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1 Notation

H . . . the empty set [1]
expU . . . the set of all subsets of setU [1]
U � V . . . Cartesian product of setsU and V [1]
Z . . . whole numbers [1]
Q . . . rational numbers [2]
R . . . real numbers [2]
i . . . imaginary unit [2]
pS; � ; q . . . space of geometric scalars
A . . . a�ne space (space of geometric vectors)
pAo; ` ; dq . . . space of geometric vectors bound to pointo
pV;` ; d q . . . space of free vectors
A2 . . . real a�ne plane
A3 . . . three-dimensional real a�ne space
P2 . . . real projective plane
P3 . . . three-dimensional real projective space
~x . . . vector
A . . . matrix
Aij . . . ij element ofA
AJ . . . transpose ofA
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
b . . . Kronecker product of matrices
� � r ~b1;~b2;~b3s . . . basis (an ordered triple of independent generator vectors)
� � ; �� . . . the dual basis to basis�
~x� . . . column matrix of coordinates of ~x w.r.t. the basis �
~x � ~y . . . Euclidean scalar product of~x and ~y (~x � ~y � ~xJ

� ~y� in an
orthonormal basis � )

~x � ~y . . . cross (vector) product of ~x and ~y
r~xs� . . . the matrix such that r~xs� ~y � ~x � ~y
}~x} . . . Euclidean norm of ~x (}~x} �

?
~x � ~x)

orthogonal vectors . . . mutually perpendicular and all of equal length
orthonormal vectors . . . unit orthogonal vectors
P � l . . . point P is incident to line l
P _ Q . . . line(s) incident to points P and Q
k ^ l . . . point(s) incident to lines k and l
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2 Linear algebra

We rely on linear algebra [3, 4, 5, 6, 7, 8]. We recommend excellent text books [6, 3]
for acquiring basic as well as more advanced elements of the topic. Monograph [4]
provides a number of examples and applications and providesa link to numerical
and computational aspects of linear algebra. We will next review the most crucial
topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of avector in a linear space,
which is induced by passing from one basis to another. We shall derive the relation-
ship between the coordinates in a three-dimensional linearspace over real numbers,
which is the most important when modeling the geometry around us. The formulas
for all other n-dimensional spaces are obtained by passing from 3 to n.

x1 Coordinates Let us consider an ordered basis� �
�
~b1 ~b2 ~b3

�
of a three-

dimensional vector spaceV 3 over scalarsR. A vector ~v P V 3 is uniquely expressed
as a linear combination of basic vectors ofV 3 by its coordinates x; y; z P R, i.e.
~v � x ~b1 � y ~b2 � z~b3, and can be represented as an ordered triple of coordinates,
i.e. as~v� �

�
x y z

� J
.

We see that an ordered triple of scalars can be understood as atriple of coor-
dinates of a vector in V 3 w.r.t. a basis of V 3. However, at the same time, the set
of ordered triples

�
x y z

� J
is also a three-dimensionalcoordinate linear spaceR3

over R with
�
x1 y1 z1

� J
�

�
x2 y2 z2

� J
�

�
x1 � x2 y1 � y2 z1 � z2

� J
and

s
�
x y z

� J
�

�
s x s y s z

� J
for s P R. Moreover, the ordered triple of the

following three particular coordinate vectors

� �

�

�

�

�
1
0
0

�

�

�

�
0
1
0

�

�

�

�
0
0
1

�

�

�

� (2.1)

forms an ordered basis ofR3, the standard basis, and therefore a vector~v �
�
x y z

� J

is represented by~v� �
�
x y z

� J
w.r.t. the standard basis in R3. It is noticeable

that the vector ~v and the coordinate vector~v� of its coordinates w.r.t. the standard
basis ofR3, are identical.

x2 Two bases Having two ordered bases� �
�
~b1 ~b2 ~b3

�
and � 1 �

�
~b1

1
~b1

2
~b1

3

�

leads to expressing one vector~x in two ways as ~x � x ~b1 � y ~b2 � z ~b3 and ~x �
x1~b1

1 � y1~b1
2 � z1~b1

3. The vectors of the basis� can also be expressed in the basis� 1

2
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using their coordinates. Let us introduce

~b1 � a11~b1
1 � a21~b1

2 � a31~b1
3

~b2 � a12~b1
1 � a22~b1

2 � a32~b1
3 (2.2)

~b3 � a13~b1
1 � a23~b1

2 � a33~b1
3

x3 Change of coordinates We will next use the above equations to relate the
coordinates of~x w.r.t. the basis � to the coordinates of~x w.r.t. the basis � 1

~x � x ~b1 � y ~b2 � z ~b3

� x pa11~b1
1 � a21~b1

2 � a31~b1
3q � y pa12~b1

1 � a22~b1
2 � a32~b1

3q � z pa13~b1
1 � a23~b1

2 � a33~b1
3q

� p a11 x � a12 y � a13 zq~b1
1 � p a21 x � a22 y � a23 zq~b1

2 � p a31 x � a32 y � a33 zq~b1
3

� x1~b1
1 � y1~b1

2 � z1~b1
3 (2.3)

Since coordinates are unique, we get

x1 � a11 x � a12 y � a13 z (2.4)

y1 � a21 x � a22 y � a23 z (2.5)

z1 � a31 x � a32 y � a33 z (2.6)

Coordinate vectors~x� and ~x� 1 are thus related by the following matrix multiplication

�

�
x1

y1

z1

�

� �

�

�
a11 a12 a13

a21 a22 a23

a31 a32 a33

�

�

�

�
x
y
z

�

� (2.7)

which we concisely write as

~x� 1 � A~x� (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors,
~b1;~b2;~b3 of � in the basis � 1

A �

�

�
| | |
~b1� 1

~b2� 1
~b3� 1

| | |

�

� (2.9)

and the matrix multiplication can be interpreted as a linear combination of the
columns of A by coordinates of~x w.r.t. �

~x� 1 � x~b1� 1 � y~b2� 1 � z~b3� 1 (2.10)

Matrix A plays such an important role here that it deserves its own name. Matrix
A is very often called thechange of basis matrix from basis� to � 1 or the transition
matrix from basis � to basis � 1 [4, 9] since it can be used to pass from coordinates
w.r.t. � to coordinates w.r.t. � 1 by Equation 2.8.

However, literature [5, 10] callsA the change of basis matrix from basis� 1 to � ,
i.e. it (seemingly illogically) swaps the bases. This choice is motivated by the fact

3
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that A relates vectors of� and vectors of � 1 by Equation 2.2 as
�
~b1 ~b2 ~b3

�
�

�
a11~b1

1 � a21~b1
2 � a31~b1

3 a12~b1
1 � a22~b1

2 � a32~b1
3

a13~b1
1 � a23~b1

2 � a33~b1
3

�
(2.11)

�
~b1 ~b2 ~b3

�
�

�
~b1

1
~b1

2
~b1

3

�
�

�
a11 a12 a13

a21 a22 a23

a31 a32 a33

�

� (2.12)

(2.13)

and therefore giving
�
~b1 ~b2 ~b3

�
�

�
~b1

1
~b1

2
~b1

3

�
A (2.14)

or equivalently
�
~b1

1
~b1

2
~b1

3

�
�

�
~b1 ~b2 ~b3

�
A� 1 (2.15)

where the multiplication of a row of column vectors by a matrix from the right in
Equation 2.14 has the meaning given by Equation 2.11 above. Yet another variation
of the naming appeared in [7, 8] whereA� 1 was named thechange of basis matrix
from basis � to � 1.

We have to conclude that the meaning associated with thechange of basis matrix
varies in the literature and hence we will avoid this confusing name and talk about
A as about the matrix transforming coordinates of a vector from basis� to basis � 1.

There is the following interesting variation of Equation 2.14
�

�
�

~b1
1

~b1
2

~b1
3

�

�
� � A�J

�

�
�

~b1
~b2
~b3

�

�
� (2.16)

where the basic vectors of� and � 1 are understood as elements of column vectors.
For instance, vector~b1

1 is obtained as

~b1
1 � a�

11
~b1 � a�

12
~b2 � a�

13
~b3 (2.17)

where ra�
11; a�

12; a�
13s is the �rst row of A�J .

x4 Example We demonstrate the relationship between vectors and bases on a
concrete example. Consider two bases� and � represented by coordinate vectors,
which we write into matrices

� �
�
~a1 ~a2 ~a3

�
�

�

�
1 1 0
0 1 1
0 0 1

�

� (2.18)

� �
�
~b1 ~b2 ~b3

�
�

�

�
1 1 1
0 0 1
0 1 1

�

� ; (2.19)

4
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and a vector ~x with coordinates w.r.t. the basis �

~x� �

�

�
1
1
1

�

� (2.20)

We see that basic vectors of� can be obtained as the following linear combinations
of basic vectors of�

~a1 � � 1~b1 � 0~b2 � 0~b3 (2.21)

~a2 � � 1~b1 � 1~b2 � 1~b3 (2.22)

~a3 � � 1~b1 � 0~b2 � 1~b3 (2.23)

(2.24)

or equivalently

�
~a1 ~a2 ~a3

�
�

�
~b1 ~b2 ~b3

�
�

�
1 1 � 1
0 � 1 0
0 1 1

�

� �
�
~b1 ~b2 ~b3

�
A (2.25)

Coordinates of~x w.r.t. � are hence obtained as

~x� � A~x� ; A �

�

�
1 1 � 1
0 � 1 0
0 1 1

�

� (2.26)

�

�
1

� 1
2

�

� �

�

�
1 1 � 1
0 � 1 0
0 1 1

�

�

�

�
1
1
1

�

� (2.27)

We see that

� � � A (2.28)
�

�
1 1 0
0 1 1
0 0 1

�

� �

�

�
1 1 1
0 0 1
0 1 1

�

�

�

�
1 1 � 1
0 � 1 0
0 1 1

�

� (2.29)

The following questions arises: When are the coordinates ofa vector~x (Equation 2.8)
and the basic vectors themselves (Equation 2.16) transformed in the same way? In
other words, when A � A�J . We shall give the answer to this question later in
paragraph 2.4.

2.2 Determinant

Determinat [3] of a matrix A, denoted by |A|, is a very interesting and useful concept.
It can be, for instance, used to check the linear independence of a set of vectors or
to de�ne an orientation of the space.

2.2.1 Permutation

A permutation [3] � on the set rns� t 1; : : : ; nu of integers is a one-to-one function
from rns onto rns. The identity permutation will be denoted by � , i.e. � piq � i for
all i P rns .

5
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x5 Composition of permutations Let � and � be two permutations on rns. Then,
their composition, i.e. � p� q, is also a permutation onrns since a composition of two
one-to-one onto functions is a one-to-one onto function.

x6 Sign of a permutation We will now introduce another important concept re-
lated to permutations. Sign, sgnp� q, of a permutation � is de�ned as

sgnp� q � p� 1qN p� q (2.30)

where N p� q is equal to the number of inversions in � , i.e. the number of pairs ri; j s
such that i; j P rns, i   j and � piq ¡ � pj q.

2.2.2 Determinant

Let Sn be the set of all permutations on rns and A be an n � n matrix. Then,
determinant |A| of A is de�ned by the formula

|A| �
¸

� PSn

sgnp� qA1;� p1qA2;� p2q � � � An;� pnq (2.31)

Notice that for every � P Sn and for j P rns there is exactly onei P rns such that
j � � piq. Hence

tr 1; � p1qs; r2; � p2qs; : : : ; rn; � pnqsu �
 
r� � 1p1q; 1s; r� � 1p2q; 2s; : : : ; r� � 1pnq; ns

(

(2.32)
and since the multiplication of elements ofA is commutative we get

|A| �
¸

� PSn

sgnp� qA� � 1p1q;1 A� � 1p2q;2 � � � A� � 1pnq;n (2.33)

Let us next de�ne a submatrix of Aand �nd its determinant. Consider k ¤ n and two
one-to-onemonotonic functions �; � : rks Ñ rns, i   j ñ � piq   � pj q, � piq   � pj q.
We de�ne k � k submatrix A�;� of an n � n matrix A by

A�;�
i;j � A� pi q;� pj q for i; j P rks (2.34)

We get the determinant of A�;� as follows

|A�;� | �
¸

� PSk

sgnp� qA�;�
1;� p1qA�;�

2;� p2q � � � A�;�
k;� pkq (2.35)

�
¸

� PSk

sgnp� qA� p1q;� p� p1qqA� p2q;� p� p2qq� � � A� pkq;� p� pkqq (2.36)

Let us next split the rows of the matrix A into two groups of k and m rows and
�nd the relationship between |A| and the determinants of certain k � k and m � m
submatrices ofA. Take 1 ¤ k; m ¤ n such that k � m � n and de�ne a one-to-one
function � : rms Ñ rk � 1; ns � t k � 1; : : : ; nu, by � piq � k � i . Next, let 
 „ exprns
be the set of all subsets ofrns of size k. Let ! P 
. Then, there is exactly one
one-to-one monotonic function ' ! from rks onto ! since rks and ! are �nite sets
of integers of the same size. Let! � r nsz! . Then, there is exactly one one-to-one
monotonic function ' ! from rk � 1; ns onto ! . Let further there be � k P Sk and

6
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� m P Sm . With the notation introduced above, we are getting a version of the
generalized Laplace expansion of the determinant [11, 12]

|A| �
¸

! P


�

�
¹

i Prks;j Prk� 1;ns

sgnp' ! pj q � ' ! piqq

�


 |A�;' ! |
�
�
�A�;' ! p� q

�
�
� (2.37)

2.3 Vector product

Let us look at an interesting mapping from R3 � R3 to R3, the vector product in R3 [6]
(which it also often called the cross product [4]). Vector product has interesting
geometrical properties but we shall motivate it by its connection to systems of linear
equations.

x7 Vector product Assume two linearly independent coordinate vectors
~x �

�
x1 x2 x3

� J
and ~y �

�
y1 y2 y3

� J
in R3. The following system of linear

equations �
x1 x2 x3

y1 y2 y3

�
~z � 0 (2.38)

has a one-dimensional subspaceV of solutions in R3. The solutions can be written
as multiples of one non-zero vector~w, the basis ofV , i.e.

