Center for Machine Perception presents

Center for Machine Perception presents

Mirko Navara (Praha)

Center for Machine Perception presents

Mirko Navara (Praha)
Semantical testing of tautologies in many-valued logics

Center for Machine Perception presents

Mirko Navara (Praha)
Semantical testing of tautologies in many-valued logics
What can computers do for us?

Center for Machine Perception presents

Semantical testing of tautologies in many-valued logics
What can computers do for us?
(And what they cannot do.)

Semantical testing of tautologies

In Boolean algebra:
only a "small" finite number of cases, 2^{n}, where n is the number of different variables

Semantical testing of tautologies

In Boolean algebra:
only a "small" finite number of cases, 2^{n}, where n is the number of different variables In many-valued logics:

Semantical testing of tautologies

In Boolean algebra:

only a "small" finite number of cases, 2^{n}, where n is the number of different variables In many-valued logics:

Depends on the choice of many-valued logic; the most interesting progress has been made in the Łukasiewicz logic, i.e., in MV-algebras

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra [0, 1] [Chang 58]

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra [0, 1] [Chang 58]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \in \mathbb{N}$ [Chang 58]

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra [0, 1] [Chang 58]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \in \mathbb{N}$ [Chang 58] (better, but still infinite)

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra [0, 1] [Chang 58]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \in \mathbb{N}$ [Chang 58]
(better, but still infinite)
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \leq b_{0}(M)$, where $b_{0}(M)=2^{(2 M)^{2}}, M$ is the number of variables [Mundici 87] developed for another reason

1st bound

M... the number of all occurrences of variables in the formula $n \ldots$ the number of different variables in the formula

1st bound

M... the number of all occurrences of variables in the formula $n \ldots$ the number of different variables in the formula
[Mundici 87]: $m \leq b_{0}(M)=2^{(2 M)^{2}}=2^{4 M^{2}}$

1st bound

M... the number of all occurrences of variables in the formula $n \ldots$ the number of different variables in the formula
[Mundici 87]: $m \leq b_{0}(M)=2^{(2 M)^{2}}=2^{4 M^{2}}$

M	number of truth values-1
1	16
2	65536
3	68719476736
4	18446744073709551616
5	1267650600228229401496703205376

1st bound

M... the number of all occurrences of variables in the formula $n \ldots$ the number of different variables in the formula
[Mundici 87]: $m \leq b_{0}(M)=2^{(2 M)^{2}}=2^{4 M^{2}}$

M	number of truth values-1
1	16
2	65536
3	68719476736
4	18446744073709551616
5	1267650600228229401496703205376

Complexity $\sum_{m=1}^{b_{0}(M)}(m+1)^{n}$

1st bound

M... the number of all occurrences of variables in the formula $n \ldots$ the number of different variables in the formula
[Mundici 87]: $m \leq b_{0}(M)=2^{(2 M)^{2}}=2^{4 M^{2}}$

M	number of truth values-1
1	16
2	65536
3	68719476736
4	18446744073709551616
5	1267650600228229401496703205376

Complexity $\sum_{m=1}^{b_{0}(M)}(m+1)^{n}$

$M \backslash n$	1	2	3
1	152		
2	2147581952	93831434829824	
3	$2.361 \cdot 10^{21}$	$1.081 \cdot 10^{32}$	$5.575 \cdot 10^{42}$

2nd bound

"The importance of being a good teacher."

