Markovovy řetězce

Mirko Navara
Centrum strojového vnímání
katedra kybernetiky FEL ČVUT
Karlovo náměstí, budova G, místnost 104a
http://cmp.felk.cvut.cz/~navara/stat
19. prosince 2020

Obsah

1 O čem to může být? .. 1

2 Matematický model: (homogenní) Markovovy řetězce (Markov chains) 3

3 Pravděpodobnosti stavů .. 4
 3.1 Příklady na pravděpodobnosti stavů .. 4
 3.2 Permutace stavů .. 8

4 Klasifikace stavů Markovových řetězců s konečné mnoha stavy 8

5 Asymptotické chování Markovových řetězců s konečné mnoha stavy 12
 5.1 Prechodní stav .. 12
 5.2 Nerozložitelné Markovovy řetězce ... 14
 5.3 Rozložitelné Markovovy řetězce ... 16
 5.4 Příklady ... 16

6 Reverzibilita .. 17
 6.1 Odhady parametrů Markovových řetězců 17
 6.2 Obrácení časové osy (zpětný chod) .. 18
 6.3 Jak lze lustit šifry 1: model .. 20
 6.4 Jak lze lustit šifry 2: rozluštění ... 21
 6.5 Metropolisův algoritmus ... 21

7 Markovovy řetězce s nekonečné mnoha stavy ... 23

8 Příklady aplikací ... 24

9 Co zde nebylo ... 24
 9.1 Kdy se vrátime do stejného stavu? ... 24
 9.2 Nehomogenní Markovovy řetězce .. 24
 9.3 Markovovy procesy ... 24

10 Dodatek: Mocniny stochastických matic řádu 2 .. 24

1 O čem to může být?

Příklad (basketbal). MN: PMS Alice a Bob se střídavě střeřají míčem do koše, začíná Alice. Kdo se první střeť, vyhrává. Alice se střeť s pravděpodobností a, Bob s pravděpodobností b. Jaká je pravděpodobnost výsledku hry?
Řešení. Po prvním hodu s pravděpodobností a Alice vyhrává, s pravděpodobností \(1 - a\) se pokračuje. Po 2. hodu hra skončí výhrou Boba s pravděpodobností \((1 - a)b\), nebo je situace stejná jako na začátku a šance se dělí ve stejném poměru, tj. \(a : (1 - a)b\). Alice vyhráva s pravděpodobností

\[
\frac{a}{a + (1 - a)b} = \frac{a}{a + b - ab'},
\]

Bob s pravděpodobností

\[
\frac{(1 - a)b}{a + (1 - a)b} = \frac{(1 - a)b}{a + b - ab'}.
\]

(Předpokládáme, že aspoň jedna z pravděpodobností \(a, b\) je nenulová. Více viz [MN: PMS].)

Můžeme sdružit 2 kroky do jednoho.

\[
\begin{array}{c}
\text{1} \\
\text{1} \\
\text{2} \\
\text{3} \\
\text{4} \\
\text{1}
\end{array}
\]

Řešení. Jde o příklad "basketbal" v jiné interpretaci. Obdobná úloha se řeší při programování barevných tiskáren.

Příklad (shoda v tenisu). Alice s Bobem hrají tenis, došlo ke shodě, takže hru vyhrají hráč, který jako první vyhrává o 2 míčů více než soupeř. Alice vyhraje míč s pravděpodobností \(c\). Jaké jsou pravděpodobnosti výsledků hry? Jaké rozdělení a střední hodnotu má počet míčů hry?

\[
\begin{array}{c}
\text{1} \\
\text{1} \\
\text{2} \\
\text{3} \\
\text{4} \\
\text{5} \\
\text{1}
\end{array}
\]

Řešení. Sdružíme 2 kroky do jednoho: Po 2 míčích bude vyhrazuje Alice (s pravděpodobností \(a = c^2\)), nebo Bob (s pravděpodobností \((1 - c)^2\)), nebo bude opět shoda. Jde o příklad "basketbal", kde

\[
a = c^2, \quad (1 - a)b = (1 - c)^2.
\]

\[
\begin{array}{c}
\text{1} \\
\text{1} \\
\text{3} \\
\text{5} \\
\text{1}
\end{array}
\]

Alice vyhrazuje s pravděpodobností \(\frac{c^2}{c^2 + (1 - c)^2}\), např. pro \(c = 2/3\) s pravděpodobností 4/5. Takto bychom však nevyrážili výsledek hry od jejího počátku (místo od shody), setu, zápasu, turnaje... [Papoulis, Pillai 2002]

Příklad (informační kanál se zpětnou vazbou). Odesílatel pošle zprávu v kódu, dovolujícím odhalit chyby v přenosu. (Pro jednoduchost zanedbáváme riziko nerozpoznání chyb.) Zpráva je doručena správně s pravděpodobností \(c\). Přijímce za stejných podmínek pošle zpět (jednobitovou) zprávu o úspěšnosti přijetí. Chybná zpráva
o správném přenosu vypadá stejně jako správná zpráva o chybém přenosu. V těchto případech se přenos opakuje za stejných podmínek. Chybná zpráva o chybém přenosu vypadá stejně jako správná zpráva o správném přenosu. V těchto případech přenos končí; přijatá zpráva může být správná nebo chybná. Jaké jsou pravděpodobnosti ukončení správným/chybným přijetím zprávy?

Řešení. Jde opět o příklad „shoda v tenisu“, resp. „basketbal“.

Další otázky: Jaké je rozdělení délky komunikace; její střední hodnota a důležité kvantily?

Otázky: Jaké je asymptotické chování systému? Jak závisí na počátečním stavu?

2 Matematický model: (homogenní) Markovovy řetězce (Markov chains)

Doporučená literatura: [Hsu 1996, Papoulis, Pillai 2002, Wasserman 2004]. Posloupnost diskrétních náhodných veličin X_0, X_1, X_2, \ldots s hodnotami ze spočetné množiny stavů, obvykle \{1,2,\ldots\}. Indexována je diskrétním časem $N_0 = \{0,1,2,\ldots\}$.

Z hlediska okamžiku t rozlišujeme minulost ($< t$) a budoucnost ($> t$).

Dáno:
Pravděpodobnosti počátečních stavů (=rozdělení náhodné veličiny X_0),

$$p_i(0) = P(X_0 = i),$$

popř. daný počáteční stav k, tj.

$$p_i(0) = \delta_{ik} = \begin{cases} 1 & \text{pro } i = k, \\ 0 & \text{pro } i \neq k, \end{cases}$$

pravděpodobnosti přechodu ze stavu i do stavu j v jednom kroku,

$$p_{ij} = P(X_{t+1} = j \mid X_t = i),$$

(nezávislé na čase t); pro konečné mnoho stavů je lze popsat maticí přechodu

$$P = \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix},$$

která je stochastická (=má jednotkové řádkové součty),

$$\forall i = 1, \ldots, n : \sum_{j=1}^{n} p_{ij} = 1.$$

Homogenní: Matice přechodu nezávisí na čase.

Řetězce: S diskrétním časem a diskrétními stavy; pro spojitý čas dostáváme Markovův proces (Markov process).

Markovovy: Pravděpodobnost budoucích stavů je plně určena současným stavem, bez ohledu na minulé stav.

$$P(X_{t+1} = j \mid X_t = i, X_{t-1} = i_{t-1}, \ldots, X_0 = i_0) = P(X_{t+1} = j \mid X_t = i_t = i) = p_{i,j}.\,$$

(Stav nese „dostatečnou informaci“ o předchozím průběhu.)

To je podmíněná nezávislost budoucího a minulého stavu při daném současném stavu: pro $u < t < v$ a libovolné stavy i, j, k

$$P(X_u = i, X_v = k \mid X_t = j) = P(X_u = i \mid X_t = j) \cdot P(X_v = k \mid X_t = j).$$
3 Pravděpodobnosti stavů

Pravděpodobnosti stavů vyjadřuje na počátku řádkový vektor

\[p(0) = (p_1(0), \ldots, p_n(0)) = (p_{X_0}(1), \ldots, p_{X_0}(n)) \]

dále se vyvíjí podle rekurentního vzorce

\[
\begin{align*}
p(t+1) &= p(t) P, & p_j(t+1) &= \sum_i p_i(t) p_{ij}, \\
p(t+u) &= p(t) P^u, & p_j(t+u) &= \sum_i p_i(t) p_{ij}(u), \\
p(u) &= p(0) P^u, & p_j(u) &= \sum_i p_i(0) p_{ij}(u),
\end{align*}
\]

kde prvky matice \(P^t \) značíme \(p_{ij}(t) (\neq p_{ij}^t) \), což je pravděpodobnost přechodu ze stavu \(i \) do stavu \(j \) v \(t \) krocích. Chapmanova-Kolmogorovova rovnice:

\[
P^{t+u} = P^t P^u, \quad p_{kj}(t+u) = \sum_i p_{ki}(t) p_{ij}(u),
\]

dále se vyvíjí podle rekurentního vzorce

\[
\begin{align*}
p(t+1) &= p(t) P, & p_j(t+1) &= \sum_i p_i(t) p_{ij}, \\
p(t+u) &= p(t) P^u, & p_j(t+u) &= \sum_i p_i(t) p_{ij}(u), \\
p(u) &= p(0) P^u, & p_j(u) &= \sum_i p_i(0) p_{ij}(u),
\end{align*}
\]

kde čítáme přes všechny možné stavy \(i \) v čase \(t \).