~z � � ~w; � PR (2.39)

Let us see how we can construct~w in a convenient way from vectors~x, ~y.
Consider determinants of two matrices constructed from thematrix of the sys-

tem (2.38) by adjoining its �rst, resp. second, row to the matrix of the system (2.38)
�
�
�
�
�
�

�

�
x1 x2 x3

y1 y2 y3

x1 x2 x3

�

�

�
�
�
�
�
�

� 0

�
�
�
�
�
�

�

�
x1 x2 x3

y1 y2 y3

y1 y2 y3

�

�

�
�
�
�
�
�
� 0 (2.40)

which gives

x1 px2 y3 � x3 y2q � x2 px3 y1 � x1 y3q � x3 px1 y2 � x2 y1q � 0 (2.41)

y1 px2 y3 � x3 y2q � y2 px3 y1 � x1 y3q � y3 px1 y2 � x2 y1q � 0 (2.42)

and can be rewritten as
�

x1 x2 x3

y1 y2 y3

�
�

�
x2 y3 � x3 y2

� x1 y3 � x3 y1

x1 y2 � x2 y1

�

� � 0 (2.43)

We see that vector

~w �

�

�
x2 y3 � x3 y2

� x1 y3 � x3 y1

x1 y2 � x2 y1

�

� (2.44)

solves Equation 2.38.
Notice that elements of ~w are the three two by two minors of the matrix of the

system (2.38). The rank of the matrix is two, which means that at least one of the
minors is non-zero, and hence~w is also non-zero. We see that~w is a basic vector of
V . Formula 2.44 is known as thevector product in R3 and ~w is also often denoted
by ~x � ~y.

7
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x8 Vector product under the change of basis Let us next study the behavior of
the vector product under the change of basis inR3. Let us have two bases� , � 1 in
R3 and two vectors ~x, ~y with coordinates ~x� �

�
x1 x2 x3

� J
, ~y� �

�
y1 y2 y3

� J

and ~x� 1 �
�
x 1

1 x 1
2 x 1

3

� J
, ~y� �

�
y1

1 y1
2 y1

3

� J
. We introduce

~x� � ~y� �

�

�
x2 y3 � x3 y2

� x1 y3 � x3 y1

x1 y2 � x2 y1

�

� ~x� 1 � ~y� 1 �

�

�
x 1

2y1
3 � x 1

3y1
2

� x 1
1y1

3 � x 1
3y1

1
x 1

1y1
2 � x 1

2y1
1

�

� (2.45)

To �nd the relationship between ~x� � ~y� and ~x� 1� ~y� 1, we will use the following fact.

For every three vectors~x �
�
x1 x2 x3

� J
, ~y �

�
y1 y2 y3

� J
, ~z �

�
z1 z2 z3

� J

in R3 there holds

~zJ p~x � ~yq �
�
z1 z2 z3

�
�

�
x2 y3 � x3 y2

� x1 y3 � x3 y1

x1 y2 � x2 y1

�

� �

�
�
�
�
�
�

�

�
x1 x2 x3

y1 y2 y3

z1 z2 z3

�

�

�
�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

~yJ

~zJ

�

�

�
�
�
�
�
�
(2.46)

We can write

~x� 1 � ~y� 1 �

�

�
r1 0 0s p~x� 1 � ~y� 1q
r0 1 0s p~x� 1 � ~y� 1q
r0 0 1s p~x� 1 � ~y� 1q

�

� �

�

�

�
�
�
�
�
�

�

�
~xJ

� 1

~yJ
� 1

1 0 0

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

� 1

~yJ
� 1

0 1 0

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

� 1

~yJ
� 1

0 0 1

�

�

�
�
�
�
�
�

�

�

J

�

�

�

�
�
�
�
�
�

�

�
~xJ

� AJ

~yJ
� AJ

1 0 0

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

� AJ

~yJ
� AJ

0 1 0

�

�

�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

� AJ

~yJ
� AJ

0 0 1

�

�

�
�
�
�
�
�

�

�

J

�

�

�

�
�
�
�
�
�

�

�
~xJ

�
~yJ

�
r1 0 0s A�J

�

� AJ

�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

�
~yJ

�
r0 1 0s A�J

�

� AJ

�
�
�
�
�
�

�
�
�
�
�
�

�

�
~xJ

�
~yJ

�
r0 0 1s A�J

�

� AJ

�
�
�
�
�
�

�

�

J

�

�

�
r1 0 0sA�J p~x� � ~y� q
r0 1 0sA�J p~x� � ~y� q
r0 0 1sA�J p~x� � ~y� q

�

�
�
�AJ

�
�

�
A�J

|A�J |
p~x� � ~y� q (2.47)

x9 Vector product as a linear mapping It is interesting to see that for all ~x; ~y PR3

there holds

~x � ~y �

�

�
x2 y3 � x3 y2

� x1 y3 � x3 y1

x1 y2 � x2 y1

�

� �

�

�
0 � x3 x2

x3 0 � x1

� x2 x1 0

�

�

�

�
y1

y2

y3

�

� (2.48)

and thus we can introduce matrix

r~xs� �

�

�
0 � x3 x2

x3 0 � x1

� x2 x1 0

�

� (2.49)

and write
~x � ~y � r ~xs� ~y (2.50)
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Notice also that r~xsJ
� � � r ~xs� and therefore

p~x � ~yqJ � pr ~xs� ~yqJ � � ~yJ r~xs� (2.51)

The result of x8 can also be written in the formalism of this paragraph. We can
write for every ~x; ~y PR3

rA~x� s� A~y� � p A~x� q � p A~y� q �
A�J

|A�J |
p~x� � ~y� q �

A�J

|A�J |
r~x� s� ~y� (2.52)

and hence we get for every~x PR3

rA~x� s� A�
A�J

|A�J |
r~x� s� (2.53)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear spaceL over scalarsS and consider
the set L � of all linear functions f : L Ñ S, i.e. the functions on L for which the
following holds true

f pa ~x � b ~yq � a f p~xq � b f p~yq (2.54)

for all a; bPS and all ~x; ~y P L.
Let us next de�ne the addition � � : L � � L � Ñ L � of linear functions f; g P L �

and the multiplication �� : S � L � Ñ L � of a linear function f PL � by a scalara PS
such that

pf � � gqp~xq � f p~xq � gp~xq (2.55)

pa �� f qp~xq � a f p~xq (2.56)

holds true for all a P S and for all ~x P L. One can verify that pL � ; � � ; �� q over
pS; � ; q is itself a linear space [3, 6, 5]. It makes therefore a good sense to use arrows
above symbols for linear functions, e.g.~f instead of f .

The linear spaceL � is derived from, and naturally connected to, the linear space
L and hence deserves a special name. Linear spaceL � is called [3] thedual (linear)
spaceto L .

Now, consider a basis� � r ~b1;~b2;~b3s of L . We will construct a basis � � of L � ,
in a certain natural and useful way. Let us take three linear functions ~b�

1;~b�
2;~b�

3 PL �

such that
~b�

1p~b1q � 1 ~b�
1p~b2q � 0 ~b�

1p~b3q � 0
~b�

2p~b1q � 0 ~b�
2p~b2q � 1 ~b�

2p~b3q � 0
~b�

3p~b1q � 0 ~b�
3p~b2q � 0 ~b�

3p~b3q � 1
(2.57)

where 0 and 1 are the zero and the unit element ofS, respectively. First of all, one
has to verify [3] that such an assignment is possible with linear functions over L .
Secondly one can show [3] that functions~b�

1;~b�
2;~b�

3 are determined by this assignment
uniquely on all vectors of L . Finally, one can observe [3] that the triple � � �
r~b�

1;~b�
2;~b�

3s forms an (ordered) basis of~L . The basis � � is called the dual basisof L � ,
i.e. it is the basis ofL � , which is related in a special (dual) way to the basis� of L .

9
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x10 Evaluating linear functions Consider a vector~x P L with coordinates ~x� �
rx1; x2; x3sJ w.r.t. a basis � � r ~b1;~b2;~b3s and a linear function ~h P L � with coordi-
nates~h� � � r h1; h2; h3sJ w.r.t. the dual basis � � � r ~b�

1;~b�
2;~b�

3s. The value ~hp~xq PS
is obtained from the coordinates~x� and ~h� � as

~hp~xq � ~hpx1~b1 � x2~b2 � x3~b3q (2.58)

� p h1~b�
1 � h2~b�

2 � h3~b�
3qpx1~b1 � x2~b2 � x3~b3q (2.59)

� h1~b�
1p~b1qx1 � h1~b�

1p~b2qx2 � h1~b�
1p~b3qx3

� h2~b�
2p~b1qx1 � h2~b�

2p~b2qx2 � h2~b�
2p~b3qx3 (2.60)

� h3~b�
3p~b1qx1 � h3~b�

3p~b2qx2 � h3~b�
3p~b3qx3

�
�
h1 h2 h3

�

�

�
�

~b�
1p~b1q ~b�

1p~b2q ~b�
1p~b3q

~b�
2p~b1q ~b�

2p~b2q ~b�
2p~b3q

~b�
3p~b1q ~b�

3p~b2q ~b�
3p~b3q

�

�
�

�

�
x1

x2

x3

�

� (2.61)

�
�
h1 h2 h3

�
�

�
1 0 0
0 1 0
0 0 1

�

�

�

�
x1

x2

x3

�

� (2.62)

�
�
h1; h2; h3

�
�

�
x1

x2

x3

�

� (2.63)

� ~h
J

� � ~x� (2.64)

The value of ~h PL � on ~x P L is obtained by multiplying ~x� by the transpose of~h� �

from the left.
Notice that the middle matrix on the right in Equation 2.61 ev aluates into the

identity. This is the consequence of using the pair of a basisand its dual basis.
The formula 2.64 can be generalized to the situation when bases are not dual by
evaluating the middle matrix accordingly. In general

~hp~xq � ~h
J

�� r~�bi p~bj qs~x� (2.65)

where matrix r~�bi p~bj qsis constructed from the respective bases� , �� of L and L � .

x11 Changing the basis in a linear space and in its dual Let us now look at what
happens with coordinates of vectors ofL � when passing from the dual basis� � to
the dual basis � 1� induced by passing from a basis� to a basis � 1 in L . Consider
vector ~x PL and a linear function ~h P L � and their coordinates~x� , ~x� 1 and ~h� � , ~h� 1�

w.r.t. the respective bases. Introduce further matrix A transforming coordinates of
vectors in L as

~x� 1 � A~x� (2.66)

when passing from� to � 1.
Basis � � is the dual basis to� and basis� 1� is the dual basis to� 1 and therefore

~h
J

� � ~x� � ~hp~xq � ~h
J

� 1� ~x� 1 (2.67)

for all ~x PL and all ~h P L � . Hence

~h
J

� � ~x� � ~h
J

� 1� A~x� (2.68)

10
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for all ~x PL and therefore
~h

J

� � � ~h
J

� 1� A (2.69)

or equivalently
~h� � � AJ ~h� 1� (2.70)

Let us now see what is the meaning of the rows of matrixA. It becomes clear from
Equation 2.69 that the columns of matrix AJ can be viewed as vectors of coordinates
of basic vectors of� 1� � r ~b1

1
� ;~b1

2
� ;~b1

3
� s in the basis � � � r ~b�

1;~b�
2;~b�

3s and therefore

A �

�

�
�

~b1
1

�
� �

J

~b1
2

�
� �

J

~b1
3

�
� �

J

�

�
� (2.71)

which means that the rows ofA are coordinates of the dual basis of the primed dual
space in the dual basis of the non-primed dual space.

Finally notice that we can also write

~h� 1� � A�J ~h� � (2.72)

which is formally identical with Equation 2.16.

x12 When do coordinates transform the same way in a basis and in its dual basis
It is natural to ask when it happens that the coordinates of linear functions in L �

w.r.t. the dual basis � � transform the same way as the coordinates of vectors ofL
w.r.t. the original basis � , i.e.

