x A) = \inf\{e_M'(A) : A \rightarrow D_M \quad \text{je ohodnocení, které se liší od} \quad e_M \quad \text{pouze v} \quad x\}$
\[(e_M(\exists x A) = 1) \iff e_M'(A) = 1 \quad \text{pro aspoň jedno} \quad \text{ohodnocení} \quad e_M' : A \rightarrow D_M, \quad \text{které se liší od} \quad e_M \quad \text{pouze v} \quad x\]

ekvivalentně: $e_M(\exists x A) = \sup\{e_M'(A) : A \rightarrow D_M \quad \text{je ohodnocení, které se liší od} \quad e_M \quad \text{pouze v} \quad x\}$

Poznámka:
Sémantický důsledek: $T \models A \quad \text{(bez indexu)}$
pouze pro uzavřené formule

Věta o dedukci v klasické preddikátové logice

\[(T \cup \{A\}) \vdash B \iff (T \vdash A \rightarrow B)\]

Důsledek

\[(A \vdash B) \iff (\models A \leftrightarrow B)\]

Věta

\[\vdash (\neg \forall x A) \leftrightarrow (\exists x \neg A)\]
\[\vdash (\exists x A) \leftrightarrow (\forall x \neg A)\]
\[\vdash (\exists x A) \leftrightarrow (\neg (\exists x \neg A))\]

Úplnost

\[(T \models A) \iff (T \vdash A)\]

ZÁKLADNÍ (FUZZY) PREDIKÁTOVÁ LOGIKA,
BASIC (FUZZY) PREDICATE LOGIC, BL?

Odvozena z BL, stejně jako klasická preddikátová logika z klasické výrokové logiky

Rozdíly:

SÉMANTIKA

Interpretace preddikátu arity $n \ldots n$-ární fuzzy relace $D^n_M \rightarrow [0,1]$\n
Ohodnocení kvantifikátorů v interpretaci M:

\[e_M(\forall x A) = \inf\{e_M'(A) : A \rightarrow D_M \quad \text{je ohodnocení, které se liší od} \quad e_M \quad \text{pouze v} \quad x\}\]
\[e_M(\exists x A) = \sup\{e_M'(A) : A \rightarrow D_M \quad \text{je ohodnocení, které se liší od} \quad e_M \quad \text{pouze v} \quad x\}\]

Poznámka: Pro ohodnocení s hodnotami v obecnějších množinách pravdivostních hodnot než $[0,1]$ (BL-algebřách) je nutno předpokládat existenci použitých inf, sup.

Pravdivostní hodnota formule A v interpretaci M: $||A||_M = \inf\{e_M(A) : e_M \quad \text{je ohodnocení v} \quad M\}$

SYNTAXE

Axiomy:

1. $(A1)–(A7)$
2. pro všechny formule $P(t)$, vzniklé substitucí t za x ve formuli $P(x)$:

\[(\forall 1) \quad (\forall x \ P(x)) \rightarrow P(t)\]
\[(\exists 1) \quad P(t) \rightarrow (\exists x \ P(x))\]

3. pro všechny formule B neobsahující x (jako volnou proměnnou):

\[(\forall 2) \quad (\forall x \ (B \rightarrow A)) \rightarrow (B \rightarrow \forall x \ A)\]
$$(\exists x \ (A \rightarrow B)) \rightarrow ((\exists x \ A) \rightarrow B)$$

$$(\forall x \ (B \lor A)) \rightarrow ((\forall x \ A) \lor B)$$

Dedukční pravidla:

Modus ponens:

$$\begin{array}{c}
A, \ A \rightarrow B \\
\hline
B
\end{array}$$

Generalizace:

$$\forall x \ A$$

Věta o dedukci v základní predikátové logice (pro uzavřené formule)

$$(T \cup \{A\} \vdash B) \iff (\exists n \in N : (T \vdash A^n \rightarrow B))$$

Theorem

$$\vdash (\exists x \ A) \rightarrow \neg(\forall x \neg A)$$

$$\vdash (\neg \exists x \ A) \leftrightarrow (\forall x \neg A)$$

$\models_M A \ldots A je pravdivá pro všechna ohodnocení v interpretaci M$

\models A \ldots A je pravdivá pro všechna ohodnocení a všechny interpretace (tautologie)

Theorem

$$e_M(A) \land e_M(A \rightarrow B) \leq e_M(B)$$

speciálně:

$$(e_M(A) = 1) \land (e_M(A \rightarrow B) = 1) \Rightarrow (e_M(B) = 1)$$

Důsledek

$$\|A\|_M \land \|A \rightarrow B\|_M \leq \|B\|_M$$

speciálně:

$$(\|A\|_M = 1) \land (\|A \rightarrow B\|_M = 1) \Rightarrow (\|B\|_M = 1)$$

$$\|A\|_M = \|\forall x \ A\|_M$$

$$\models_M A \Rightarrow (\models_M \forall x \ A)$$

Interpretace je **modelem** teorie T, jestliže

$$\|A\|_M = 1 \text{ pro všechna } A \in T$$

Korektnost a úplnost

$$(T \vdash A) \iff (\|A\|_M = 1 \text{ pro každý model } M T)$$

(Správně bychom měli uvažovat všechna ohodnocení ve všech úplně usporádaných BL-algebrách.)

RACIONÁLNÍ PAVELKOVA PREDIKÁTOVÁ LOGIKA RPL

Odvozena z RPL, stejně jako základní predikátová logika ze základní výrokové logiky

Rozdíly:

Axiomy:

• (L1)–(L4)

• (RPL) (bookkeeping axioms, násobilka)

• (\forall1), (\forall2)

To stačí, protože

(i v Lukasiewiczově predikátové logice)

$$\vdash (\exists x \ A) \leftrightarrow (\forall x \neg A)$$

a (\forall3) je dokazatelná.

Korektnost a úplnost

Jestliže T je teorie (tvořená uzavřenými formulemi), pak

$$|A|_T = |A||_T, \text{ kde}$$

$$|A||_T$$ je infimum přes všechna ohodnocení a všechny modely T,

$|A|_T$ je supremum všech stupněj dokazatelnosti za předpokladů T.

13