Princip superpozice (=linearita): Pokud jsou počáteční pravděpodobnosti \(p(0) \) konvexní kombinací (=směsí) rozdělení,

\[
p(0) = c q(0) + (1-c) r(0), \quad c \in (0,1),
\]

jsou pozdější pravděpodobnosti daný stejnou konvexní kombinací pravděpodobností jednotlivých složek,

\[
p(u) = p(0) P^u = c q(0) P^u + (1-c) r(0) P^u = c q(u) + (1-c) r(u).
\]

Důsledek. Stačí nám vyšetřit případy, kdy počáteční stav je daný (=Diracovo rozdělení).

3.1 Příklady na pravděpodobnosti stavů

Příklad (otevřená restaurace). Piják se pohybuje Skloněnou ulicí mezi dvěma restauracemi. Před každými dveřmi, které nevedou do restaurace, se rozhodne, kterým směrem se vydá; s pravděpodobností \(c \) půjde z kopce, \(1-c \) do kopce. Až najde restauraci, zůstane v ní. Jaké jsou pravděpodobnosti dosažení obou restaurací (Jednodimenzionální náhodná procházka s absorpčními bariérami.) Řešte speciálně pro restaurace ve vzdálenosti 2 od východzi polohy.

Řešení. Jde opět o příklad „shoda v tenisu“, resp. „basketbal“.

\[
P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & c & 0 & 0 \\ 0 & 0 & 1 & c & 0 \\ 0 & 0 & c & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad P^2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & c & (1-c) & 0 & (1-c)^2 \\ 0 & (1-c) & 0 & 2c (1-c) & 0 \\ 0 & 0 & 2c (1-c) & 0 & (1-c)^2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.
\]
Např. pro $c = 0.7$ dostáváme

$$P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0.7 & 0.3 & 0 & 0 \\
0 & 0.7 & 0.3 & 0 \\
0 & 0 & 0 & 0.1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix},$$

$$P^2 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0.7 & 0.21 & 0 & 0.09 & 0 \\
0 & 0.49 & 0.21 & 0.3 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix},$$

$$P^{10} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0.94556 & 6.5346 \cdot 10^{-3} & 0 & 2.8005 \cdot 10^{-2} & 4.5103 \cdot 10^{-2} \\
0.83379 & 0 & 1.3069 \cdot 10^{-2} & 0 & 0.15314 \\
0.57298 & 1.5247 \cdot 10^{-2} & 0 & 6.5346 \cdot 10^{-3} & 0.40524 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix},$$

$$P_{10} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0.94556 & 6.5346 \cdot 10^{-3} & 0 & 2.8005 \cdot 10^{-2} & 4.5103 \cdot 10^{-2} \\
0.83379 & 0 & 1.3069 \cdot 10^{-2} & 0 & 0.15314 \\
0.57298 & 1.5247 \cdot 10^{-2} & 0 & 6.5346 \cdot 10^{-3} & 0.40524 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.$$
\[
P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ c & 0 & 1 - c & 0 & 0 \\ 0 & c & 0 & 1 - c & 0 \\ 0 & 0 & c & 0 & 1 - c \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad P^2 = \begin{pmatrix} c & 0 & 1 - c & 0 & 0 \\ 0 & 2c - c^2 & 0 & (1 - c)^2 & 0 \\ c^2 & 0 & 2c(1 - c) & 0 & (1 - c)^2 \\ 0 & c^2 & 0 & 1 - c^2 & 0 \\ 0 & 0 & c & 0 & 1 - c \end{pmatrix}.
\]

Např. pro \(c = 0.7 \) dostáváme
\[
P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0.7 & 0 & 0.3 & 0 & 0 \\ 0 & 0.7 & 0 & 0.3 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix},
\]
\[
P^2 = \begin{pmatrix} 0.7 & 0 & 0.3 & 0 & 0 \\ 0 & 0.91 & 0 & 0.09 & 0 \\ 0.49 & 0 & 0.42 & 0 & 0.09 \\ 0 & 0.49 & 0 & 0.51 & 0 \\ 0 & 0 & 0.7 & 0 & 0.3 \end{pmatrix},
\]
\[
P^{10} = \begin{pmatrix} 0.59476 & 0 & 0.36014 & 0 & 4.5103 \cdot 10^{-2} \\ 0 & 0.84686 & 0 & 0.15314 & 0 \\ 0.58822 & 0 & 0.36387 & 0 & 4.7904 \cdot 10^{-2} \\ 0 & 0.83379 & 0 & 0.16621 & 0 \\ 0.57298 & 0 & 0.37258 & 0 & 5.4438 \cdot 10^{-2} \end{pmatrix},
\]

\[
(0 & 0 & 1 & 0 & 0) \quad P = (0 & 0.7 & 0 & 0.3 & 0),
\]
\[
(0 & 0 & 1 & 0 & 0) \quad P^2 = (0.49 & 0 & 0.42 & 0 & 0.09),
\]
\[
(0 & 0 & 1 & 0 & 0) \quad P^{10} = (0.58822 & 0 & 0.36387 & 0 & 4.7904 \cdot 10^{-2}),
\]
\[
(0 & 0 & 1 & 0 & 0) \quad P^{30} = (0.59138 & 0 & 0.36207 & 0 & 4.6552 \cdot 10^{-2}),
\]
\[
(0 & 0 & 0 & 1) \quad P^{30} = (0.59138 & 0 & 0.36207 & 0 & 4.6553 \cdot 10^{-2}),
\]
\[
(0 & 0 & 1 & 0 & 0) \quad P^{31} = (0 & 0.84483 & 0 & 0.15517 & 0),
\]
\[
\lim_{t \to \infty} ((0 & 0 & 1 & 0 & 0) \quad P^t) \text{ neexistuje.}
\]

Bez 2. a 4. stavu dostaneme zjednodušený popis, v němž 2 kroky považujeme za 1:

\[
\begin{array}{c}
1 \\
1 - c \\
(1 - c)^2 \\
2c(1 - c) \\
1 - c
\end{array}
\]

\[
P = \begin{pmatrix} c & 0 & 1 - c & 0 & 0 \\ c^2 & 2c(1 - c) & 0 & (1 - c)^2 & 0 \\ 0 & c & 0 & 1 - c & 0 \end{pmatrix}.
\]

Např. pro \(c = 2/3 \) dostáváme
\[
P_Z = \begin{pmatrix} 0.53342 & 0.39995 & 6.6622 \cdot 10^{-2} \\ 0.53327 & 0.40003 & 6.6697 \cdot 10^{-2} \\ 0.53297 & 0.40018 & 6.6847 \cdot 10^{-2} \end{pmatrix},
\]
\[
P_Z^2 = \begin{pmatrix} 0.53342 & 0.39995 & 6.6622 \cdot 10^{-2} \\ 0.53327 & 0.40003 & 6.6697 \cdot 10^{-2} \\ 0.53297 & 0.40018 & 6.6847 \cdot 10^{-2} \end{pmatrix}.
\]
\[
\begin{pmatrix}
0.533 & 0.400 & 6.67 \cdot 10^{-2} \\
0.533 & 0.400 & 6.67 \cdot 10^{-2} \\
0.533 & 0.400 & 6.67 \cdot 10^{-2}
\end{pmatrix}
\]

Příklad (otevřená a zavřená restaurace ve vzdálenosti 2 – pokračování).