~x� 1 � A~x� (2.73)
~h� 1� � A~h� � (2.74)

for all ~x PL and all ~h P L � . Considering Equation 2.72, we get

A � A�J (2.75)

AJ A � I (2.76)

Notice that this is, for instance, satis�ed when A is a rotation [4]. In such a case,
one often does not anymore distinguish between vectors ofL and L � because they
behave the same way and it is hence possible to represent linear functions from L �

by vectors of L .

x13 Coordinates of the basis dual to a general basis We denote the standard
basis in R3 by � and its dual (standard) basis in R3� by � � . Now, we can further
establish another basis
 �

�
~c1 ~c2 ~c3

�
in R3 and its dual basis
 � �

�
~c�

1 ~c�
2 ~c�

3

�

in R3� . We would like to �nd the coordinates 
 �
� � �

�
~c�

1� � ~c�
2� � ~c�

3� �

�
of vectors

of 
 � w.r.t. � � as a function of coordinates
 � �
�
~c1� ~c2� ~c3�

�
of vectors of 


w.r.t. � .
Considering Equations 2.57 and 2.64, we are getting

~ci
�
� �

J
~cj� �

"
1 if i � j
0 if i � j

for i; j � 1; 2; 3 (2.77)
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which can be rewritten in a matrix form as
�

�
1 0 0
0 1 0
0 0 1

�

� �

�

�
�

~c1
�
� �

J

~c2
�
� �

J

~c3
�
� �

J

�

�
�

�
~c1� ~c2� ~c3�

�
� 
 �

� �
J 
 � (2.78)

and therefore

 �

� � � 
 �J
� (2.79)

x14 Remark on higher dimensions We have introduced the dual space and the
dual basis in a three-dimensional linear space. The de�nition of the dual space is
exactly the same for any linear space. The de�nition of the dual basis is the same for
all �nite-dimensional linear spaces [3]. For any n-dimensional linear spaceL and its
basis � , we get the corresponding n-dimensional dual spaceL � with the dual basis
� � .

2.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here we review a
few useful rules for matrix manipulation. The rules are often studied in multi-linear
algebra and tensor calculus. We shall not review the theory of multi-linear algebra
but will look at the rules from a phenomenological point of view. They are useful
identities making an e�ective manipulation and concise notation possible.

x15 Kronecker product Let A be a k � l matrix and B be a m � n matrix

A �

�

�
�
�
�

a11 a12 � � � a1l

a21 a22 � � � a2l
...

...
. . .

...
ak1 ak2 � � � akl

�

�
�
�
�

PRk� l and BP Rm� n (2.80)

then k m � l n matrix

C� Ab B �

�

�
�
�
�

a11 B a12 B � � � a1l B
a21 B a22 B � � � a2l B

...
...

. . .
...

ak1 B ak2 B � � � akl B

�

�
�
�
�

(2.81)

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pA b Bq b C � A b pB b Cq, but it

is not commutative, i.e. A b B � B b A in general. There holds a useful identity
pAb BqJ � AJ b BJ .

x16 Matrix vectorization Let A be an m � n matrix

A �

�

�
�
�
�

a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
. . .

...
am1 am2 � � � amn

�

�
�
�
�

PRm� n (2.82)
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We de�ne operator vp:q: Rm� n Ñ Rm n which reshapes anm � n matrix A into a
m n � 1 matrix (i.e. into a vector) by stacking columns of A one above another

vpAq �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

a11

a21
...

am1

a12

a22
...

am2

a1n

a2n
...

amn

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� (2.83)

Let us study the relationship between vpAq and vpAJ q. We see that vector vpAJ q
contains permuted elements ofvpAq and therefore we can construct permutation
matrices [4] J m� n and J n� m such that

vpAJ q � J m� n vpAq

vpAq � J n� m vpAJ q

We see that there holds

J n� m J m� n vpAq � J n� m vpAJ q � vpAq (2.84)

for every m � n matrix A. Hence

J n� m � J � 1
m� n (2.85)

Consider a permutation J . It has exactly one unit element in each row and in
each column. Consider thei -th row with 1 in the j -th column. This row sends the
j -th element of an input vector to the i -th element of the output vector. The i -the
column of the transpose ofJ has 1 in the j -th row. It is the only non-zero element
in that row and therefore the j -th row of J J sends thei -th element of an input
vector to the j -th element of the output vector. We see that J J is the inverse ofJ ,
i.e. permutation matrices are orthogonal. We see that

J � 1
m� n � J J

m� n (2.86)

and hence conclude
J n� m � J J

m� n (2.87)

We also write vpAq � J J
m� n vpAJ q.

x17 From matrix equations to linear systems Kronecker product of matrices
and matrix vectorization can be used to manipulate matrix equations in order to

13
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get systems of linear equations in the standard matrix formA x � b. Consider, for
instance, matrix equation

A X B� C (2.88)

with matrices A P Rm� k , X P Rk� l , B P Rl � n , CP Rm� n . It can be veri�ed by direct
computation that

vpA X Bq � p BJ b AqvpXq (2.89)

This is useful when matricesA, B and C are known and we use Equation 2.88 to
compute X. Notice that matrix Equation 2.88 is actually equivalent to m n scalar
linear equations in k l unknown elements ofX. Therefore, we should be able to write
it in the standard form, e.g., as

MvpXq � vpCq (2.90)

with some MPRpm n q�p k l q. We can use Equation 2.89 to getM� BJ b A which yields
the linear system

vpA X Bq � vpCq (2.91)

pBJ b AqvpXq � vpCq (2.92)

for unknown vpXq, which is in the standard form.
Let us next consider two variations of Equation 2.88. First consider matrix

equation

A X B� X (2.93)

Here unknownsX appear on both sides but we are still getting a linear system of
the form

pBJ b A� I qvpXq � 0 (2.94)

where I is the pm nq � p k lq identity matrix.
Next, we add yet another constraints: XJ � X, i.e. matrix X is symmetric, to get

A X B� X and XJ � X (2.95)

which can be rewritten in the vectorized form as

pBJ b A� I qvpXq � 0 and pJm� n � I qvpXq � 0 (2.96)

and combined it into a single linear system
�

J m� n � I
BJ b A� I

�
vpXq � 0 (2.97)
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3 A�ne space

Let us study the a�ne space, an important structure underlyi ng geometry and
its algebraic representation. The a�ne space is closely connected to the linear
space. The connection is so intimate that the two spaces are sometimes not even
distinguished. Consider, for instance, functionf : R Ñ R with non-zero a; bPR

f pxq � a x � b (3.1)

It is often called \linear" but it is not a linear function [5, 6, 4] since for every� P R
there holds

f p� x q � � a x � b � � pa x � bq � � f pxq (3.2)

In fact, f is an a�ne function , which becomes a linear function only forb � 0.
In geometry, we need to be very precise and we have to clearly distinguish a�ne

from linear. Let us therefore �rst review the very basics of linear spaces, and in
particular their relationship to geometry, and then move to the notion of a�ne
spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of their manipulation.
Figure 3.1(a) shows the space of pointsP, which we live in and intuitively un-

derstand. We know what is an oriented line segment, which we also call a marked
ruler (or just a ruler). A marked ruler is oriented from its origin t owards its end,
which is actually a mark (represented by an arrow in Figure 3.1(b)) on a thought
in�nite ruler, Figure 3.1(b). We assume that we are able to align the ruler with any

x

y

z

u
v

(a) (b) (c)

Figure 3.1: (a) The space around us consists of points. Rulers (marked oriented
line segments) can be aligned (b) and translated (c) and thusused to
transfer, but not measure, distances.
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a
a

a
a

b

b
b

b
a � b

a � b

a

aa

ab

b

1

1
1

� 1
� 1

a b

� 1a

(a) (b)

Figure 3.2: Scalars are represented by oriented rulers. They can be added (a) and
multiplied (b) purely geometrically by translating and ali gning rulers.
Notice that we need to single out a unit scalar \1" to perform geometric
multiplication.

pair of points x, y, so that the ruler begins in x and a mark is made at the point y.
We also know how to align a marked ruler with any pair of distinct points u, v such
that the ruler begins in u and aligns with the line connectingu and v in the direction
towards point v. The mark on so aligned ruler determines another point, callit z,
which is collinear with points u, v. We know how to translate, Figure 3.1(c), a ruler
in this space.

To de�ne geometric vectors, we need to �rst de�ne geometric scalars.

3.1.1 Geometric scalars

Geometric scalarsS are horizontal oriented rulers. The ruler, which has its origin
identical with its end is called 0. Geometric scalars are equipped with two geometric
operations, addition a � b and multiplication a b, de�ned for every two elements
a; bPS.

Figure 3.2(a) shows additiona � b. We translate ruler b to align origin of b with
the end of a and obtain ruler a � b.

Figure 3.2(b) shows multiplication a b. To perform multiplication, we choose
a unit ruler \1" and construct its additive inverse � 1 using 1� p� 1q � 0. This
introduces orientation to scalars. Scalars aiming to the same side as 1 arepositive
and scalars aiming to the same side as� 1 are negative. Scalar 0 is neither positive,
nor negative. Next we de�ne multiplication by � 1 such that � 1a � � a, i.e. � 1 times
a equals the additive inverse ofa. Finally, we de�ne multiplication of non-negative
(i.e. positive and zero) rulersa, b as follows. We aligna with 1 such that origins of
1 and a coincide and such that the rulers contain an acute non-zero angle. We align
b with 1 and construct ruler a b by a translation, e.g. as shown in Figure 3.2(b)1.

All constructions used were purely geometrical and were performed with real
rulers. We can verify that so de�ned addition and multiplica tion of geometric scalars

1Notice that a b is well de�ned since it is the same for all non-zero angles contained by a and 1.
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~x ` ~y

~y ` ~x

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.3: Bound vectors are (ordered) pairs of pointspo; xq, i.e. arrows ~x � p o; xq.
Addition of the bound vectors ~x, ~y is realized by parallel transport (using
a ruler). We see that the result is the same whether we add~x to ~y or ~y
to ~x. Addition is commutative.

satisfy all rules of addition and multiplication of real numbers. Geometric scalars
form a �eld [10, 13] w.r.t. to a � b and a b.

3.1.2 Geometric vectors

Ordered pairs of points, such aspx; yq in Figure 3.3(a), are calledgeometric vectors
and denoted asÝÑxy, i.e. ÝÑxy � p x; yq. Symbol ÝÑxy is often replaced by a simpler one,
e.g. by~a. The set of all geometric vectors is denoted byA.

3.1.3 Bound vectors

Let us now choose one pointo and consider all pairs po; xq, where x can be any
point, Figure 3.3(a). We obtain a subset Ao of A, which we call geometric vectors
bound too, or just bound vectorswhen it is clear to which point they are bound. We
will write ~x � p o; xq. Figure 3.3(f) shows another bound vector~y. The pair po; oq is
special. It will be called the zero bound vectorand denoted by~0. We will introduce
two operations ` ; d with bound vectors.

First we de�ne addition of bound vectors` : Ao � Ao Ñ Ao. Let us add vector ~x
to ~y as shown on Figure 3.3(b). We take a ruler and align it with ~x, Figure 3.3(c).
Then we translate the ruler to align its begin with point y, Figure 3.3(d). The
end of the ruler determines point z. We de�ne a new bound vector, which we
denote ~x ` ~y, as the pair po; zq, Figure 3.3(e). Figures 3.3(f-j) demonstrate that
addition gives the same result when we exchange (commute) vectors ~x and ~y, i.e.
~x ` ~y � ~y ` ~x. We notice that for every point x, there is exactly one point x1 such
that po; xq ` po; x1q � p o; oq, i.e. ~x ` ~x1 � ~0. Bound vector ~x1 is the inverse to ~x and
is denoted as� ~x. Bound vectors are invertible w.r.t. operation ` . Finally, we see
that po; xq ` po; oq � p o; xq, i.e. ~x ` ~0 � ~x. Vector ~0 is the identity element of the
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operation ` . Clearly, operation ` behaves exactly as addition of scalars { it is a
commutative group [10, 13].

Secondly, we de�ne themultiplication of a bound vector by a geometric scalar
d : S� Ao Ñ Ao, whereS are geometric scalars andAo are bound vectors. Operation
d is a mapping which takes a geometric scalar (a ruler) and a bound vector and
delivers another bound vector.

Figure 3.4 shows that to multiply a bound vector ~x � p o; xqby a geometric scalar
a, we consider the rulerb whose origin can be aligned witho and end with x. We
multiply scalars a and b to obtain scalar a band align a bwith ~x such that the origin
of a b coincides with o and a b extends along the line passing through~x. We obtain
end point y of so placeda b and construct the resulting vector ~y � a d ~x � p o; yq.

We notice that addition ` and multiplication d of horizontal bound vectors
coincides exactly with addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalarsa; b P S and every three bound
vectors ~x; ~y; ~zP Ao with their respective operations, there holds the following eight
rules

~x ` p ~y ` ~zq � p ~x ` ~yq ` ~z (3.3)

~x ` ~y � ~y ` ~x (3.4)

~x ` ~0 � ~x (3.5)

~x ` � ~x � ~0 (3.6)

1 d ~x � ~x (3.7)

pa bq d ~x � a d pbd ~xq (3.8)

a d p~x ` ~yq � p a d ~xq ` pa d ~yq (3.9)

pa � bq d ~x � p a d ~xq ` pbd ~xq (3.10)

These rules are known as axioms of alinear space[5, 6, 3]. Bound vectors are one
particular model of the linear space. There are many other very useful models, e.g.
n-tuples of real or rational numbers for any natural n, polynomials, series of real
numbers and real functions. We will give some particularly simple examples useful
in geometry later.

o

x

y

~x

~y � a d ~x

a
b

a b

Figure 3.4: Multiplication of the bound vector ~x by a geometric scalara is realized
by aligning rulers to vectors and multiplication of geometric scalars.
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o

x

~x

~b1

~b2

x1 d ~b1

x2 d ~b2

Figure 3.5: Coordinates are the unique scalars that combineindependent basic vec-
tors ~b1, ~b2 into ~x.

