Three-dimensional distributions on Quantum logics and MV algebras

Martin Kalina, Ol'ga Nánásiová
Dept. of Mathematics, Slovak Univ. of Technology, Radlinského 11
813 68 Bratislava, Slovakia
kalina@math.sk, olga@math.sk

It is well known that in the Kolmogorovian probability space

\[P(A|B, C) = P(A|C, B) = P(A|B \cap C). \]

It means that if we put two conditions on the event \(A \), the resulting conditional probability is independent of the order of conditions. We show that this is not true in quantum logics (OML) and in MV-algebras. The conditional measure (probability) in OML can be defined by using the so-called \(s \)-map. Let \(L \) be an OML. The map \(p_n : L^n \to [0, 1] \) will be called an \(s_n \)-map if the following conditions hold:

(s1) \(p_n(1, ..., 1) = 1; \)
(s2) if there exist \(i, j \), such that \(a_i \perp a_j \), then \(p_n(a_1, ..., a_n) = 0; \)
(s3) if \(a_i \perp b_i \) for some \(i = 1, ..., n \), then

\[p_n(a_1, ..., a_i \lor b_i, ..., a_n) = p_n(a_1, ..., a_i, ..., a_n) + p_n(a_1, ..., b_i, ..., a_n). \]

We will discuss the properties of the \(s \)-map and of the corresponding conditional distributions. A different situation is in an MV-algebra \(\mathcal{M} \). First we define the three-dimensional conditional distribution \(\gamma(\cdot|\cdot, \cdot) : \mathcal{M}^3 \to [0, 1] \) via the full probability theorem and then we define the joint distribution \(p \) by

\[p(f, g, h) = \gamma(f|g, h) \cdot \gamma(1, g|h) \cdot \gamma(h|1, 1). \]

The joint probability distribution is additive just in the first variable. We will show that the conditional distribution depends on the order of conditions.

References

Acknowledgement. This work was supported by the Science and Technology Assistance Agency under the contract No. APVT-20-023402 and by VEGA grant agency, grant numbers 1/0085/03 and 1/0273/03.