Řešení.

\[P_2 Z = \begin{pmatrix} 0.533 & 0.400 & 6.67 \cdot 10^{-2} \\ 0.533 & 0.400 & 6.67 \cdot 10^{-2} \\ 0.533 & 0.400 & 6.67 \cdot 10^{-2} \end{pmatrix} .\]

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1-c & 0 & 0 & 0 \\
0 & c & 0 & 1-c & 0 \\
0 & 0 & c & 0 & 1-c \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\quad P^2 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
c & c(1-c) & 0 & (1-c)^2 & 0 \\
0 & c^2 & 0 & 2c(1-c) & 0 \\
0 & 0 & c & 0 & 1-c \\
0 & 0 & 0 & 0 & 1-c
\end{pmatrix} .
\]

Bez 2. a 4. stavu dostaneme zjednodušený popis, v němž 2 kroky považujeme za jeden:

\[P_2 Z = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ c^2 & (1-c)^2 & 0 & 2c(1-c) & 0 \\ 2c(1-c) & 0 & c & 0 & 1-c \end{pmatrix} .
\]

Např. pro \(c = 2/3 \) dostáváme

\[P_2 Z = \begin{pmatrix} 1/3 & 4/9 & 1/3 \\ 3/9 & 1/3 & 5/9 \\ 0 & 2/3 & 1/3 \end{pmatrix} ,
\]

\[P_2 Z^2 = \begin{pmatrix} 1/6 & 2/9 & 1/6 \\ 7/18 & 0 & 5/18 \\ 5/27 & 14/27 & 8/27 \end{pmatrix} ,
\]

\[P_2 Z^{10} \approx \begin{pmatrix} 1 & 1.0405 \cdot 10^{-2} & 3.4683 \cdot 10^{-3} \\ 1.98613 & 0 & 3.61 \cdot 10^{-4} \\ 0.97225 & 2.0810 \cdot 10^{-2} & 6.9366 \cdot 10^{-3} \end{pmatrix} ,
\]

\[P_2 Z^{20} \approx \begin{pmatrix} 1 & 1.8 \cdot 10^{-4} & 6.01 \cdot 10^{-5} \\ 0.9998 & 3.61 \cdot 10^{-4} & 1.2 \cdot 10^{-4} \\ 0.9998 & 3.61 \cdot 10^{-4} \end{pmatrix} .
\]

Cvičení. Upravte předchozí úlohu na jednodimenzionální náhodné procházky tak, že se náhodně nevolí směr, ale změna směru.

(Návod: Potřebujeme zdvojit stavy, do nichž se lze dostat z obou stran, a tím přidat informaci o tom, z kterého směru jsme přišli. Tu je potřeba dodat i v popisu počátečního stavu.)

Cvičení. [Wasserman 2004] Markovův řetězec \(X_t, t \in \mathbb{N}, \) má matici přechodu

\[P = \begin{pmatrix} 0.1 & 0.2 & 0.7 \\ 0.9 & 0.1 & 0 \\ 0.1 & 0.8 & 0.1 \end{pmatrix} \]

a počáteční pravděpodobnosti (0.3, 0.4, 0.3). Najděte pravděpodobnosti

\[P(X_0 = 1, X_1 = 2, X_2 = 3) ,
\]

\[P(X_0 = 1, X_1 = 2, X_2 = 2) .\]

3.2 Permutace stavů

Pokud v popisu změníme pořadí stavů, změní se stejně pořadí složek vektorů i řádků a sloupců matice přechodu.

Příklad (basketbal – pokračování). Matici přechodu

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ a & 0 & 1 - a & 0 \\ 0 & 1 - b & 0 & b \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

se výměnou 2. a 4. stavu (=permutací stavů $(1, 4, 3, 2)$) změní na matici

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & b & 0 & 1 - b \\ a & 0 & 1 - a & 0 \end{pmatrix}.$$

Příklad (zavřené restaurace ve vzdálenosti 2 – pokračování).

Sloučením dvou kroků do jednoho jsme dospěli k matrici:

$$P^2 = \begin{pmatrix} c & 0 & 1 - c & 0 & 0 \\ 0 & 2c - c^2 & 0 & (1 - c)^2 & 0 \\ c^2 & 0 & 2c(1 - c) & 0 & (1 - c)^2 \\ 0 & c^2 & 0 & 1 - c^2 & 0 \\ 0 & 0 & c & 0 & 1 - c \end{pmatrix}.$$

Permutací stavů $(1, 3, 5, 2, 4)$ dostaneme blokově diagonální matici:

$$\begin{pmatrix} c & 1 - c & 0 & 0 & 0 \\ c^2 & 2c(1 - c) & (1 - c)^2 & 0 & 0 \\ 0 & c & 1 - c & 0 & 0 \\ 0 & 0 & 0 & 2c - c^2 & (1 - c)^2 \\ 0 & 0 & 0 & c^2 & 1 - c^2 \end{pmatrix}.$$

4 Klasifikace stavů Markovových řetězců s konečně mnoha stavy

Stav j je dosažitelný (angl. accessible) ze stavu i, jestliže se z i do j dá přejít s nemulovou pravděpodobností (pro nějaký počet kroků),

$$\exists t \geq 0 : p_{ij}(t) > 0.$$

Značení: $i \rightarrow j$. Negace: $i \not\rightarrow j$.

Stavy i, j komunikují (angl. communicate), jestliže $i \rightarrow j \land j \rightarrow i$. Značení: $i \leftrightarrow j$.

Relace \leftrightarrow je ekvivalence.

Stav je trvalý (angl. persistent, recurrent), jestliže (podmíněná) pravděpodobnost, že když z něj vyjdeme, někdy v budoucnu se do něj vrátíme, je 1.

Speciální případ trvalého stavu: Stav i je absorpční (angl. absorbing), jestliže jej nelze opustit.
Jak se pozná, že je absorpční stav?
\[p_{ii} = 1, \text{ tj. } p_{ij} = \delta_{ij} = \begin{cases} 1 & \text{pro } i = j, \\ 0 & \text{pro } i \neq j. \end{cases} \]

Stav je přechodný (angl. transient), jestliže není trvalý, tj. pravděpodobnost, že se do něj (někdy) vrátíme, je \(< 1\).

Jak se pozná, že je přechodný stav?
Lze se z něj dostat do stavu, z něhož se nelze dostat zpět, tj. existuje stav j takový, že \(i \to j \land j \not\to i \).

Jak se pozná, že je trvalý stav?
Není přechodný, neboli lze se z něj dostat jen do stavu, z nichž se lze dostat zpět, tj. \(i \to j \implies j \to i \).

Důsledek:
Když je přechodný, \(i \leftrightarrow j \), pak je trvalý.

Když je trvalý, \(i \leftrightarrow j \), pak je přechodný.

Důsledek: Když je přechodný, \(i \leftrightarrow j \), pak je trvalý.

Příklad (basketbal – pokračování). Matice přechodu je
\[P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1-a & 0 & 0 \\ 0 & 0 & 1-b & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

první a poslední stav je trvalý (dokonce absorpční), zbývající 2 přechodně, protože se z nich lze dostat do absorpčních (a zpět ne).

Věta. Stav je trvalý \iff \(\sum_{t=1}^{\infty} p_{ii}(t) = \infty \).
Stav je přechodný \iff \(\sum_{t=1}^{\infty} p_{ii}(t) < \infty \).

Důkaz. \(\implies \) "Číslo \(\sum_{t=1}^{\infty} p_{ii}(t) \) je střední hodnota počtu návratů. S pravděpodobností 0 se nevrátíme. S pravděpodobností 1 se aspoň jednou vrátíme. Pravděpodobnost, že \(i \), návrat bude i poslední, je 0. Pravděpodobnost, že \(n \)-tý návrat bude poslední, je 0 pro všechna \(n \in \mathbb{N} \). To je spočetné mnoho jevů, tedy pravděpodobnost, že počet návratů bude konečný, je 0. S pravděpodobností 1 se vrátíme nekonečněrát.

\(\impliedby \)" Předpokládejme, že stav \(i \) je přechodný. Označme \(q < 1 \) pravděpodobnost, že se někdy vrátíme. Po prvním návratu následuje druhý s podmíněnou pravděpodobností \(q \), celkově s pravděpodobností \(q^2 \), \(n \)-tý s pravděpodobností \(q^n \). Celkový součet pravděpodobností návratů \(\sum_{t=1}^{\infty} p_{ii}(t) \) je roven součtu pravděpodobností \(n \)-čeho návratu přes všechna \(n \),
\[\sum_{t=1}^{\infty} p_{ii}(t) = \sum_{n=1}^{\infty} q^n = \frac{q}{1-q} < \infty. \]

\[\square \]

Perioda stavu \(i \) je největší společný dělitel všech čísel \(t \), pro která \(p_{ii}(t) > 0 \), tj. největší číslo \(t \) takové, že \(p_{ii}(u) = 0 \) pro všechna \(u \), která nejsou násobky \(t \).