The next concept we will introduce arecoordinates of bound vectors. To illustrate
this concept, we will work in a plane. Figure 3.5 shows two non-collinear bound
vectors~b1, ~b2, which we call basis, and another bound vector~x. We see that there is
only one way how to choose scalarsx1 and x2 such that vectors x1 d ~b1 and x2 d ~b2

add to ~x, i.e.
~x � x1 d ~b1 ` x2 d ~b2 (3.11)

Scalarsx1, x2 are coordinates of ~x in (ordered) basis r~b1;~b2s.

3.3 Free vectors

We can choose any point fromA to construct bound vectors and all such choices
will lead to the same manipulation of bound vector and to the same axioms of a
linear space. Figure 3.6 shows two such choices for pointso and o1.

We take bound vectors~b1 � p o; b1q, ~b2 � p o; b2q, ~x � p o; xq at o and construct
bound vectors~b1

1 � p o1; b1
1q, ~b1

2 � p o1; b1
2q, ~x1 � p o1; x1q at o1 by translating x to x1, b1

to b1
1 and b2 to b1

2 by the same translation. Coordinates of~x w.r.t. r~b1;~b2s are equal
to coordinates of ~x1 w.r.t. r~b1

1;~b1
2s. This interesting property allows us to construct

another model of a linear space, which plays an important role in geometry.
Let us now consider the set of all geometric vectorsA. Figure 3.7(a) shows an

example of a few points and a few geometric vectors. Let uspartition [1] the setA of

o

o1

b1

b1
1

b2

b1
2

x

x1

~x

~x1

~b1

~b1
1~b2

~b1
2

x1 d ~b1

x1 d ~b1
1

x2 d ~b2

x2 d ~b1
2

Figure 3.6: Two sets of bound vectorsAo and Ao1. Coordinates of ~x w.r.t. r~b1;~b2s
are equal to coordinates of~x1 w.r.t. r~b1

1;~b1
2s.
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ooo

xx
y y

(a) (b)

Figure 3.7: The set A of all geometric vectors (a) can be partitioned into subsets
which are called free vectors. Two free vectorsApo;xq and Apo;yq, i.e.
subsets ofA, are shown in (b).

geometric vectors into disjoint subsetsApo;xq such that we choose one bound vector
po; xq and put to Apo;xq all geometric vectors that can be obtained by a translation
of po; xq. Figure 3.7(b) shows two such partitions Apo;xq, Apo;yq. It is clear that
Apo;xq X Apo;x1q � H for x � x1 and that every geometric vector is in some (and in
exactly one) subsetApo;xq.

Two geometric vectorspo; xq and po1; x1q form two subsetsApo;xq, Apo1;x1q which
are equal if and only if po1; x1q is related by a translation to po; xq.

\To be related by a translation" is an equivalence relation [1]. All geometric
vectors in Apo;xq are equivalent to po; xq.

There are as many sets in the partition as there are bound vectors at a point.
We can de�ne the partition by geometric vectors bound to any point o because if
we choose another pointo1, then for every point x, there is exactly one pointx1 such
that po; xq can be translated to po1; x1q.

We denote the set of subsetsApo;xq by V . Let us see that we can equip setV
with a meaningful addition ` : V � V Ñ V and multiplication d : S � V Ñ V by
geometric scalarsS such that it will become a model of the linear space. Elements
of V will be called free vectors.

We de�ne the sum of ~x � Apo;xq and ~y � Apo;yq, i.e. ~z � ~x ` ~y is the set
Apo;xq ` p o;yq. Multiplication of ~x � Apo;xq by geometrical scalara is de�ned analogi-
cally, i.e. a d ~x equals the setAadpo;xq. We see that the result of ` and d does not
depend on the choice ofo. We have constructed the linear spaceV of free vectors.

x18 Why so many vectors? In the literature, e.g. in [3, 4, 7], linear spaces are
often treated purely axiomatically and their geometrical models based on geometrical
scalars and vectors are not studied in detail. This is a good approach for a pure
mathematician but in engineering we use the geometrical model to study the space
we live in. In particular, we wish to appreciate that good understanding of the
geometry of the space around us calls for using bound as well as free vectors.

3.4 A�ne space

We saw that bound vectors and free vectors were (models of) a linear space. On the
other hand, we see that the set of geometric vectorsA is not (a model of) a linear
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Figure 3.8: Free vectorApo;xq is added to free vectorApp;yq by translating po; xq to
pq; x1q and pp; yq to pq; y1q, adding bound vectorspq; zq � p q; x1q ` pq; y1q
and setting Apo;xq ` App;yq � Apq;zq

x

y

z

t

~u

~v

~w

Figure 3.9: Free vectors~u, ~v and ~w de�ned by three points x, y and z satisfy triangle
identity ~u ` ~v � ~w.

space because we do not know how to meaningfully add (by translation) geometric
vectors which are not bound to the same point. The set of geometric vectors is an
a�ne space .

The a�ne space connects points, geometric scalars, bound geometric vectors and
free vectors in a natural way.

Two points x and y, in this order, give one geometric vectorpx; yq, which de-
termines exactly one free vector~v � Apx;y q. We de�ne function ' : A Ñ V , which
assigns to two pointsx; y P P their corresponding free vector' px; yq � Apx;y q.

Consider a point a P P and a free vector~x P V . There is exactly one geometric
vector pa; xq, with a at the �rst position, in the free vector ~x. Therefore, point a
and free vector~x uniquely de�ne point x. We de�ne function # : P � V Ñ P, which
takes a point and a free vector and delivers another point. Wewrite a# ~x � x and
require ~x � ' pa; xq.

Consider three pointsx; y; z P P, Figure 3.9. We can produce three free vectors
~u � ' px; yq � Apx;y q, ~v � ' py; zq � Apy;zq, ~w � ' px; zq � Apx;z q. Let us investigate
the sum ~u ` ~v. Chose the representatives of the free vectors, such that they are
all bound to x, i.e. bound vectors px; yq PAx;y , px; t q PApy;zq and px; zq PApx;z q.
Notice that we could choose the pairs of original points to represent the �rst and the
third free vector but we had to introduce a new pair of points, px; t q, to represent
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x

y

z � x# ~w

px; yq

py; zq

px; zq

~u � Apx;y q

~v � Apy;zq

~w � ~u ` ~v � Apo;aq`p o;cq

' px; yq

t
o

a

b

c

Figure 3.10: A�ne space pP; L; ' q, its geometric vectorspx; yq PA � P � P and free
vector spaceL and the canonical assignment of pairs of pointspx; yq to
the free vectorApx;y q. Operations ` , ` , combining vectors with vectors,
and # , combining points with vectors, are illustrated.

the second free vector. Clearly, there holdspx; yq ` px; t q � p x; zq. We now see,
Figure 3.9, that py; zq is related to px; t q by a translation and therefore

~u ` ~v � Apx;y q ` Apy;zq � Apx;y q ` Apx;t q � Apx;y q`p x;t q � Apx;z q � ~w (3.12)

Figure 3.10 shows the operations explained above in Figure 3.9 but realized using
the vectors bound to another point o.

The above rules are known asaxioms of a�ne space and can be used to de�ne
even more general a�ne spaces.

x19 Remark on notation We were carefully distinguishing operationsp� ; q over
scalars, p` ; dq over bound vectors, p̀ ; d q over free vectors, and function# com-
bining points and free vectors. This is very correct but rarely used. Often, only the
symbols introduced for geometric scalars are used for all operations, i.e.

� � � ; ` ; ` ; # (3.13)

� ; d ; d (3.14)

x20 A�ne space Triple pP; L; ' q with a set of points P, linear spacepL; ` ; d q
(over some �eld of scalars) and a function' : P � P Ñ L, is an a�ne space when

A1 ' px; zq � ' px; yq` ' py; zq for every three points x; y; z PP

A2 for every o P P, the function ' o : P Ñ L, de�ned by ' opxq � ' po; xq for all
x P P is a bijection [1].

Axiom A1 calls for an assignment of pairs of point to vectors.Axiom A2 then makes
this assignmet such that it is one-to-one when the �rst argument of ' is �xed.

We can de�ne another function # : P � L Ñ P, de�ned by o# ~x � ' � 1
o p~xq, which

means' po; o# ~xq � ~x for all ~x P L. This function combines points and vectors in a
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~o1 � ' po; o1q

~b1

~b2

~b1
1

~b1
2

Figure 3.11: Point x is represented in two a�ne coordinate systems.

way that is very similar to addition and hence is sometimes denoted by � instead
of more correct # .

In our geometrical model ofA discussed above, function' assigned to a pair of
points x, y their corresponding free vectorApx;y q. Function # , on the other hand,
takes a point x and a free vector~v and gives another pointsy such that the bound
vector px; yq is a representative of~v, i.e. Apx;y q � ~v.

3.5 Coordinate system in a�ne space

We see that function ' assigns the same vector fromL to many di�erent pairs of
points from P. To represent uniquely points by vectors, we select a pointo, called
the origin of a�ne coordinate system and represent pointx PP by its position vector
~x � ' po; xq. In our geometric model ofA discussed above, we thus represent point
x by bound vector po; xq or by point o and free vectorApo;xq.

To be able to compute with points, we now pass to the representation of points
in A by coordinate vectors. We choose a basis� � p ~b1;~b2; : : :q in L . That allows us
to represent point x PP by a coordinate vector

~x� �

�

�
�

x1

x2
...

�

�
� ; such that ~x � x1~b1 � x2~b2 � � � � (3.15)

The pair po; � q, where o P P and � is a basis ofL is called an a�ne coordinate
system(often shortly called just coordinate system) of a�ne space pP; L; ' q.

Let us now study what happens when we choose another pointo1 and another
basis� 1 � p ~b1

1;~b1
2; : : :q to representx P P by coordinate vectors, Figure 3.11. Pointx

is represented twice: by coordinate vector~x� � ' po; xq� � Apo;xq� and by coordinate
vector ~x1

� 1 � ' po1; xq� 1 � Apo1;xq� 1.
To get the relationship between the coordinate vectors~x� and ~x1

� 1, we employ
the triangle equality

' po; xq � ' po; o1q` ' po1; xq (3.16)

~x � ~o1` ~x1 (3.17)
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~u

~o

p
V

Figure 3.12: A�ne space pP; V; ' qof solutions to a linear system is the set of vectors
representing points on linep. In coordinate systemp~o; ~uq, vector ~x has
coordinate 1. The subspaceV of solutions to the associated homoge-
neous system is the associated linear space. Function' assigns to two
points ~o, ~x the vector ~u � ~y � ~x.

which we can write in basis� as (notice that we replace` by � to emphasize that
we are adding coordinate vectors)

~x� � ~x1
� � ~o1

� (3.18)

and use the matrix A transforming coordinates of vectors from basis� 1 to � to get
the desired relationship

~x� � A~x1
� 1 � ~o1

� (3.19)

Columns of A correspond to coordinate vectors~b1
1� ;~b1

2� ; : : :. When presented with a
situation in a real a�ne space, we can measure those coordinates by a ruler on a
particular representation of L by geometrical vectors bound to, e.g., pointo.

3.6 An example of a�ne space

Let us now present an important example of a�ne space.

3.6.1 A�ne space of solutions of a system of linear equations

When looking at the following system of linear equations inR2

�
1 1

� 1 � 1

�
~x �

�
2

� 2

�
(3.20)

we immediately see that there is an in�nite number of solutions. They can be written
as

~x �
�

2
0

�
� �

�
1

� 1

�
; � PR (3.21)
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or as a sum of a particular solutionr2; 0sJ and the set of solutions~v � � r� 1; 1sJ of
the accompanied homogeneous system

�
1 1

� 1 � 1

�
~v �

�
0
0

�
(3.22)

Figure 3.12 shows that the a�ne space pP; V; ' q of solutions to the linear sys-
tem (3.20) is the set of vectors representing points on linep. The subspaceV of
solutions to the accompanied homogeneous system (3.22) is the linear space associ-
ated to A by function ' , which assigns to two points~x; ~y PA the vector ~u � ~y� ~x PV .
If we choose~o � r 2; 0sJ as the origin in A and vector ~b � ' p~o; ~xq � ~x � ~o as the
basis ofV , vector ~x has coordinate 1.

We see that, in this example, points ofA are actually vectors of R2, which are
the solution to the system (3.20). The vectors ofV are the vectors ofR2, which are
solutions to the associated homogeneous linear system (3.22).
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4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Eu-
clidean space. The important property of rigid motion is that it only relocates
objects without changing their shape. Distances between points on rigidly moving
objects remain unchanged. For brevity, we will use \motion" for \rigid motion".