2nd bound

"The importance of being a good teacher."
[Aguzzoli, Ciabattoni, B. Gerla]: $m=b_{1}(M)=2^{M-1}$

2nd bound

"The importance of being a good teacher."
[Aguzzoli, Ciabattoni, B. Gerla]: $m=b_{1}(M)=2^{M-1}$

M	number of truth values -1
1	1
2	2
3	4
4	8
5	16
6	32
7	64

2nd bound

"The importance of being a good teacher."
[Aguzzoli, Ciabattoni, B. Gerla]: $m=b_{1}(M)=2^{M-1}$

M	number of truth values-1
1	1
2	2
3	4
4	8
5	16
6	32
7	64

Complexity: $\left(b_{1}(M)+1\right)^{n}$

$M \backslash n$	1	2	3	4	5
1	2				
2	3	9			
3	5	25	125		
4	9	81	729	6561	
5	17	289	4913	83521	1419857
6	33	1089	35937	1185921	39135393
7	65	4225	274625	17850625	1160290625

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra [0, 1] [Chang 58]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \in \mathbb{N}$ [Chang 58] (better, but still infinite)
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \leq b_{0}(M)$, where $b_{0}(M)=2^{(2 M)^{2}}, M$ is the number of variables [Mundici 87]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=b_{1}(M)=2^{M-1}$ [Aguzzoli, Ciabattoni, B. Gerla]

3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n)=\left\lfloor\left(\frac{M}{n}\right)^{n}\right\rfloor$

3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n)=\left\lfloor\left(\frac{M}{n}\right)^{n}\right\rfloor$

$M \backslash n$	1	2	3	4	5
1	1				
2	2	1			
3	3	2	1		
4	4	4	2	1	
5	5	6	4	2	1
6	6	9	8	5	2
7	7	12	12	9	5

3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n)=\left\lfloor\left(\frac{M}{n}\right)^{n}\right\rfloor$

$M \backslash n$	1	2	3	4	5
1	1				
2	2	1			
3	3	2	1		
4	4	4	2	1	
5	5	6	4	2	1
6	6	9	8	5	2
7	7	12	12	9	5

Complexity $\sum_{m=1}^{b(M, n)}(m+1)^{n}$

3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: $m \leq b(M, n)=\left\lfloor\left(\frac{M}{n}\right)^{n}\right\rfloor$

$M \backslash n$	1	2	3	4	5
1	1				
2	2	1			
3	3	2	1		
4	4	4	2	1	
5	5	6	4	2	1
6	6	9	8	5	2
7	7	12	12	9	5

Complexity $\sum_{m=1}^{b(M, n)}(m+1)^{n}$

$M \backslash n$	1	2	3	4	5
1	2				
2	5	4			
3	9	13	8		
4	14	54	35	16	
5	20	139	224	97	32
6	27	384	2024	2274	275
7	35	818	8280	25332	12200

3rd bound

This approach is preferable. As a by-product, we find the minimal denominator for which the formula is not a tautology.

3rd bound

This approach is preferable. As a by-product, we find the minimal denominator for which the formula is not a tautology.

Implemented by [Brůžková 05].

Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra [0, 1] [Chang 58]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \in \mathbb{N}$ [Chang 58] (better, but still infinite)
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \leq b_{0}(M)$, where $b_{0}(M)=2^{(2 M)^{2}}, M$ is the number of variables [Mundici 87]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=b_{1}(M)=2^{M-1}$ [Aguzzoli, Ciabattoni, B. Gerla]
- $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m \leq b(M, n)$, where $b(M, n)=\left(\frac{M}{n}\right)^{n}$ [Aguzzoli, Ciabattoni, B. Gerla]

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):
\wedge increments M by 1

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):
\wedge increments M by 1
\rightarrow increments M by 1

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):
\wedge increments M by 1
\rightarrow increments M by 1
\neg has no influence

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):
\wedge increments M by 1
\rightarrow increments M by 1
\neg has no influence
$\hat{\mathrm{s}}^{\mathrm{s}}$ increments M by 2 because $x \wedge_{\mathrm{s}} y=x \wedge(x \rightarrow y)$

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):
\wedge increments M by 1
\rightarrow increments M by 1
\neg has no influence
$\widehat{\mathrm{s}}$ increments M by 2 because $x \widehat{\mathrm{~s}} y=x \wedge(x \rightarrow y)$
$\stackrel{\mathrm{S}}{\vee}$ increments M by 2 because $x \stackrel{\mathrm{~S}}{\vee} y=(x \rightarrow y) \rightarrow y=\neg(\neg x \wedge \neg y)$

Semantical testing in many-valued logics 2

Related questions:

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic?