Trvalý stav je periodický (angl. periodic), jestliže má periodu \(t > 1 \), v opačném případě je neperiodický (angl. aperiodic).

Nutná podmínka: Je-li stav \(i \) periodický, musí být odpovídající prvek na diagonále \(p_{ii} = 0 \).

Když \(i \leftrightarrow j \) a stav \(i \) je periodický s periodou \(t \), pak \(j \) je periodický s periodou \(t \).

Stav je ergodický (angl. ergodic), jestliže je trvalý a neperiodický.

Příklad (náhodná procházka v cyklu). Pro (obousměrnou) náhodnou procházku v cyklu sudé délky mají všechny stavy periodu 2 (přecházíme mezi sudými a lichými), jsou trvalé a periodické.
Pro (obousměrnou) náhodnou procházku v cyklu liché délky mají všechny stavy periodu 1 (přestože se do nich nelze vrátit v 1 kroku) a jsou ergodické.
Množina trvalých stavů je uzavřená, jestliže ji nelze opustit.
Komponenta je (každá) neprázdná uzavřená množina (trvalých) stavů, která neobsahuje vlastní (=menší neprázdnou) uzavřenou podmnožinu stavů.

Věta. Všechny uzavřené množiny stavů jsou sjednocené (disjunktních) komponent (včetně prázdné množiny komponent) a tvoří \(\sigma \)-algebru podmnožin množiny všech trvalých stavů.

Každý absorpční stav tvoří jednoprvkovou komponentu.
Každá množina absorpčních stavů je uzavřená.

Markovův řetězec je nerozložitelný, jestliže množina všech jeho stavů je komponenta.
⇒ Nemá přechodné stavy.
Dosažitelnost (BÚNO: v obou směrech) rozděluje všechny trvalé stavů na disjunktní komponenty. (Dosažitelné jsou právě ty dvojice stavů, které patří do stejné komponenty.) Všechny stavy v komponentě mají stejnou peřiodu.

⇒ Pokud jsou všechny stavy trvalé a řetězec je rozložitelný, lze matice přechodu (po vhodné permutaci stavů) vyjádřit jako blokově diagonální,
\[
P = \begin{pmatrix}
D_1 & 0 & \cdots & 0 \\
0 & D_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & D_k
\end{pmatrix},
\]
kde každý blok odpovídá jedné komponentě a 0 je nulová matice odpovídajícího řádu.
Pokud existují přechodné stavy a zařadíme je až za trvalé (pomocí permutace stavů), matice přechodu má tvar
\[
P = \begin{pmatrix}
D & 0 \\
R & Q
\end{pmatrix},
\]
kde \(D \) vyjadřuje pravděpodobnosti přechodů mezi trvalými stavý, \(Q \) mezi přechodnými a \(R \) vyjadřuje pravděpodobnosti přechodů z přechodných stavů do trvalých.
Po rozkladu množiny trvalých stavů na komponenty dostaneme tvar
\[
P = \begin{pmatrix}
D_1 & 0 & \cdots & 0 & 0 \\
0 & D_2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & D_k & 0 \\
R_1 & R_2 & \cdots & R_k & Q
\end{pmatrix}.
\]

Příklad (basketbal – pokračování).

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & b & 1 & 0 \\
a & 0 & 1-a & 0
\end{pmatrix} = \begin{pmatrix}
D & 0 \\
R & Q
\end{pmatrix} = \begin{pmatrix}
D_1 & 0 & 0 \\
0 & D_2 & 0 \\
R_1 & R_2 & Q
\end{pmatrix},
\]
kde první 2 stavy jsou trvalé (dokonce absorpční), zbývající 2 přechodné,
\[
D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & b \\ a & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 1-b \\ 1-a & 0 \end{pmatrix},
\]
\[
D_1 = (1), \quad D_2 = (1), \quad R_1 = \begin{pmatrix} 0 \\ a \end{pmatrix}, \quad R_2 = \begin{pmatrix} b \\ 0 \end{pmatrix}.
\]
Příklad (otevřené restaurace ve vzdálenosti 2 – pokračování).

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 - c & 0 & 0 & 0 \\
0 & 0 & 1 - c & 0 & 0 \\
0 & 0 & c & 0 & 1 - c \\
0 & 0 & 0 & c & 0 \\
\end{pmatrix}.
\]

Permutací stavů \(1, 5, 2, 3, 4\) dostaneme matici přechodu

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
c & 0 & 1 - c & 0 & 0 \\
0 & c & 0 & 1 - c & 0 \\
0 & 0 & c & 0 & 1 - c \\
0 & 0 & 0 & c & 0 \\
\end{pmatrix} = \begin{pmatrix}
D_1 & 0 & 0 \\
0 & D_2 & 0 \\
R_1 & R_2 & Q
\end{pmatrix},
\]

kde první 2 stavy jsou absorpční, zbývající 3 přechodné,

\[
D_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad D_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad R_1 = \begin{pmatrix} c \\ 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 \\ 1 - c \end{pmatrix}.
\]

Příklad (zavřené restaurace ve vzdálenosti 2 – pokračování).

Sloučením dvou kroků do jednoho a přeskupením stavů („napřed liché, pak sudé“) jsme dospěli k blokové diagonální matici:

\[
\begin{pmatrix}
0 & 1 - c & 0 & 0 & 0 \\
0 & 0 & 1 - c & 0 & 0 \\
c^2 & 2c(1 - c) & (1 - c)^2 & 0 & 0 \\
0 & c & 1 - c & 0 & 0 \\
0 & 0 & 0 & 2c - c^2 & (1 - c)^2 \\
0 & 0 & 0 & c^2 & 1 - c^2
\end{pmatrix}.
\]

Tento řetězec lze rozložit na 2 komponenty: jednu se 3 stavy (odpovídajícími lichým, 1, 3, 5, v původní reprezentaci), druhou se 2 stavy (odpovídajícími původním sudým, 2, 4). Všechny stavy jsou ergodické.

Cvičení. [Wasserman 2004] Markovův řetězec má matici přechodu

\[
P = \begin{pmatrix}
0.4 & 0.1 & 0 & 0 & 0.5 \\
0.05 & 0.7 & 0.25 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0.05 & 0.5 & 0.4 & 0 & 0.05 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

Určete přechodné a trvalé stavy a jejich periodu.

Cvičení. [Hsu 1996] Markovův řetězec má matici přechodu

\[
P = \begin{pmatrix}
0 & 0.5 & 0.5 \\
0.7 & 0 & 0.3 \\
1 & 0 & 0
\end{pmatrix}.
\]
Je stav 1 periodický?

5 Asymptotické chování Markovových řetězců s konečně mnoha stavy

Metody řešení:

- Speciální případy lze řešit exaktně.
- Obecně potřebujieme určit \(\lim_{t \to \infty} P^t \). Pro matici řádu 2 viz Dodatek 10.
- Obtížné úlohy lze simulovat na počítači (metoda MCMC = Markov Chain Monte Carlo) a získat tak aspoň představu o jejich vlastnostech.

5.1 Přechodné stavy

Věta. Pravděpodobnosti přechodných stavů konvergují k 0.

Důkaz. V konečném čase \(T \) se z přechodného stavu přejde do některého trvalého s pravděpodobností aspoň \(\varepsilon > 0 \), v některém z přechodných stavů zůstáváme s pravděpodobností nejvýšě \(1 - \varepsilon \). V čase \(2T \) zůstáváme v některém z přechodných stavů s pravděpodobností nejvýšě \((1 - \varepsilon)^2 \), v čase \(tT \) s pravděpodobností nejvýšě \((1 - \varepsilon)^t \to 0 \) pro \(t \to \infty \).

Důsledek. S pravděpodobností 1 se dostaneme do některé komponenty a v té již zůstaneme.

Důsledek. Existuje trvalý stav.

Otázky:
Do jakých trvalých stavů přejdeme z přechodných?
Za jak dlouho?

Věta. Nechť stavy \(1, \ldots, i \) jsou absorpční, \(i + 1, \ldots, n \) přechodné. Pak matice přechodu má tvar

\[
P = \begin{pmatrix} I_i & 0 \\ R & Q \end{pmatrix},
\]

kde \(I_i \) je jednotková matice řádu \(i \). Pravděpodobnost, že z přechodného stavu \(j > i \) skončíme v absorpčním stavu \(k \leq i \), je v matici

\[
(I_{n-i} + Q + Q^2 + Q^3 + \ldots) R = F R,
\]

kde \(I_{n-i} \) je jednotková matice řádu \(n - i \) a

\[
F = I_{n-i} + Q + Q^2 + Q^3 + \ldots
\]

je fundamentální matice tohoto řetězce.