4.1 Change of position vector coordinates induced by
motion

X Y

~x

~x1

~y

~y1

O

O1

� ~o � ~o1

~b1

~b2

~b1
1

~b1
2

Figure 4.1: Representation of motion.

x21 Alias representation of motion 1. Figure 4.1 illustrates a model of motion using
coordinate systems, points and their position vectors. A coordinate system pO; � q
with origin O and basis� is attached to a moving rigid body. As the body moves to a
new position, a new coordinate systempO1; � 1qis constructed. Assume a pointX in a
general position w.r.t. the body, which is represented in the coordinate systempO; � q
by its position vector ~x. The same point X is represented in the coordinate system
pO1; � 1q by its position vector ~x1. The motion induces a mapping~x1

� 1 ÞÑ~x� . Such a
mapping also determines the motion itself and provides its convenient mathematical
model.

1The terms alias and alibi were introduced in the classical monograph [13].
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Let us derive the formula for the mapping ~x1
� 1 ÞÑ~x� between the coordinates

~x1
� 1 of vector ~x1 and coordinates~x� of vector ~x. Consider the following equations:

~x � ~x1� ~o1 (4.1)

~x� � ~x1
� � ~o1

� (4.2)

~x� �
�
~b1

1�
~b1

2�
~b1

3�

�
~x1

� 1 � ~o1
� (4.3)

~x� � R~x1
� 1 � ~o1

� (4.4)

~x1
� 1 � R� 1 �

~x� � ~o1
�

�
(4.5)

Vector ~x is the sum of vectors~x1 and ~o1, Equation 4.1. We can express all vectors
in (the same) basis� , Equation 4.2. To pass to the basis� 1 we introduce matrix

R �
�
~b1

1�
~b1

2�
~b1

3�

�
, which transforms the coordinates of vectors from� 1 to � ,

Equation 4.4. Columns of matrix R are coordinates~b1
1�

;~b1
2�

;~b1
3�

of basic vectors
~b1

1;~b1
2;~b1

3 of basis� 1 in basis � .

x22 Alibi representation of motion. An alternative model of motion can be de-
veloped from the relationship between the pointsX and Y and their position vectors
in Figure 4.1. The point Y is obtained by moving point X altogether with the mov-
ing object. It means that the coordinates ~y1

� 1 of the position vector ~y1 of Y in the
coordinate systempO1; � 1qequal the coordinates~x� of the position vector ~x of X in
the coordinate systempO; � q, i.e.

~y1
� 1 � ~x�

~y� 1 � ~o� 1 � ~x�

R� 1 p~y� � ~o� q � ~x�

~y� � R~x� � ~o� (4.6)

~y� � R~x� � ~o1
� (4.7)

Equation 4.6 describes how is the pointX moved to point Y w.r.t. the coordinate
system pO; � q.

4.2 Rotation matrix

Motion that leaves at least one point �xed is called rotation. Choosing such a �xed
point as the origin leads to O � O1 and hence to~o � ~0. The motion is then fully
described by matrix R, which is called rotation matrix .

x23 Two-dimensional rotation. To understand the matrix R, we shall start with
an experiment in two-dimensional plane. Imagine a right-angled triangle ruler as
shown in Figure 4.2(a) with arms of equal length and let us de�ne a coordinate
system as in the �gure. Next, rotate the triangle ruler around its tip, i.e. around the
origin O of the coordinate system. We know, and we can verify it by direct physical
measurement, that thanks to the symmetry of the situation, the parallelograms
through the tips of ~b1

1 and ~b1
2 and along~b1 and ~b2 will be rotated by 90 degrees. We
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~b2 ~b2

~b1
1

~b1
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a21

� a21O O

(a) (b)

Figure 4.2: Rotation in two-dimensional space.

see that

~b1
1 � a11~b1 � a21~b2 (4.8)

~b1
2 � � a21~b1 � a11~b2 (4.9)

for some real numbersa11 and a21. By comparing it with Equation 4.3, we conclude
that

R�
�

a11 � a21

a21 a11

�
(4.10)

We immediately see that

RJ R �
�

a11 a21

� a21 a11

� �
a11 � a21

a21 a11

�
�

�
a2

11 � a2
21 0

0 a2
11 � a2

21

�
�

�
1 0
0 1

�
(4.11)

since pa2
11 � a2

21q is the squared length of the basic vector ofb1, which is one. We
derived an interesting result

R� 1 � RJ (4.12)

R � R�J (4.13)

Next important observation is that for coordinates ~x� and ~x1
� 1, related by a rotation,

there holds

px1q2 � p y1q2 � ~x1
� 1

J ~x1
� 1 � p R~x� qJ R~x� � ~xJ

�

�
RJ R

�
~x� � ~xJ

� ~x� � x2 � y2 (4.14)

Now, if the basis � was constructed as in Figure 4.2, in which case it is called an
orthonormal basis, then the parallelogram used to measure coordinatesx; y of ~x is a
rectangle and hencex2 � y2 is the squared length of~x by the Pythagoras theorem.
If � 1 is related by rotation, then also px1q2 � p y1q2 is the squared length of~x, again
thanks to the Pythagoras theorem.

We see that~xJ
� ~x� is the squared length of~x when � is orthonormal and that this

length is preserved by computing it in the same way from the new coordinates of~x
in the new coordinate system after motion. The change of coordinates induced by
motion is modeled by rotation matrix R, which has the desired propertyRJ R � I ,
when the bases�; � 1 are both orthonormal.
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Figure 4.3: A three-dimensional coordinate system.

x24 Three-dimensional rotation. Let us now consider three dimensions. It would
be possible to generalize Figure 4.2 to three dimensions, construct orthonormal bases
and use rectangular parallelograms to establish the relationship between elements of
R in three dimensions. However, the �gure and the derivationswould become much
more complicated.

We shall follow a more intuitive path instead. Consider that we have found that
with two-dimensional orthonormal bases, the lengths of vectors could be computed
by the Pythagoras theorem since the parallelograms determining the coordinates
were rectangular. To achieve this in three dimensions, we need (and can!) use bases
consisting from three orthogonal vectors. Then, again, theparallelograms will be
rectangular and hence the Pythagoras theorem for three dimensions can be used
analogically as in two dimensions, Figure 4.3.

Considering orthonormal bases�; � 1, we require the following to hold for all
vectors ~x with ~x� �

�
x y z

� J
and ~x1

� 1 �
�
x1 y1 z1

� J

px1q2 � p y1q2 � p z1q2 � x2 � y2 � z2

~x1
� 1

J ~x1
� 1 � ~xJ

� ~x�

pR~x� qJ R~x� � ~xJ
� ~x�

~xJ
�

�
RJ R

�
~x� � ~xJ

� ~x�

~xJ
� C~x� � ~xJ

� ~x� (4.15)

Equation 4.15 must hold true for all vectors~x and hence also for special vectors such
as those with coordinates

�

�
1
0
0

�

� ;

�

�
0
1
0

�

� ;

�

�
0
0
1

�

� ;

�

�
1
1
0

�

� ;

�

�
1
0
1

�

� ;

�

�
0
1
1

�

� (4.16)

Let us see what that implies, e.g., for the �rst vector

�
1 0 0

�
C

�

�
1
0
0

�

� � 1 (4.17)

c11 � 1 (4.18)
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Taking the second and the third vector leads similarly to c22 � c33 � 1. Now, let's
try the fourth vector

�
1 1 0

�
C

�

�
1
1
0

�

� � 2 (4.19)

1 � c12 � c21 � 1 � 2 (4.20)

c12 � c21 � 0 (4.21)

Again, taking the �fth and the sixth vector leads to c13 � c31 � c23 � c32 � 0. This
brings us to the following form of C

C �

�

�
1 c12 c13

� c12 1 c23

� c13 � c23 1

�

� (4.22)

Moreover, we see thatC is symmetric since

CJ �
�
RJ R

� J
� RJ R� C (4.23)

which leads to � c12 � c12, � c13 � c13 and � c23 � c23, i.e. c12 � c13 � c23 � 0 and
allows us to conclude that

RJ R� C� I (4.24)

Interestingly, not all matrices Rsatisfying Equation 4.24 represent motions in three-
dimensional space.

Consider, e.g., matrix

S �

�

�
1 0 0
0 1 0
0 0 � 1

�

� (4.25)

Matrix S does not correspond to any rotation of the space since it keeps the plane
xy �xed and re
ects all other points w.r.t. this xy plane. We see that some matrices
satisfying Equation 4.24 are rotations but there are also some such matrices that
are not rotations. Can we somehow distinguish them?

Notice that |S| � � 1 while |I | � 1. It might be therefore interesting to study
the determinant of C in general. Consider that

1 � | I | �
�
�pRJ Rq

�
� �

�
�RJ

�
� |R| � | R| |R| � p| R|q2 (4.26)

which gives that |R| � � 1. We see that the sign of the determinant splits all
matrices satisfying Equation 4.24 into two groups { rotations, which have a positive
determinant, and re
ections, which have a negative determinant. The product of
any two rotations will again be a rotation, the product of a rotation and a re
ection
will be a re
ection and the product of two re
ections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3� 3
matrix R with RJ R� I and |R| � 1. The set of all such matrices, and at the same
time also the corresponding rotations, will be calledSOp3q, for special orthonormal
three-dimensional group. Two-dimensional rotations will be analogically denoted as
SOp2q.
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4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates
and the basic vectors are transformed in the same way. This isparticularly useful
observation when� is formed by the standard basis, i.e.

� �

�

�

�

�
1
0
0

�

� ;

�

�
0
1
0

�

� ;

�

�
0
0
1

�

�

�


 (4.27)

For a rotation matrix R, Equation 2.16 becomes
�

�
�

~b1
1

~b1
2

~b1
3

�

�
� � R

�

�
�

~b1
~b2
~b3

�

�
� �

�

�
r11 r12 r13

r21 r22 r23

r31 r32 r33

�

�

�

�
�

~b1
~b2
~b3

�

�
� �

�

�
�

r11~b1 � r12~b2 � r13~b3

r21~b1 � r22~b2 � r23~b3

r31~b1 � r32~b2 � r33~b3

�

�
�(4.28)

and hence

~b1
1 � r11~b1 � r12~b2 � r13~b3 � r11

�

�
1
0
0

�

� � r12

�

�
0
1
0

�

� � r13

�

�
0
0
1

�

� �

�

�
r11

r12

r13

�

� (4.29)

and similarly for ~b1
2 and ~b1

3. We conclude that

�
~b1

1
~b1

2
~b1

3

�
�

�

�
r11 r21 r31

r12 r22 r32

r13 r23 r33

�

� � RJ (4.30)

This also corresponds to solving forR in Equation 2.14 with A � R
�

�
1 0 0
0 1 0
0 0 1

�

� �
�
~b1

1
~b1

2
~b1

3

�
R (4.31)
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5 Image coordinate system

Digital image Im is a matrix of pixels. We assume thatIm is obtained by measuring
intensity of light by sensors (pixels) arranged in a grid, Figure 5.1.

We will work with images in two ways. First, we will work with i ntensity values,
which are stored in the memory as a three-dimensional array of bytes indexed by
the row index i , the column index j , and the color indexk, Figure 5(a). Color index
attains three values 1; 2; 3, with 1 corresponding to red, 2 corresponding to green
and 3 corresponding to blue colors.

In Matlab , image Im is accessed using the row indexi , the column index j and
the color index k as>>Im(i,j,k) . The most top left pixel has row as well as column
index equal to 1. The red channel of the pixel with row index2 and column index
3 is accessed as>>Im(2,3,1) .

x25 Image coordinate system For geometrical computation, we introduce anim-
age coordinate systemas in Figure 5(b). The origin of the image coordinate system is
chosen to assign coordinates 1; 1 to the center of the most top left pixel. Horizontal
axis ~b1 goes from left to right. The vertical axis ~b2 goes from top down. The pixel
that is accessed as>>Im(i,j,k) is in the image coordinate system represented by
the vector ~u � r j ; i sJ . A digital image with H rows and W columns will be in in-
dexed in Matlab as >>Im(1:H,1:W,1:3) and >>size(Im) will return [H W 3]. The
center of the most bottom right pixel will have coordinates rW; H sJ in the image
coordinate system.

The image coordinate system coincides with theMatlab coordinate systemimage,
i.e. commands

>> axis image
>> plot(j,i,'.b')

plot a blue dot on the pixel accessed asIm(i,j,k) ;
The image coordinate system is non-standard in two dimensions since it is a

left-handed system. The reason for such a unnatural choice is that this system will
be next augmented into a three-dimensional right-handed coordinate system in such
a way that the ~b3 vector will be pointing towards the scene.
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Figure 5.1: Image is digitized by a rectangular array of pixels

i

j

2

3

2

3~b1

~b2

(a) Image Im is a matrix of pixels.
In Matlab , it is accessed using the
row index i , the column index j and
color index k as >>Im(i,j,k) . The
most top left pixel has row as well
as column index equal to 1. The red
channel of the pixel with row index
2 and column index 3 is accessed as
>>Im(2,3,1) .

(b) The image coordinate system is
de�ned with horizontal axis ~b1 and
vertical axis ~b2. The origin of the co-
ordinate system is chosen to to assign
coordinates 1; 1 to the most top left
pixel. Notice that pixel, which is ac-
cessed as>>Im(2,3,1) , is represented
in the image coordinate system by the
vector ~u � r 3; 2sJ .