Still a problem.

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic?

Still a problem.

- Testing of tautologies in Gödel logic

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in Gödel logic

It is enough to consider evaluations in $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=n+1$ [Baaz]

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in Gödel logic

It is enough to consider evaluations in $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=n+1$ [Baaz]

- Testing of satisfiability in Gödel logic

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in Gödel logic

It is enough to consider evaluations in $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=n+1$ [Baaz]

- Testing of satisfiability in Gödel logic

Reduces to classical logic [Hájek 98].

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in Gödel logic

It is enough to consider evaluations in $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=n+1$ [Baaz]

- Testing of satisfiability in Gödel logic

Reduces to classical logic [Hájek 98].

- Testing of satisfiability in product logic

Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? Still a problem.
- Testing of tautologies in Gödel logic

It is enough to consider evaluations in $\left\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\right\}, m=n+1$ [Baaz]

- Testing of satisfiability in Gödel logic

Reduces to classical logic [Hájek 98].

- Testing of satisfiability in product logic

Reduces to classical logic [Hájek 98].

- Testing of tautologies in product logic?

Testing of tautologies in product logic?
Zeros in evaluations have to be handled separately (easy task).
The evaluation on the rest can be transformed to an evaluation in Łukasiewicz logic.

- Testing of tautologies in product logic?

Zeros in evaluations have to be handled separately (easy task).
The evaluation on the rest can be transformed to an evaluation in Łukasiewicz logic.
This transforms the task to that previously solved, only the bound of the number of values has to be modified.

This bound is still an open question.

- Testing of tautologies in product logic?

Zeros in evaluations have to be handled separately (easy task).
The evaluation on the rest can be transformed to an evaluation in Łukasiewicz logic.
This transforms the task to that previously solved, only the bound of the number of values has to be modified.

This bound is still an open question.

- Testing of tautologies in basic logic?
[Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]; so far no implementation.

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

The task can be directly translated to a system of linear equalities and inequalities.

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

The task can be directly translated to a system of linear equalities and inequalities.
In the simpler cases, it can be solved by standard CAS's [Fermüller].

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

The task can be directly translated to a system of linear equalities and inequalities.
In the simpler cases, it can be solved by standard CAS's [Fermüller].
Moreover, the hypersequent calculus by [Ciabattoni, Fermüller, and Metcalfe 05] allows to test tautologies in Gödel and product logics as well.

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

The task can be directly translated to a system of linear equalities and inequalities.
In the simpler cases, it can be solved by standard CAS's [Fermüller].
Moreover, the hypersequent calculus by [Ciabattoni, Fermüller, and Metcalfe 05] allows to test tautologies in Gödel and product logics as well.

Programmed by [Hähnle et al. ~95].

Semantical testing in many-valued logics 4

- Search for counterexamples

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

May give only a negative answer.

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

May give only a negative answer.

- Syntactical prover [Lehmke 05] http://Is1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

May give only a negative answer.

- Syntactical prover [Lehmke 05] http://Is1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

May give only a negative answer.

- Syntactical prover [Lehmke 05] http://Is1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

It proved the dependence of the axioms A2 and A3 of the Hájek's basic logic.

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

May give only a negative answer.

- Syntactical prover [Lehmke 05] http://Is1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

It proved the dependence of the axioms A2 and A3 of the Hájek's basic logic.
A chance to obtain a positive answer.

Semantical testing in many-valued logics 4

- Search for counterexamples
- random [Brůžková 05]
- iterative [Panti]

May give only a negative answer.

- Syntactical prover [Lehmke 05] http://Is1-www.cs.uni-dortmund.de/~lehmke/SimpleProver

Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

It proved the dependence of the axioms A2 and A3 of the Hájek's basic logic.
A chance to obtain a positive answer.
The latter two methods do not guarantee an ultimate answer, but they give a reasonable chance to obtain it.