Důkaz. (částečný) Tvar matice přechodu jsme již odvodili. Matice \(Q \) popisuje „recyklaci“ přechodných stavů a matice \(R \) jejich nevratnou přeměnu na trvalé.

Pokud jsou pouze přechodné a absorpční stavy, pak je lze seřadit tak, jak požaduje předchozí věta.

Věta.

\[
F = I_{n-i} + Q + Q^2 + Q^3 + \ldots = (I_{n-i} - Q)^{-1}.
\]
Důkaz. (částečný) Označme \(F_t = I_{n-i} + Q + Q^2 + \ldots + Q^t \).

Pak
\[
(I_{n-i} - Q) \cdot F_t = I_{n-i} - Q + Q - Q^2 + Q^2 - Q^3 + \ldots - Q^{t+1} = I_{n-i} - Q^{t+1}.
\]
Matici \(Q \) má všechny součty řádků nejvýše 1 a některé menší než 1. O takových maticích je známo, že \(\lim_{t \to \infty} Q^t = 0 \) a že \(I_{n-i} - Q \) je regulární. Tudíž
\[
\lim_{t \to \infty} (I_{n-i} - Q) \cdot F_t = I_{n-i},
\]
\[
F = \lim_{t \to \infty} F_t = (I_{n-i} - Q)^{-1}.
\]

Příklad (basketbal – pokračování).

Matice přechodu po permutaci stavů byla
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & b & 0 & 1-b \\
0 & 0 & 1-a & 0
\end{pmatrix} = \begin{pmatrix}
I_2 \\
R \\
Q
\end{pmatrix}.
\]

kde pření 2 stavy jsou absorpční, zbývající 2 přechodné,
\[
I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & b \\ a & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 1-b \\ 1-a & 0 \end{pmatrix},
\]
\[
F = (I_2 - Q)^{-1} = \begin{pmatrix} 1 & b-1 \\ a-1 & 1 \end{pmatrix}^{-1} = \frac{1}{a+b-a-b} \begin{pmatrix} 1 & 1-b \\ 1-a & 1 \end{pmatrix},
\]
\[
FR = \frac{1}{a+b-a-b} \begin{pmatrix} a & b \\ 1 & b \end{pmatrix} = \begin{pmatrix} \frac{a(1-b)}{a+b-a-b} \\ \frac{b}{a+b-a-b} \end{pmatrix}.
\]

Začíná Alice (stav 4, tj. poslední; před permutací byl 2.), pravděpodobnosti přechodů do absorpčních stavů jsou tedy v posledním řádku matice \(FR \).

Alice vyhrají s pravděpodobností \(\frac{a}{a+b-a-b} \), Bob s pravděpodobností \(\frac{b}{a+b-a-b} \).

Např. pro \(a = 1/2, b = 1/3 \) Alice vyhrají s pravděpodobností 3/4, Bob s pravděpodobností 1/4, což odpovídá numerickému experimentu:
\[
P_Z^{10} = \begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.74999 & 1.6935 \cdot 10^{-5} & 0.25000 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}.
\]

Příklad (otevřené restaurace ve vzdálenosti 2 – pokračování).

Permutací původních stavů (1,5,2,3,4) jsme dostali matici přechodu
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
c & 0 & 0 & 1-c & 0 \\
0 & 0 & c & 0 & 1-c \\
0 & 0 & 1-c & 0 & c
\end{pmatrix} = \begin{pmatrix}
I_2 \\
R \\
Q
\end{pmatrix}.
\]
kde první 2 stavy jsou absorpční, zbývající 3 přechodné,

\[
I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} c & 0 \\ 0 & 0 \\ 0 & 1-c \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & 1-c & 0 \\ c & 0 & 1-c \\ 0 & c & 0 \end{pmatrix}, \]

\[
F = (I_3 - Q)^{-1} = \begin{pmatrix} 1 & c-1 & 0 \\ -c & 1 & c-1 \\ 0 & -c & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 - c + c^2 & 1 - c & (1-c)^2 \\ c & 1 - c & 1 - c \\ c^2 & c & c^2 - c + 1 \end{pmatrix},
\]

\[
FR = \frac{1}{2c^2 - 2c + 1} \begin{pmatrix} c (1 - c + c^2) & (1-c)^3 \\ c^2 & (1-c)^2 \\ c^3 & (1-c) (1 - c + c^2) \end{pmatrix}.
\]

Např. pro \(c = 2/3 \) dostáváme

\[
FR = \begin{pmatrix} \frac{14}{15} & 1/5 \\ \frac{14}{15} & 1/5 \\ \frac{4}{15} & \frac{7}{15} \end{pmatrix}.
\]

Souhlas s numerickým experimentem, je-li počáteční stav prostřední z přechodných:

\[
P_Z^{10} = \begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.79976 & 3.0073 \cdot 10^{-4} & 0.19994 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}.
\]

Matice \(FR \) je stochastická, udává pravděpodobnost výsledků pro libovolný přechodný počáteční stav (i pro jejich směs, tj. počáteční rozdělení, kterým ji stačí vynásobit zleva). Např. pro rovnoměrné rozdělení počátečních stavů dostaneme

\[
\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} \frac{14}{15} & \frac{1}{5} \\ \frac{4}{15} & \frac{1}{5} \\ \frac{8}{15} & \frac{7}{15} \end{pmatrix} = \begin{pmatrix} \frac{34}{45} & \frac{11}{45} \end{pmatrix}.
\]

Co když trvalé stavy nejsou všechny absorpční?

Tím jsme převedli úlohu na předcházející (máme pouze přechodné a absorpční stavy). Dozvím se, s jakou pravděpodobností skončíme v které komponentě.

Kdybychom chtěli vědět pravděpodobnost stavů uvnitř této komponenty, analýza by byla složitější (záleží nejen na tom, přes který stav do ní vstoupíme, ale také, kdy).

Už víme, že s pravděpodobností 1 přejdeme do nějaké komponenty, kterou už neopustíme. Otázka je, co se děje dál.

5.2 Nérozložitelné Markovovy řetězce

Stacionární rozdělení pravděpodobností \(p \) je takové, které se zachovává, tj.

\[
pP = p,
\]

nebo levý vlastní vektor odpovídající vlastnímu číslu 1.

Lze je najít vyřešením této (homogenní) soustavy lineárních rovnic pro \(p \) s dodatečnou podmínkou, že součet neznámých je 1.

Markovův řetězec je ergodický, je-li nérozložitelný a má všechny stavy ergodické.
Věta. **Ergodický** Markovův řetězec má jediné stacionární rozdělení pravděpodobností; k tomu konverguje při libovolném počátečním rozdělení.

Důsledek. V tom případě \(\lim_{t \to \infty} P^t \) existuje a je rovna matice, jejíž všechny řádky jsou rovné stacionárnímu rozdělení.

Příklad (zavřené restaurace ve vzdálenosti 2 – pokračování).

![Diagram řetězce]

Tento řetězec není ergodický, ale pro licí stavy jsme dostali zjednodušený popis, v němž 2 kroky považujeme za 1, a ten ergodický je:

\[
P_Z = \begin{pmatrix} c & 1-c & 0 \\ c^2 & 2c(1-c) & (1-c)^2 \\ 0 & c & 1-c \end{pmatrix}
\]

Např. pro \(c = 2/3 \)

\[
P_Z = \begin{pmatrix} 2/3 & 1/3 & 0 \\ 4/9 & 4/9 & 1/9 \\ 0 & 2/3 & 1/3 \end{pmatrix}.
\]

Tento Markovův řetězec je nerozložitelný a má všechny stavy ergodické, takže má jediné stacionární rozdělení pravděpodobností, které dostaneme řešením soustavy lineárních rovnic

\[
(a, b, 1 - a - b) P_Z = (a, b, 1 - a - b),
\]

\[
(a, b, 1 - a - b) = \left(\frac{8}{15}, \frac{2}{15}, \frac{1}{15}\right).\]

Souhlas s numerickým experimentem:

\[
P_Z^{10} = \begin{pmatrix} 0.53342 & 0.39995 & 6.6622 \cdot 10^{-2} \\ 0.53327 & 0.40003 & 6.6697 \cdot 10^{-2} \\ 0.53297 & 0.40018 & 6.6847 \cdot 10^{-2} \end{pmatrix},
\]

\[
P_Z^{20} = \begin{pmatrix} 0.533 & 0.400 & 6.67 \cdot 10^{-2} \\ 0.533 & 0.400 & 6.67 \cdot 10^{-2} \\ 0.533 & 0.400 & 6.67 \cdot 10^{-2} \end{pmatrix}.
\]

Uvažujme **nerozložitelný** Markovův řetězec, který není ergodický.