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure 6.1, is an interesting and advanced device.
We shall abstract from all physical and technical details ofimage formation and will
concentrate solely on its geometry. From the point of view ofgeometry, a perspective
camera projects point X from space into an image pointx by intersecting the line
connecting X with the projection center (red) and a planar image plane (green),
Figure 6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The model
will allow us to project space point X into image point x and to �nd the ray p in
space along the which pointX has been projected.

x26 Camera coordinate system Figure 6.2 shows the geometry of the perspective
camera. Point X is projected along ray p from three-dimensional space to pointx
into two-dimensional image. Point x is obtained as the intersection of rayp with
planar image plane� . Ray p is constructed by joining point X with the projection
center C. The plane through the projection center C, which is parallel to the image
plane is called theprincipal plane.

The image plane is equipped with an image coordinate system (x25), po; � q,
where o is the origin and � � r ~b1;~b2s is the basis of the image coordinate system.
Notice that the basis � is shown as non-orthogonal. We want to develop a general
camera model, which will be applicable even in the situationwhen image coordinate
system is not rectangular. Point x is represented by vector~u in po; � q

~u � u~b1 � v~b2 i.e. ~u� �
�

u
v

�
(6.1)

Three-dimensional space is equipped with aworld coordinate systempO; � q, where
O is the origin and � � r ~d1; ~d2; ~d3s is a three-dimensional orthonormal basis. Point
X is represented by vector~X in pO; � q. The camera projection center is represented
by vector ~C in pO; � q.

Let us next de�ne the camera coordinate system. The system will be derived
from the image coordinate system to make the construction ofcoordinates of the
direction vector ~x of p extremely simple.

Camera coordinate systempC; � q has the origin in the projection center C and
its basis � � r ~b1;~b2;~b3s is constructed by re-using the two basis vectors of� and
adding the third basic vector ~b3, which corresponds to vector

ÝÑ
Co. We see that

vectors in � form a basis when point C is not in � , which is satis�ed for every
meaningful perspective camera. Notice also that the cameracoordinate system is
three-dimensional.
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(a) (b)

Figure 6.1: Perspective camera (a) is geometrically a point(red) and an image plane
(green) (b).

Image points o and x are in plane � , which is in three-dimensional space, and
therefore we can consider them as points of that space too. Point x is in pC; � q
represented by vector~x, which is the direction vector of the projection ray p along
which point X has been projected intox. We see that vectors~u, ~x, ~b3 form a triangle
such that

~x � ~u � ~b3 (6.2)

� u~b1 � v~b2 � 1~b3 (6.3)

and therefore

~x� � ~xr~b1 ;~b2 ;~b3s �

�

�
u
v
1

�

� �
�

~u�

1

�
: (6.4)

Notice that basis � has been constructed in a very special way to facilitate con-
struction of ~x� . We can useu, v directly since � re-uses vectors of� and the third
coordinate is always 1 by the construction of~b3. Although we do not know exact
position of C w.r.t. the image plane, we know that it is not in the plane � and hence
a meaningful camera coordinate system constructed this wayexists.

Notice next that the camera coordinate system is right-handed. This is because
when looking at a scene from a pointC through the image plane, the image is
constructed by intersecting image rays with the image plane, which is in front and
hence the vector~b3 points towards the scene. We see that vectors of� form a
right-handed system.

Let us mention that we have used deeper properties of linear and a�ne spaces.
In particular, we were making use of the concept offree vector in the following way.
We look at vectors~b1, ~b2 and ~u as on a free vectors. Therefore, coordinates of the
representative of~u beginning in o with respect to representatives of~b1, ~b2 beginning
in o equal the coordinates of the representative of~u beginning in C with respect
to representatives of~b1, ~b2 beginning in C. Hence u, v reappear as the �rst two
coordinates of~x.

For usual consumer cameras, vector~b3 is often much longer than vectors~b1;~b2 and
often not orthogonal to them. Therefore, basis� is in general neither orthonormal
nor orthogonal! This has severe consequences since we can'tmeasure angles and
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O

C

o

X

p

~X

~C

x

~x

~u

�

~d1

~d2

~d3

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

Figure 6.2: Coordinate systems of perspective camera.
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distances in the space using� , unless we �nd out what are the lengths of its vectors
and what are the angles between them.

x27 Perspective projection Point X has been projected alongp into x. Since~x
is a direction vector of p, point X can be represented inpC; � q by

� ~x (6.5)

for some realnon-negative1 � . The value of � corresponds to the scaled depth ofX ,
i.e. the distance ofX from the plane passing throughC and generated by~b1, ~b2 in
units equal to the distance of C from � . Value � is not known since it \has been
lost" in the process of projection2 but will serve us to parametrize the projection
ray in order to get coordinates of all possible points in space that could project into
x.

Let us now relate the coordinates~u� , which are measured in the image, to the
coordinates ~X � , which are measured in the world coordinate system. First consider
vectors ~X , ~C and ~x. They are coplanar and we see that there holds

� ~x � ~X � ~C (6.6)

To pass to coordinates, we will use the camera coordinate system, in which we can
write

� ~x � � ~X � � ~C� (6.7)

�
�

~u�

1

�
� ~X � � ~C� (6.8)

Next we shall pass to the coordinates w.r.t. basis� on the right hand side of Equa-
tion 6.8 by introducing a matrix A, which transforms coordinates of a general vector
~y from basis � to basis � , i.e.

~y� � A~y� (6.9)

We know from linear algebra (x3) that such a matrix exists. We write

�
�

~u�

1

�
� Ap~X � � ~C� q

�
�

~u�

1

�
� A

�
I | � ~C�

� �
~X �

1

�
(6.10)

�
�

~u�

1

�
� P�

�
~X �

1

�
(6.11)

� ~x � � P�

�
~X �

1

�
(6.12)

with 3 � 4 image projection matrix

P� �
�

A | � A ~C�

�
(6.13)

1Here we choose~x such that � is non-negative. Considering negative � , as in [14], may be necessary
if it is not clear how has the image coordinate systems been de�ned or how has ~x been chosen.
For instance, if ~x has been chosen to point along rayp away from X , � would have to be negative.

2 It can be recovered when a point X is observed by two cameras with di�erent projection centers .
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x28 Projection equation Equation 6.11 describes the relationship between mea-
surement~u� in the image and measurement~X � in space. It says that ~X � is projected
into ~u� since there exists� such that Equation 6.11 holds. Notice that � multiple of
the vector on the left of Equation 6.11 is obtained by a linearmapping represented
by matrix P� from vector ~X � on the right.

When computing ~u� from ~X � , we actually eliminate � using the last row of the
(matricidal) equation (6.11)

~u� �

�

�
�
�
�

pJ
1 X

pJ
3 X

pJ
2 X

pJ
3 X

�

�
�
�
�

(6.14)

where we introduced rows ofp1, p2, p3 of P and a 4� 1 vector X as follows

P� �

�

�
pJ

1
pJ

2
pJ

3

�

� and X �
�

~X �

1

�
(6.15)

Notice that the projection equation is not linear. It is a rat ional function of the �rst
order polynomials in elements ofX.

x29 Projection ray Having an image point ~u� , we can construct its projection ray
p in space. The ray consists of all points~Y that can project to ~u� . In pC; � q, the
ray is emanating from the origin C. We parametrize it by real � and express it in
pO; � q by vector ~X �

~Y� � �
�

~u�

1

�
� � ~x �

~X � � � A� 1~x� � ~C� (6.16)

Notice that ~X � (6.16) can also be obtained for a given� by solving the system of
linear equations (6.12) for ~X � .

6.2 Computing image projection matrix from images of six
points

Let us now consider the task of �nding the P� from measurements. We shall consider
the situation when we can measure points in space as well as their projection in the
image. Consider a pair of such measurementsrx; y; zsJ corrØ r u; vsJ . There holds

�

�

�
u
v
1

�

� � Q

�

�
�
�

x
y
z
1

�

�
�
� � Q X (6.17)

for some real� , 3 � 4 matrix Qand 4� 1 coordinate vectorX. Notice that we intro-
duced new symbols� and Qto emphasize that they are determined by Equation 6.17
up to a non-zero scale

Q� � P� (6.18)
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We will see that this will have further consequences.
Introduce symbols for rows ofQ

Q�

�

�
qJ

1
qJ

2
qJ

3

�

� (6.19)

and rewrite the above matrix equation as

� u � qJ
1 X (6.20)

� v � qJ
2 X (6.21)

� � qJ
3 X (6.22)

Eliminate � from the �rst two equations using the third one

pqJ
3 Xqu � qJ

1 X (6.23)

pqJ
3 Xqv � qJ

2 X (6.24)

move all to the left hand side and reshape it usingxJ y � yJ x

XJ q1 � p u XJ qq3 � 0 (6.25)

XJ q2 � p v XJ qq3 � 0 (6.26)

Introduce vector of parameters (which are elements ofQ)

q �
�
qJ

1 qJ
2 qJ

3

� J
(6.27)

and express the above two equations in matrix form
�

x y z 1 0 0 0 0 � u x � u y � u z � u
0 0 0 0 x y z 1 � v x � v y � v z � v

�
q � 0

M q � 0 (6.28)

Every correspondencerx; y; zsJ corrØ r u; vsJ brings two rows into the matrix
M(6.28). We need therefore at least 6 correspondences in general position to obtain
11 linearly independent rows in Equation 6.28 to obtain a one-dimensional space of
solutions.

If Qis a solution to Equation 6.28, then� Qis also a solution and both determine
the same projection for any positive� since

p� Qq X � � pQ Xq � � p� ~x � q � p � � q~x� (6.29)

Assuming P� � � Q leads to � � � { � . We see that we can't recoverP� but only
its non-zero multiple. Therefore, when solving Equation 6.28, we are looking for
one-dimensional subspace of 3� 4 matrices of rank 3. Such a subspace determines
one projection. Also note that the zero matrix does not represent any interesting
projection.
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Notice that when considering more correspondences,Mbecomes

M q�

�

�
�
�
�
�
�
�
�
�

x1 y1 z1 1 0 0 0 0 � u1x1 � u1y1 � u1z1 � u1

x2 y2 z2 1 0 0 0 0 � u2x2 � u2y2 � u2z2 � u2
...

0 0 0 0 x1 y1 z1 1 � v1x1 � v1y1 � v1z1 � v1

0 0 0 0 x2 y2 z2 1 � v2x2 � v2y2 � v2z2 � v2
...

�

�
�
�
�
�
�
�
�
�

q � 0

(6.30)
Matrix Mcan be more concisely rewritten as

M�

�

�
�
�
�
�
�
�
�
�
�

XJ
1 0J � u1 XJ

1

XJ
2 0J � u2 XJ

2
...

0J XJ
1 � v1 XJ

1

0J XJ
2 � v2 XJ

2
...

�

�
�
�
�
�
�
�
�
�
�

(6.31)

with 0J � r 0; 0; 0; 0s.

x30 A more general procedure for computing Q We shall next develop and al-
ternative formulation for �nding matrix Q. Let us come back to Equation 6.17

� ~u � Q X (6.32)

Above, we have eliminated� assuming~u3 � 1. Let us now present an alternative
procedure for eliminating � , which works for any non-zero~u � r u; v; wsJ , i.e. even
when w � 0. The trick is to realize that

0 � ~u � p � ~u q � ~u � Q X� r ~us� Q X (6.33)

This gives three equations for each~u Ø X correspondence. However, only two of
them are linearly independet sincer~us� has rank two. Now, we are in the position
to employ Equation 2.92, which gives

r~us� Q X � 0 (6.34)

XJ QJ r~usJ
� � 0J (6.35)

vpXJ QJ r~usJ
� q � vp0J q (6.36)

pr~us� b XJ qvpQJ q � vp0J q (6.37)
�

�

�

�
0 � w v
w 0 � u

� v u 0

�

� b XJ

�


 vpQJ q � vp0J q (6.38)

�

�
0J � w XJ v XJ

w XJ 0J � u XJ

� v XJ u XJ 0J

�

� vpQJ q � vp0J q (6.39)
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For more correspondences numbered byi , we then get
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0J � w1 XJ
1 v1 XJ

1

0J � w2 XJ
2 v2 XJ

2
...

w1 XJ
1 0J � u1 XJ

1

w2 XJ
2 0J � u2 XJ

2
...

� v1 XJ
1 u1 XJ

1 0J

� v2 XJ
2 u2 XJ

2 0J

...

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

vpQJ q � 0 (6.40)

which if, for w � 1, is equivalent to Equation 6.30. Notice that vpQJ q � q from
Equation 6.30.
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7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and
image equipped with cartesian coordinate systems.

7.1 Camera pose

The projection formula 6.10 reveals that the perspective projection depends on ma-
trix A and vector ~C� . The vector ~C� represents the position of the camera projection
center w.r.t. the world coordinate system. Columns of matrix A are coordinates of
the basic vectors of� in the basis �

A �
�

~d1�
~d2�

~d3�

�
(7.1)

To recover the orientation of the camera, we will introduce the focal length f
as the distance of the camera projection centerC from its projection plane � (in
the world units) and replace the product f A by the product of two 3 � 3 matrices K
and R

f A � K R (7.2)

We will see that this seemingly arti�cial construction is in deed justi�ed.
Rotation matrix R determines the orientation of the camera in space and alto-

gether with ~C� de�nes the camera pose. The camera calibration matrix K does not
change when moving its camera in the space.