Nutná podmínka: Matice přechodu musí mít nulovou diagonálu.

Poznámka. Stacionární rozdělení může existovat, ale nemusíme se k němu přiblížit.

Např. pro

\[
P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}
\]

je rozdělení \((1/3, 1/3, 1/3)\) stacionární, ale z počátečního rozdělení \((1, 0, 0)\) se k němu nepřiblížíme.

Všechny stavy mají stejnou periodu \(T > 1 \).

Lze je rozdělit na \(T \) disjunktních tříd \(M_1, \ldots, M_T \) tak, že z každé třídy lze v jednom kroku přejít pouze do následující (a z \(M_T \) do \(M_1 \)).
Do každé trvá se vrátíme po T krocích.
Sloučením T kroků do jednoho dostaneme Markovův řetězec s maticí přechodu P^T.
Ten je rozložitelný, trvá M_1, \ldots, M_T odpovídají komponentám, které mají všechny stavy ergodické, takže mají jediné stacionární rozdělení pravděpodobností.

⇒ Až na to, že se periodicky chovají mezi trvámdy M_1, \ldots, M_T, můžeme asymptotické chování uvnitř nich určit stejně jako v předchozím případě.

Cvičení. [Wasserman 2004] Najděte stacionární rozdělení Markovova řetězce s maticí přechodu

$$P = \begin{pmatrix} 0.4 & 0.5 & 0.1 \\ 0.05 & 0.7 & 0.25 \\ 0.05 & 0.5 & 0.45 \end{pmatrix}.$$

Cvičení (rosnička). (upraveno dle [Wasserman 2004]) Rosnička skáče po k chůdčích. Každým skokem se s pravděpodobností $c \in (0, 1)$ dostane o chůděk výš, s pravděpodobností $1 - c$ spadne zpět do vody a začíná od začátku. Z nejvyššího chůdčku vždy spadne do vody (=„nejnižší chůdček“). Kde ji máme hledat, tj. jaká je pravděpodobnost jejího výskytu na jednotlivých chůdčích po dlouhém průběhu? Řešte pokud možno obecně, pak pro hodnoty $k = 4$, $c = 1/2$.

5.3 Rozložitelné Markovovy řetězce

bez přechodných stavů se řeší rozkladem na nerozložitelné (na komponenty). Mohou existovat stacionární rozdělení, ale nemusí být limitou.

Příklad. Pro

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

jsou všechna rozdělení stacionární. Pro

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

jsou stacionární všechna rozdělení $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, $c \in (0,1)$;

z počátečního rozdělení $(1, 0, 0, 0)$ se dostaneme ihned do stacionárního $(\frac{1}{2}, \frac{1}{2}, 0, 0)$;

z počátečního rozdělení $(0, 0, 0, 1)$ se k žádnému stacionárnímu neblížíme.

5.4 Příklady

Příklad (chceš být milionářem? – zjednodušené zadání bez záchytých bodů). Hráč zaplatí za vstup do hry. Odpovídá na otázky, pravděpodobnost, že zná správnou odpověď, je $c \in (0,1)$. Po správné odpovědi může skončit s výhrou $1, 2, 4, 8, \ldots$, obecně 2^{k-1}, kde k je počet správně zodpovězených otázek. Po chybné odpovědi končí a nedostává nic.

• Jak dlouho má hrát, aby maximalizoval zisk? (Délka hry a výška výhry není omezena.)

• Jaké je při optimální strategii rozdělení, střední hodnota a rozptyl výhry po k kolech (resp. výraz zodpovězeních otázek)?

• Jaká je adekvátní cena za vstup do hry?

Hráč zaplatil za vstup do hry, určitě má hrát první kolo. Před k-tým kolem (pokud do něj postoupí) se rozhoduje mezi jistou výhrou 2^{k-1} a další otázkou, která má vést k výhře bud' 0, nebo 2^k (s pravděpodobností c). Optimální
rozhodnutí tedy bude vždy stejné (závislé na c, nikoli na k). Pro $c < 1/2$ končí po 1. kole. Pro $c > 1/2$ je optimální hrát co nejdéle. Pak matice přechodu je

$$P = \begin{pmatrix} 1 & 0 \\ 1 - c & c \end{pmatrix},$$

první stav (vyřazení) je absorpční, druhý (pokračování ve hře) je přechodný, takže pravděpodobnost výhry je nulová!

Výhra X_k po k kolech má alternativní rozdělení,

$$EX_k = c^k 2^{k-1},$$
$$DX_k = EX_k^2 - (EX_k)^2 = c^k 2^{2(k-1)} - c^{2k} 2^{2(k-1)} = (1 - c^k) c^k 2^{2(k-1)}.$$

Pro $c > 1/2$ je

$$\lim_{k \to \infty} c^k 2^{k-1} = \frac{1}{2} \lim_{k \to \infty} (2c)^k = \infty,$$

tedy adekvátní cena za vstup do hry je nekonečná!

Cvičení. Popište Markovov řetězec, popisující hru „chcete být milionářem?“ se zábytnými body a omezeným počtem kol.

Příklad (ruinování v ruletě). V ruletě sázka na barvu přináší výhru ve výši dvojnásobku vkladu s pravděpodobností d o málo menší než 1/2 (dle typu rulety $\frac{24}{36}$, $\frac{18}{36}$ nebo $\frac{18}{36} = \frac{9}{18}$). Hráč vsadí 1000 EUR. Po první výhře končí. Po každé prohře vsadí dvojnásobnou částku než v předchozím kole. Jaké je rozdělení a střední hodnota jeho výhry?

Jde o obdobu hry „chcete být milionářem?“ s vyměněním roli hráče a bankéře a $c = 1 - d$. Bankéř se hra „vyplácí“, přesto má nulovou pravděpodobnost výhry. Nereálný je předpoklad, že hráč lze hrát libovolně dlouho.

Cvičení. Jak bude vypadat „ruinování v ruletě“, jestliže hráč (případně i bankéř) má omezené finance?

Příklad (petrohradský paradox). Hráč zaplatí za účast ve hře, v níž hásí mincí. Padne-li líc, vyhraje 1 EUR. Padne-li rub, hra pokračuje a výhra se zdvojnásobuje, tj. padne-li líc poprvé v k-tém hodu, výhra je 2^{k-1} EUR. Jaká je adekvátní cena za účast ve hře?

Hra končí v k-tém kroku s pravděpodobností 2^{-k} a výhrou 2^{k-1} EUR, střední hodnotu výhry dostaneme součtem přes všechny možné délky hry,

$$\sum_{k=1}^{\infty} 2^{-k} 2^{k-1} = \sum_{k=1}^{\infty} \frac{1}{2} = \infty.$$

Cvičení (prodlužovačky). Prodlužovačky s pravděpodobností $c \in (0,1)$ mění pořadí vodičů (fáze \leftrightarrow nulák). Jaká je pravděpodobnost, že sériové spojení k prodlužovaček mění pořadí vodičů?

Cvičení (informační kanál). Binární informační kanál přenesí 0 s pravděpodobností 0.1 jako 1, 1 s pravděpodobností 0.2 jako 0. Spojíme jich k do série. Jaké jsou pravděpodobnosti chyb? Jaký bude výstup pro $k \to \infty$?

6 Reverzibilita

6.1 Odhady parametrů Markovových řetězců

Co lze zjistit dlouhodobým pozorováním?

A. Pokud můžeme pokus libovolně opakovat (včetně počátečního rozdělení pravděpodobností stavů), lze konzistentně odhadnout všechny parametry.

(„Dostatečně dlouhá doba sledování“ je Čebyševovou nerovností vázána na nejmenší nemulovou z odhadovaných pravděpodobností.)

B. Nadále uvažujeme obvyklý případ, kdy Markovův řetězec nastartoval jen jednou a my můžeme sledovat jen jednu posloupnost, kterou vygeneruje.
Nemůžeme odhadnout počáteční rozdělení pravděpodobností stavů a nedovíme se nic o komponentách, do kterých jsme se nedostali.