To obtain K and R, we de�ne, Figure 7.1, thecamera cartesian coordinate system
pC; 
 q with center (again) in the camera projection center C and with basis 
 �
r~c1;~c2;~c3s such that

~c1 � k11~b1

~c2 � k12~b1 � k22~b2 (7.3)

~c3 � k13~b1 � k23~b2 � 1~b3

Parameters kij are determined to make the basis
 orthogonal. Notice that vector
~c3 is orthogonal to � since it is orthogonal to ~c1;~c2, which span � , by construction.
Also notice that 
 is (in general) not an orthonormal basis since the length of its
vectors equals the distance ofC from � , i.e. the focal length f in the world units.

Equations 7.3 de�ne matrix K as

K �
�
~c1� ~c2� ~c3�

�
�

�

�
k11 k12 k13

0 k22 k23

0 0 1

�

� (7.4)

By this construction, we have

~x� � A~x� � K~x
 (7.5)

~x
 � �
1
f

R~x� (7.6)
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The world cartesian coordinate system has basic vectors of unit length. The camera
cartesian coordinate systempC; 
 qhas basic vectors of length equal tof . Therefore,

�
~d1


~d2

~d3


�
�

1
f

R�

�

�
�

r J
1 { f

r J
2 { f

r J
3 { f

�

�
� (7.7)

for some 3� 3 orthonormal matrix Rwith rows r J
1 , r J

2 , r J
3 .

Consider that

A �
�

~d1�
~d2�

~d3�

�
� K

�
~d1


~d2

~d3


�
�

1
f

K R (7.8)

We can view the matrices1
f Rand Kas coordinate transformation matrices, which

transform a general vector~y from the coordinates w.r.t. � to 
 and then to � , i.e.

~y� � K~y
 �
1
f

K R~y� (7.9)

The basis
 is orthogonal and all basic vectors have the same length, which is equal
to f . It follows from the orthogonality of the basis 
 that ~c1 � ~c1 � f 2, ~c1 � ~c2 � 0
and ~c2 � ~c2 � f 2 and hence using Equation 7.3 leads, for a positivef , to

k11 }~b1} � f � 0

k2
11 k22 p~b1 � ~b2q � k12 f 2 � 0 (7.10)

k2
11 k2

22 }~b2}2 � p k2
12 � k2

11qf 2 � 0

Let us solve Equations 7.10 fork11, k12 and k22. The �rst equation in (7.10) provides
k11. Substituting the square of f from the �rst equation into the second one and
dividing it by k2

11 gives the second equation of (7.11), which allows to computek12

from k22. To get k22, we construct the third equation of (7.11) as follows. We express
k11 from the �rst equation of (7.10) and k12 from the second equation of (7.11)
and substitute them into the third equation of (7.10), which we then multiply by
||~b1||4{ f 2. Altogether, we get

k11 }~b1} � f � 0

k12 }~b1}2 � k22 p~b1 � ~b2q � 0 (7.11)

k2
22 p}~b1}2 }~b2}2 � p ~b1 � ~b2q2q � f 2 }~b1}2 � 0

Looking at the third equation of (7.11) we see that

k2
22 �

f 2}~b1}2

}~b1}2}~b2}2 � p ~b1 � ~b2q2
�

f 2

}~b2}2 � } ~b2}2 cos2= p~b1;~b2q
(7.12)

and since
 was constructed to makek22 positive, we obtain

k22 �
f

}~b2} sin= p~b1;~b2q
(7.13)
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C

f

o

�

~u0

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

= p~b1;~b2q

Figure 7.1: Camera internal parameters are related to the geometry of basis � .
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The second equation of (7.10) now gives

k12 � � k22

~b1 � ~b2

}~b1}2
� � k22

}~b2} cos= p~b1;~b2q

}~b1}
(7.14)

� �
f cos= p~b1;~b2q

}~b1} sin= p~b1;~b2q
(7.15)

Finally k11 follows from (7.11)

k11 �
f

}~b1}
(7.16)

Considering Figure 7.1 and Equation 7.3, we see that the coordinates of the
vector ~u0, corresponding to theprincipal point , which is the perpendicular projection
of C onto � , are in �

~u0� �

�

�
k13

k23

0

�

� ; i.e. ~u0� �
�

k13

k23

�
(7.17)

The horizontal pixel size corresponds to}~b1}. Quantity k11 can thus be under-
stood asf expressed in the horizontal image units. The angle between the image
axes~b1;~b2 is obtained from k11{k12 � � tan = p~b1;~b2q. The ratio of the lengths of the
image axes is determined by}~b2}{} ~b1} �

a
k11 pk11 � k12q{k22.

Let us now return to Equation 6.11 and substitute there the above results to
arrive at the �nal projection equation

� ~x � � P�

�
~X �

1

�
(7.18)

�
�

~u�

1

�
� Ap~X � � ~C� q (7.19)

f �
�

~u�

1

�
� f Ap~X � � ~C� q (7.20)

f �
�

~u�

1

�
� K Rp~X � � ~C� q (7.21)

�
�

~u�

1

�
� K Rp~X � � ~C� q (7.22)

�
�

~u�

1

�
� K R

�
I | � ~C�

� �
~X �

1

�
(7.23)

We have introduced a new parameter� � f � , which is the depth of X in the world
units. We conclude that

P� �
�

1
f K R| � 1

f K R~C�

�
(7.24)

Notice that the last row aJ
3 of A provides f since

A �

�

�
aJ

1
aJ

2
aJ

3

�

� �
1
f

�

�
k11 k12 k13

0 k22 k23

0 0 1

�

�

�

�
r J

1
r J

2
r J

3

�

� �
1
f

�

�
k11r J

1 � k12r J
2 � k13r J

3
k22r J

2 � k23r J
3

r J
3

�

� (7.25)
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and hence}aJ
3 } � 1

f . Therefore }P� p3; 1 : 3q} � 1
f .

Equation 7.23 is very important in many practical situation s when we do not
have access to physical dimensions of the camera but only to images. Then, it is
possible to recover matrixK R

�
I | � ~C�

�
but not image projection matrix P� . This

is so important the we introduce the camera projection matrix

P �
�

K R| � K R~C�

�
(7.26)

which is related to the image projection matrix as

P � f P� (7.27)

In this text, it would be more consistent to asociate subscript � with the camera
projection matrix but we will not do that since we want to use t he nomenclature
of [14] here whenever possible.

Let us write K explicitely,

K �

�

�
�
�

f
}~b1 }

� f cos= p~b1 ;~b2q
}~b1 } sin = p~b1 ;~b2q

u0

0 f 2

}~b2 }2 �} ~b2 }2 cos2= p~b1 ;~b2q
v0

0 0 1

�

�
�
� (7.28)

where ~u0� �
�
u0 v0

� J
. We see that we can neither recoverf nor }~b1} from P.

Let us introduce image calibration matrix

K� �
1
f

K (7.29)

to have
P� �

�
K� R| � K� R~C�

�
(7.30)

Writing image calibration matrix K� explicitely,

K� �
1
f

K �

�

�
�
�

1
}~b1 }

� cos= p~b1 ;~b2q
}~b1 } sin = p~b1 ;~b2q

u0
f

0 f
}~b2 }2 �} ~b2 }2 cos2= p~b1 ;~b2q

v0
f

0 0 1
f

�

�
�
� (7.31)

shows that it is possible to recover both

}~b1} �
1

K� 11
and f �

1
K� 33

(7.32)

from image calibration matrix.
There is an important di�erence between K� and K regarding the representation

of internal camera calibration information. Image calibration matrix K� , and also
image projevction matrix P� , captures all calibration information about a perspective
image whereas camera calibration matrixK, and also camera projection matrix P,
captures only the calibration information that can be recovered by auto-calibration
from images as we will see later. When the focal length is known in world units
or when pixel sizes are known in world units, it is more apropriate to use image
calibration K� , or image projection matrix P� , to represent full internal calibration
information.
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�
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~b3
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~c2

~c3
1
f R

K

(a) � � r ~b1;~b2;~b3s, � � r ~d1; ~d2; ~d3s: ~y� � A~y� (b) 
 � r ~c1;~c2;~c3s: ~y
 � 1
f R~y�

~y� � K~y


O

C

~d1

~d2

~d3

o

�

~b1

~b2

~b1

~b2

~b3

~e1
~e2

~e3

~n1

~n2

~n3

R

K

O

C

~d1

~d2

~d3

o

�

~b1

~b2

~b1

~b2

~b3

~c1

~c2

~c3

~k1

~k2

~k3

R� 1

K� 1

(c) � � r ~e1;~e2;~e3s: ~y� � R~y� , (d) � � r ~k1;~k2;~k3s: ~y
 � K� 1 ~y� ,
� � r ~n1; ~n2; ~n3s: ~y� � K~y� ~y� � R� 1 ~y


Figure 7.2: Coordinate systems generated by applying1f R, K, R, R� 1 and K� 1.
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x31 Coordinate systems generated by applying K Rto ~y� and R� 1K� 1 to ~y� We
have seen that the decomposition ofA to K and R introduced the camera cartesian
coordinate systempC; 
 q, Figure 7.2(b)

~y
 �
1
f

R~y� (7.33)

~y� � K~y
 (7.34)

There are three more coordinate systems to consider when looking at how ma-
trices R, K, and their inversesR� 1, K� 1, apply to vectors ~y� and ~y� , Figure 7.2.

Let us �rst consider coordinates of a vector~y w.r.t. basis � and apply successively
R and K. Coordinate vector R~y� can be interpreted as coordinates of~y w.r.t. a new
basis� � r ~e1;~e2;~e3s, Figure 7.2(c). Applying further Kto ~y� gives the coordinate vec-
tor K~y� , which can be interpreted as~y w.r.t. yet another new basis � � r ~n1; ~n2; ~n3s.
We get from � to � by using 1

f I

~y� � R~y� (7.35)

~y� � K~y� (7.36)

~y� �
1
f

I ~y� (7.37)

We have introduced two new coordinate systemspC; � q, � � r ~n1; ~n2; ~n3s and pC; � q,
� � r ~e1;~e2;~e3s.

Next we consider coordinates of a vector~y w.r.t. basis � and apply successively
K� 1 and R� 1. Coordinate vector K� 1 ~y� gives ~y
 . Coordinate vector R� 1 ~y
 can be
interpreted as coordinates of~y w.r.t. a new basis � � r ~k1;~k2;~k3s, Figure 7.2(d). To
get from ~y� to ~y� we need to employf I

~y
 � K� 1 ~y� (7.38)

~y� � R� 1 ~y
 (7.39)

~y� � f I ~y� (7.40)

We have thus introduced a new coordinate systempO; � q, � � r ~k1;~k2;~k3s.
Figure 7.3 summarizes the relationship between coordinates of a vector and be-

tween bases associated with a perspective camera.
We can now see why we have chosen to denote the image projection matrix as P�

and the camera projection matrix as P. The image projection matrix provides the
ray direction vector ~x in basis � while the camer aprojection matrix provides the
ray direction vector ~x in basis � .

x32 Recovering camera pose from its projection matrix Let us next consider
that we have already computed the camera projection matrix

Q� � P � � K RrI | � ~C� s (7.41)

consisting of a 3� 3 matrix Mand 3� 1 vector m

Q� r M| ms (7.42)
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Figure 7.3: Relationships between (a) coordinates in di�erent bases. e.g.~y� � K~y


and (b) bases themselves, e.g.� � 
 K� 1, associated with a perspective
camera.

To recover camera pose fromQ, we need to get ~C� from mand to decomposeQinto
the product of K in the form of (7.4) and Rsuch that RJ R� I and |R| � 1. Consider
Min the form

M �

�

�
mJ

1
mJ

2
mJ

3

�

� (7.43)

Next we notice that the last row of K Rhas unit norm since it is equal to the last row of
rotation R. Therefore, we need to divideMby the norm of its last row to get a matrix
decomposable into the product ofK R. Moreover, it follows from the construction
of � that k11 ¡ 0 and k22 ¡ 0. Thus, determinant |K R| � | K| |R| � k11 k22 ¡ 0.
Therefore, we also need to multiplyMby the sign of its determinant to get a matrix
decomposable intoK R.

sign |M|
}m3}

M �
sign |M|

}m3}

�

�
mJ

1
mJ

2
mJ

3

�

� �

�

�
k11 k12 k13

0 k22 k23

0 0 1

�

�

�

�
r J

1
r J

2
r J

3

�

� (7.44)
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which provides the following set of equations

mJ
2 m3

}m3}2 � k22 r J
2 r 3 � k23 r J

3 r 3 � k23 (7.45)

mJ
1 m3

}m3}2 � k13 (7.46)

mJ
2 m2

}m3}2 � k2
22 � k2

23 (7.47)

mJ
1 m2

}m3}2 � k12 k22 � k13 k23 (7.48)

mJ
1 m1

}m3}2 � k2
11 � k2

12 � k2
13 (7.49)

from which k11, k12, k13, k22, k23 can be easily computed considering that the most
of consumer digital cameras havek11 ¡ 0, k22 ¡ 0, k13 ¡ 0, k23 ¡ 0.