Můžeme studovat jen tu komponentu, v níž jsme skončili, a to její asymptotické vlastnosti. To postačuje ke konzistentnímu odhadu matice přechodu této komponenty.

6.2 Obrácení časové osy (zpětný chod)
Co bychom pozorovali, kdybychom sledovali Markovův řetězec pozpátku a chtěli pozorování popsat rovněž Markovovým řetězcem?

1. Přechodné stavy by nám to mohly znemožnit, nadále je vyloučíme.

3. Má-li periodu \(T > 1 \), pak při zpětném chodu vidíme průchod třídami stavů \(M_1, \ldots, M_T \) dle kapitoly 5.2 v opačném pořadí. Chování uvnitř nich popisují ergodické řetězce, vzniklé přechodem ke krokům délky \(T \) a následnou dekompozicí na komponenty \(M_1, \ldots, M_T \).

4. Pokud rozdělení pravděpodobností stavů není stacionární, pak při pohybu vpřed ke stacionárnímu konverguje, při zpětném chodu „diverguje“. Z toho poznáme, že orientace času je chybná a popis zpětného chodu Markovovým řetězcem neexistuje. (Souvislost s principem růstu entropie.) Zbývá popsat ergodické Markovovy řetězce se stacionárním rozdělením pravděpodobností stavů.

Zpětný chod nemá matici přechodu \(P^{-1} \); absolutní hodnota vlastních čísel matice \(P \) je \(\leq 1 \); absolutní hodnota vlastních čísel matice \(P^{-1} \) je \(\geq 1 \).

Příklad.

\[
P = \begin{pmatrix}
0 & 2/3 & 1/3 \\
1/3 & 0 & 2/3 \\
2/3 & 1/3 & 0
\end{pmatrix},
\]

stacionární rozdělení \(p = (1/3, 1/3, 1/3) \).

„Převládá pohyb po směru hodinových ručiček.“

Při zpětném chodu „převládá pohyb proti směru hodinových ručiček.“

Odpovídá mu „obrácení šipek“ a transponovaná matice

\[
P^T = \begin{pmatrix}
0 & 1/3 & 2/3 \\
2/3 & 0 & 1/3 \\
1/3 & 2/3 & 0
\end{pmatrix},
\]
Příklad.

\[P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}, \]

kde \(a, b \in (0, 1) \), stacionární rozdělení \(p = \begin{pmatrix} \frac{b}{a + b} & \frac{a}{a + b} \end{pmatrix} \).

Zpětný chod nepopisuje matice \(P^T \) (není stochastická!), ani

\[\begin{pmatrix} 1 - b & b \\ a & 1 - a \end{pmatrix}, \]

(má jiné stacionární rozdělení pravděpodobnosti stavů), nýbrž opět \(P \) (změna orientace času nepoznáme).

Takovým řetězcům budeme říkat reverzibilní.

Definice. Ergodický Markovův řetězec s maticí přechodu \(P \) a stacionárním rozdělením stavů \(p = (p_1, \ldots, p_n) \) je reverzibilní, jestliže

\[p_i p_{ij} = p_j p_{ji} \]

pro všechna \(i, j \).

Ekvivalentní formulace:

\[P(X_t = i) \cdot P(X_{t+1} = j|X_t = i) = P(X_{t+1} = i|X_t = j) \cdot P(X_t = j) \cdot P(X_{t+1} = i|X_t = j) \]

\[s_{ij} := P(X_{t+1} = i, X_t = j) = P(X_{t+1} = j, X_t = i) =: s_{ji} \]

Převod na původní popis:

\[p_i = P(X_t = i) = \sum_k s_{ik} = \sum_m s_{mi}, \]

\[p_{ij} = P(X_{t+1} = j|X_t = i) = \frac{s_{ij}}{p_i} = \frac{s_{ij}}{\sum_k s_{ik} = \sum_m s_{mi}}. \]

Pro libovolný ergodický Markovův řetězec máme matici s prvky \(s_{ij} = P(X_{t+1} = i, X_t = j) \). Můžeme jimi ohodnotit hrany přechodového grafu; pak reverzibilitu snadno poznáme z grafu i ze symetrie matice \(S \).
Proč jsme S nepoužívali od začátku?
Protože popisuje řetězec se stacionárním rozdělením pravděpodobností stavů.
P je matice podmíněných pravděpodobností, nezávislých na pravděpodobnostech stavů.

Obrácené:

Věta. V nerozložitelném Markovově řetězci reverzibilita $p_i p_{ij} = p_j p_{ji}$
neboli $s_{ij} = s_{ji}$
implikuje, že je ergodický a $p = (p_1, \ldots, p_n)$ je stacionární rozdělení pravděpodobností stavů.

Důkaz. Pravděpodobnost, že při rozdělení pravděpodobností p bude v dalším kroku stav j, je
$$
\sum_i p_i p_{ij} = \sum_i p_j p_{ji} = p_j \sum_i p_{ji} = p_j .
$$

Reverzibilita je silnější podmínka.

6.3 Jak lze luštít šifry 1: model

Příklad. Fragment motáku z americké věznice [Diaconis 2009]:

\[\text{Moták z americké věznice} \]
Předpokládáme, že každý z n znaků odpovídá právě jednomu znaku abecedy. Hledáme správnou permutaci abecedy, těch je n! (moc).

Hledáme vhodně zjednodušený model.

A. Každý znak je nezávisle vylosován s nějakou pravděpodobností.
\[n \text{ pravděpodobností odhadneme relativními četnostmi v jazyce.} \]
Maximalizujeme věrohodnost: Znaky obou abeced seřadíme podle relativní četností a ztotožníme ty, které mají stejný pořadí.

Snadné, ale neúspěšné: málo informace.

B. Každý znak je vylosován s nějakou pravděpodobností závislou na předchozím znaku.
\[\Rightarrow \text{Markovův řetězec s } n \text{ stavy (poslední znak).} \]
\[n^2 \text{ prvků matice přechodu odhadneme podmíněnými relativními četnostmi dvojic znaků v jazyce.} \]
Maximalizujeme věrohodnost.

Jak?
Ukážeme, ale napřed uvážíme složitéjší modely.

C. Každý znak je vylosován s nějakou pravděpodobností závislou na \(\ell \) předchozích znacích.
\[\Rightarrow \text{Markovův řetězec s } n^\ell \text{ stavy (posledních } \ell \text{ znaků).} \]
matice přechodu má \(n^{2\ell} \) prvků, z nichž nenulových může být nejvýše \(n^{\ell+1} \), odhad je příliš obtížný.
Nemáme dost dlouhý text.

D. Každé slovo je vylosováno s nějakou pravděpodobností závislou na slově.
\[\Rightarrow \text{Markovův řetězec s tolika stavy, kolik slov v jazyce uvažujeme (např. 10 000).} \]
\[n^2 \text{ prvků matice přechodu odhadneme jen s obtížemi, i když se to dělá.} \]
Nemáme dost dlouhý text, aby rozdělení na něm bylo podobné.
Spoléháme na to, že víme, co jsou mezery mezi slovy.

6.4 Jak lze luštít šifry 2: rozluštění

Model B: Pravděpodobnost znaku závisí na předchozím znaku.
Hledáme správnou permutaci znaků abecedy.
Pro každou permutaci znaků \(\pi \) dovedeme určit věrohodnost \(L(\pi) \) dané zprávy.

Jak najdeme maximum věrohodnosti?
Sestrojíme nový nerozložitelný reverzibilní Markovův řetězec s \(n! \) stavy – permutacemi abecedy.
Zvolíme matici přechodu \(P \in \mathbb{R}^{n! \times n!} \) tak, aby stacionární rozdělení pravděpodobností stavů bylo úměrné věrohodnosti \(L \),
\[
p_{\pi} = \frac{L(\pi)}{\sum_{\varnothing} L(\varnothing)}.
\]
K čemu to bude?
Po delším běhu budeme dostávat převážně permutace s velkou věrohodností; správná permutace bude nejčastější.

Problém: \(\sum_{\varnothing} L(\varnothing) \) přes všechny \(n! \) permutací nespočítáme.

Řešení: Budeme používat jen poměry věrohodností, na této sumě nezávislé.

6.5 Metropolisův algoritmus

0. Zvolíme libovolnou počáteční permutaci znaků \(\pi \).

1. V \(\pi \) vyměníme náhodně vybranou dvojici znaků (z \(\binom{n}{2} \) možností s rovnoměrným rozdělením); dostaneme novou permutaci \(\varnothing \).

2. Porovnáme věrohodnosti:
\[
a_{\pi \varnothing} = \frac{L(\varnothing)}{L(\pi)} = \frac{p_{\varnothing}}{p_{\pi}}.
\]
(Věrohodnosti lze snadno spočítat, na rozdíl od pravděpodobností \(p_{\pi}, p_{\varnothing} \).)
A. $a_{\pi \varrho} \geq 1$ (ϱ je věrohodnější) \implies změnu $(\pi := \varrho)$ provedeme.

B. $a_{\pi \varrho} < 1$ (π je věrohodnější) \implies změnu $(\pi := \varrho)$ provedeme s pravděpodobností $a_{\pi \varrho}$.

3. Dokud nejsme spokojeni s výsledkem, pokračujeme od kroku 1.
Řetězec je nerozložitelný – ke každé permutaci se můžeme dostat.

Kdybychom změnu vždy provedli, řetězec by nebyl ergodický, měl by periodu 2.
Navíc jsme splnili podmínku reverzibility (zobrazen detail přechodového grafu):

A. $L(\varrho) \geq L(\pi)$: $p_{\pi} p_{\pi \varrho} = \frac{p_{\varrho}}{2} = p_{\varrho} p_{\varrho \pi}$

B. $L(\varrho) < L(\pi)$: $p_{\pi} p_{\pi \varrho} = \frac{p_{\varrho}}{2} = p_{\varrho} p_{\varrho \pi}$

Pravděpodobnosti stavů podle věty 6.2 konvergují k

$$p_{\pi} = \frac{L(\pi)}{\sum_{\varrho} L(\varrho)},$$

takže jsou úměrné věrohodností.

Příklad rozšifrování Shakespearova textu (vlevo počet kroků algoritmu):
Fragment rozšířeného motáku:

to bat-rb. con todo mi respeto. i was sitting down playing chess with
danny de emf and boxer de el centro was sitting next to us. boxer was
making loud and loud voices so i tell him por favor can you kick back
hombre cause im playing chess a minute later the vato starts back up again
so this time i tell him con respecto hombre can you kick back. the vato
stop for a minute and he starts up again so i tell him check this out shut
the f**k up cause im tired of your voice and if you got a problem with it
we can go to celda and handle it. i really felt disrespected thats why i
told him. anyways after i tell him that the next thing I know that vato
slashes me and leaves. dy the time i figure im hit i try to get away but
the c.o. is walking in my direction and he gets me right dy a celda. so i
go to the hole. when im in the hole my home boys hit doxer so now "b" is
also in the hole. while im in the hole im getting schoold wrong and

Úspěch, přestože to ani nebyla tak docela angličtina.

7 Markovovy řetězce s nekonečně mnoha stavy

Místo násobení matic bychom potřebovali nekonečné sumy.

Klasifikace stavů je složitější o další možnosti (nulový stav), nemusí existovat trvalý stav...

Lze setrvat v přechodných stavech (nekonečně mnoha).

- Pokud oba směry volíme se stejnou pravděpodobností, do výchozího bodu se vrátíme s pravděpodobností 1. S pravděpodobností 1 navštívime výchozí bod (stejně jako všechny ostatní) nekonečněkrát, přesto střední doba mezi návraty je nekonečná.

- Pokud oba směry volíme se různou pravděpodobností, do výchozího bodu se vrátíme s pravděpodobností < 1. Pak jsou všechny stavy přechodné.
Příklad (nekonečná náhodná procházka ve více dimenzích). Při nekonečné náhodné procházce se vždy vydáme do některého ze sousedních bodů, a to se stejnou pravděpodobností.

- V 1 dimenzi se do výchozího bodu vrátíme s pravděpodobností 1.
- Ve 2 dimenzích (volíme ze 4-okolí) se do výchozího bodu vrátíme s pravděpodobností 1.
- Ve 3 dimenzích (volíme ze 6-okolí) se do výchozího bodu vrátíme s pravděpodobností přibližně 0.35 < 1.

8 Příklady aplikací
- Hromadná obsluha a fronty
- Klasifikace, rozpoznávání (od třídění chmelu po rozpoznávání obličejů)
- Pohyb nosičů náboje v polovodičích, rekombinace
- Chemické a jaderné reakce (řetězová reakce)
- Vývoj populací
- ...

Příklad. Ve stabilní populaci budou mít nakonec všichni stejná příjmení.

Příklad. S jakou pravděpodobností vymřeme.

9 Co zde nebylo

9.1 Kdy se vrátíme do stejného stavu?
Doporučená literatura: [Hsu 1996].

9.2 Nehomogenní Markovovy řetězce
Asymptotické chování je složitější.

9.3 Markovovy procesy
Doporučená literatura: [Apl. mat. 1978] [Hsu 1996] [Papoulis, Pillai 2002].
Díky spojitému času dovolují modelovat např. Brownův pohyb, difuzi...

10 Dodatek: Mocniny stochastických matic řádu 2
Obecná stochastická matice řádu 2 je tvaru

\[P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix}, \]

kde \(a, b \in (0, 1) \).
A. Pokud \(a = b = 0 \), je \(P \) jednotková matice a \(P^t = P \) pro všechna \(t \in \mathbb{N} \). Oba stavy jsou absorpční.

B. Nadále předpokládáme \(a + b > 0 \). Pak

\[
P = TD T^{-1},
\]

kde

\[
D = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}
\]

má na diagonále vlastní čísla matice \(P \), \(\lambda = 1 - a - b \in (-1, 1) \),

\[
T = \begin{pmatrix} 1 & -a \\ 1 & b \end{pmatrix}
\]

má ve sloupcích odpovídající pravé vlastní vektory (na velikosti nezáleží),

\[
T^{-1} = \frac{1}{a+b} \begin{pmatrix} b & a \\ -1 & 1 \end{pmatrix}
\]

má v řádcích odpovídající levé vlastní vektory.

Mocniny diagonální matice lze pro všechna \(t \in \mathbb{N} \) počítat po složkách,

\[
D^t = \begin{pmatrix} 1 & 0 \\ 0 & \lambda^t \end{pmatrix}
\]

Protože

\[
P^2 = TD T^{-1} TD T^{-1} = TD^2 T^{-1},
P^t = \underbrace{TD T^{-1} \cdots TD T^{-1}}_{t\times} = TD^t T^{-1},
\]

lze mocniny matice \(P \) vyjádřit ve tvaru

\[
P^t = \begin{pmatrix} 1 & -a \\ 1 & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \lambda^t \end{pmatrix} \frac{1}{a+b} \begin{pmatrix} b & a \\ -1 & 1 \end{pmatrix} = \\
= \frac{1}{a+b} \begin{pmatrix} 1 & -a \lambda^t \\ 1 & b \lambda^t \end{pmatrix} \begin{pmatrix} b & a \\ -1 & 1 \end{pmatrix} = \frac{1}{a+b} \begin{pmatrix} b + a \lambda^t & a - a \lambda^t \\ b - b \lambda^t & a + b \lambda^t \end{pmatrix} = \\
= \frac{1}{a+b} \begin{pmatrix} (b \lambda^t) & a \lambda^t \\ (b a) & (a - a \lambda^t) \end{pmatrix} + \lambda^t \begin{pmatrix} a & -a \\ -b & b \end{pmatrix},
\]

kde \(\lambda = 1 - a - b \).

Speciální případy:

- \(a = b = 1 \quad \Rightarrow \quad \lambda = -1 \),

\[
P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\]

\[
P^t = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + (-1)^t \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{pro } t \text{ liché},
\]

\[
P^t = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{pro } t \text{ sudé.}
\]
Oba stavy jsou trvalé s periodou 2.

- Pro $|\lambda| < 1$, tj. $a + b \notin \{0, 2\}$, je

$$ \lim_{t \to \infty} P^t = \frac{1}{a + b} \begin{pmatrix} b & a \\ b & a \end{pmatrix}. $$

$a > 0, b > 0$: oba stavy ergodické,

$a = 0, b > 0$: „1“ absorpční, „2“ přechodný,

$a > 0, b = 0$: „2“ absorpční, „1“ přechodný.

- $a + b = 1 \Rightarrow \lambda = 0,$

$$ P^t = \begin{pmatrix} b & a \\ b & a \end{pmatrix} = \begin{pmatrix} 1 - a & a \\ 1 - a & a \end{pmatrix} $$

nezávisí na t. Klasifikace stavů jako v předchozím obecnějším případě.

Podobně lze počítat i mocniny matic vyšších řádů, pokud mají bází z vlastních vektorů (k tomu stačí, jsou-li všechna vlastní čísla různá).

Používají se v kapitole 5.

Literatura