Having kij computed, we recoverR from Mas

R� K� 1 sign |M|
}m3}

M (7.50)

Camera projection center can be computed in two ways. Eitherwe get

~C� � � M� 1m (7.51)

or we obtain it by �nding a basis c of the one-dimensional right null space of matrix
Q, i.e. solving

Q c� 0 (7.52)

and then computing �
~C�

1

�
�

1
c4

c (7.53)

where c4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matricesP, R and K, and vector ~C� which determine the pro-
jection from space to images. However, sinceK is introduced with K33 � 1, the
triplet ( K, R, ~C� ) does not contain all information about the camera, which can be
obtained by direct measurement of its physical components in a world coordinate
system equipped with a knownworld unit length 1W . The missing element is the
scale ofP, which is equivalent to knowing the value of the focal lengthor the size of
pixels, i.e. f , }~b1} or }~b2}, in 1W .

Knowing K and f allows to recover }~b1} from Equations 7.3 as}~b1} � f {k11.
Knowing K and }~b1}, on the other hand, givesf � } ~b1} k11.

Therefore, full calibration of the camera is encoded in matrix P� , Equation 7.24,
or, e.g., in one of the following tuples: (K� , R, ~C� ), (K, R, ~C� , f ), (K, R, ~C� , }~b1}) or
(K, R, ~C� , }~b2}).

We de�ned the camera calibration matrix Kwith K33 � 1 because we often do not
have access to the world unit when working with images without knowing anything
about the camera which was used to make them. Moreover, a number of important
tasks can be done without knowing the world unit.
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Figure 7.4: A calibrated camera pose can be computed from projections of three
known points.

x33 Angle between projection rays Consider two image points~u1� and ~u2� . The
direction vectors of the rays are in� given by

~x1� �
�

~u1�

1

�
; ~x2� �

�
~u2�

1

�
(7.54)

To obtain the angle between the direction vectors by evaluating the scalar product
of the vectors, we need to pass to an orthogonal basis. The \closest" orthogonal
basis is
 . Hence

cos= p~x1; ~x2q �
~xJ

1
 ~x2


}~x1
 }} ~x2
 }
�

~xJ
1� K�J K� 1~x2�

}K� 1~x1� }} K� 1~x2� }
(7.55)

Notice that we could use the orthogonal basis
 to measure angles instead of, e.g., the
closest orthonormal basis� since the unknown scale factorf cancels in the following
formula

cos= p~x1; ~x2q �
~xJ

1� ~x2�

}~x1� }} ~x2� }
�

pf ~x J
1
 qpf ~x 2
 q

}f ~x 1� }} f ~x 2
 }
�

~xJ
1
 ~x2


}~x1
 }} ~x2
 }
(7.56)

We conclude that we do not need to knowf to measure angles between projection
rays.

7.3 Calibrated camera pose computation

We have seen how to �nd (uncalibrated) perspective camera pose from projections
of known six points. In fact, we have recovered the calibration of the camera. Next
we shall show that when the calibration is known, we are able to �nd the pose of
the camera from projections of three points. This is a very classical problem which
has been known since [15].
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Figure 7.4 shows a camera with centerC, which projects three pointsX 1, X 2 and
X 3, represented by vectors~X 1� , ~X 2� and ~X 3� in pO; � q, into image points represented
by ~x1� , ~x2� and ~x3� .

x34 Classical formulation of the calibrated camera pose computat ion We in-
troduce distances between pairs of points as

d12 � || ~X 2� � ~X 1� ||; d23 � || ~X 3� � ~X 2� ||; d31 � || ~X 1� � ~X 3� || (7.57)

Since we see three di�erent points, we know that all distances are positive.
Points X 1, X 2 and X 3 are in pC; 
 q represented by vectors

� i
~xi


||~xi
 ||
� � i

K� 1~xi�

||K� 1~xi� ||
; i � 1; 2; 3 (7.58)

with � i representing the distance fromC to X i . Distances � i are positive since
otherwise we could not see the points.

x35 Computing distances to the camera center Calibrated perspective camera
measures angles between projection rays

cij � cos= p~xi ; ~xj q �
~xJ

i� K�J K� 1~xj�

}K� 1~xi� }} K� 1~xj� }
; i � 1; 2; 3; j � p i � 1q mod 3� 1 (7.59)

Hence we have all quantities� i , cos= p~xi ; ~xj qand dij , which we need to construct
a set of equations using the rule of cosinesd2

ij � � 2
i � � 2

j � 2 � i � j cos= p~xi ; ~xj q, i.e.

d2
12 � � 2

1 � � 2
2 � 2 � 1 � 2 c12 (7.60)

d2
23 � � 2

2 � � 2
3 � 2 � 2 � 3 c23 (7.61)

d2
31 � � 2

3 � � 2
1 � 2 � 3 � 1 c31 (7.62)

with cij � cos= p~xi ; ~xj q.
We have three quadratic equations in three variables. We shall solve this system

by manipulating the three equations to generate one equation in one variable, solving
it and then substituting back to get the remaining two variab les.

x36 A classical solution Let us �rst get two equations in two variables. Let us
generate new equations by multiplying the left hand side of (7.60) and (7.62) by the
right hand side of (7.61) and right hand side of (7.60) and (7.62) by the left hand
side of (7.61)

d2
12 p� 2

2 � � 2
3 � 2 � 2 � 3 c23q � d2

23 p� 2
1 � � 2

2 � 2 � 1 � 2 c12q (7.63)

d2
31 p� 2

2 � � 2
3 � 2 � 2 � 3 c23q � d2

23 p� 2
3 � � 2

1 � 2 � 3 � 1 c31q (7.64)

We could have made three di�erent choices which equation to use twice but since all
dij � 0, and hence all sides of the equations are nonzero, all the choices are equally
valid.
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We have now two equations with three variables but since the equations are
homogeneous, we will be able to reduce the number of variables to two by dividing
equations by (e.g.) � 2

1 (which is non-zero) to get

d2
12

�
� 2

12 � � 2
13 � 2 � 12 � 13 c23

�
� d2

23

�
1 � � 2

12 � 2 � 12 c12
�

(7.65)

d2
31

�
� 2

12 � � 2
13 � 2 � 12 � 13 c23

�
� d2

23

�
1 � � 2

13 � 2 � 13 c31
�

(7.66)

with � 12 � � 2
� 1

and � 13 � � 3
� 1

. Notice that we have a simpler situation than before
with only two quadratic equations in two variables. Let us proceed further towards
one equation in one variable.

We rearrange the terms to get a polynomials in� 13 on the left and the rest on
the right

d2
12 � 2

13 � p� 2d2
12 � 12 c23q� 13 � d2

23

�
1 � � 2

12 � 2 � 12 c12
�

� d2
12� 2

12

pd2
31 � d2

23q� 2
13 � p 2d2

23 c31 � 2d2
31 � 12 c23q� 13 � d2

23 � d2
31 � 2

12 (7.67)

to get two quadratic equations

m1 � 2
13 � p1 � 13 � q1 (7.68)

m2 � 2
13 � p2 � 13 � q2

in � 13 with

m1 � d2
12 (7.69)

p1 � � 2d2
12 � 12 c23 (7.70)

q1 � d2
23

�
1 � � 2

12 � 2 � 12 c12
�

� d2
12� 2

12 (7.71)

m2 � d2
31 � d2

23 (7.72)

p2 � 2d2
23 c31 � 2d2

31 � 12 c23 (7.73)

q2 � d2
23 � d2

31 � 2
12 (7.74)

We have \hidden" the variable � 12 in the new coe�cients. We can now look upon
Equations 7.68 as on a linear system

�
m1 p1

m2 p2

� �
� 2

13
� 13

�
�

�
q1

q2

�
(7.75)

The matrix of the system (7.75) either is or is not singular.

x37 Case A If it is not singular, we can solve the system by Cramer's rule[5, 6, 4]

� 2
13

�
�
�
�

�
m1 p1

m2 p2

� �
�
�
� �

�
�
�
�

�
q1 p1

q2 p2

� �
�
�
� (7.76)

� 13

�
�
�
�

�
m1 p1

m2 p2

� �
�
�
� �

�
�
�
�

�
m1 q1

m2 q2

� �
�
�
� (7.77)

giving

� 2
13 pm1 p2 � m2 p1q � q1 p2 � q2 p1 (7.78)

� 13 pm1 p2 � m2 p1q � m1 q2 � m2 q1 (7.79)
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Eliminating � 13 (by squaring the second equation, multiplying the �rst one by
m1 p2 � m2 p1, which is non-zero, and comparing the left hand sides) yields

pm1 p2 � m2 p1q pq1 p2 � q2 p1q � p m1 q2 � m2 q1q2 (7.80)

Substituting Formulas 7.69-7.74 into Equation 7.80 yields

0 � a4 � 4
12 � a3 � 3

12 � a2 � 2
12 � a1 � 12 � a0 (7.81)

with coe�cients

a4 � � d8
23 � d4

12 d4
23 � d4

23 d4
31 � 2d2

12 d4
23 d2

31 � 2d6
23 d2

31 � 2d2
12 d6

23 (7.82)

� 4d2
12 c2

23 d4
23 d2

31

a3 � 4d4
12 d4

23 c31 c23 � 4d2
12 d6

23 c12 � 4d2
12 c23 d6

23 c31 � 4d4
23 c12 d4

31 (7.83)

� 4d8
23 c12 � 4d2

12 d4
23 c31 d2

31 c23 � 8d2
12 c2

23 d4
23 d2

31 c12 � 8d6
23 c12 d2

31

� 4d2
12 d4

23 c12 d2
31

a2 � 8d6
23 c2

12 d2
31 � 4d6

23 d2
31 � 2d4

23 d4
31 � 2d4

12 d4
23 � 4d4

12 d4
23 c2

31 (7.84)

� 4d8
23 c2

12 � 4d4
12 c2

23 d4
23 � 2d8

23 � 8d2
12 c23 d6

23 c31 c12

� 4d2
12 c2

23 d4
23 d2

31 � 4d4
23 c2

12 d4
31 � 4d2

12 d6
23 c2

31 � 8d2
12 d4

23 c31 d2
31 c23 c12

a1 � 4d4
23 c12 d4

31 � 4d2
12 d6

23 c12 � 4d8
23 c12 � 4d2

12 c23 d6
23 c31 (7.85)

� 8d2
12 d6

23 c2
31 c12 � 4d2

12 d4
23 c31 d2

31 c23 � 4d2
12 d4

23 c12 d2
31

� 4d4
12 d4

23 c31 c23 � 8d6
23 c12 d2

31

a0 � 2d6
23 d2

31 � 2d2
12 d4

23 d2
31 � d4

23 d4
31 � d4

12 d4
23 � 4d2

12 d6
23 c2

31 (7.86)

� d8
23 � 2d2

12 d6
23

We will use eigenvalue computation to �nd a numerical solution to Equation 7.81.
Construct the following companion matrix

C�

�

�
�
�
�

0 0 0 � a0
a4

1 0 0 � a1
a4

0 1 0 � a2
a4

0 0 1 � a3
a4

�

�
�
�
�

(7.87)

and observe that

| � 12 I � C| � � 4
12 �

a3

a4
� 3

12 �
a2

a4
� 2

12 �
a1

a4
� 12 �

a0

a4
(7.88)

Therefore, a numerical approximation of � 12 can be obtained by computing, e.g.,
>>eig(C) in Matlab . Complex solutions are artifacts of the method and should
not be further considered. For every real solution, we can then substitute back to
Equation 7.79 to obtain the corresponding

� 13 �
m1 q2 � m2 q1

m1 p2 � m2 p1
(7.89)

�
d2

12 pd2
23 � d2

31 � 2
12q � p d2

23 � d2
31q pd2

23 p1 � � 2
12 � 2 � 12 c12q � d2

12 � 2
12q

2d2
12 pd2

23 c31 � d2
31 c23 � 12q � 2pd2

31 � d2
23qd2

12 c23 � 12

To get � 1, � 2 and � 3, we consider Equation 7.60, which can be rearranged as

d2
12 � � 2

1 p1 � � 2
12 � 2 � 12 c12q (7.90)
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and hence yields positive

� 1 �
d12a

1 � � 2
12 � 2 � 12 c12

(7.91)

� 2 � � 1 � 12 (7.92)

� 3 � � 1 � 13 (7.93)

x38 Case B Let us now look at what happens when the matrix of the system (7.75)
is singular. Then, after substituting m1, m2, p1 and p2 from Equations 7.69{7.74,
we have

m1 p2 � m2 p1 � 0 (7.94)

� 2d2
12 d2

23 p� 12 c23 � c31q � 0 (7.95)

� 12 c23 � c31 (7.96)

We used the fact that neither d12 � 0 nor d23 � 0.

x39 Case B1 When c23 � 0, then we get

� 12 �
c31

c23
(7.97)

Substituting it to Equations 7.65 we get

d2
12

�
p
c31

c23
q2 � � 2

13 � 2
c31

c23
� 13 c23



� d2

23

�
1 � p

c31

c23
q2 � 2

c31

c23
c12



(7.98)

d2
12

�
c2

31 � c2
23 � 2

13 � 2c31 c2
23 � 13

�
� d2

23

�
c2

23 � c2
31 � 2c31 c23 c12

�
(7.99)

and after some more manipulation obtain a quadratic equation

pd2
12 c2

23q� 2
13 � p� 2d2

12 c2
23 c31q� 13 � d2

12 c2
31 � d2

23 c2
23 � d2

23 c2
31 � 2d2

23 c12 c23 c31 � 0
(7.100)

in � 13. We get � 1, � 2 and � 3 from Equations 7.91, 7.92, 7.93.

x40 Case B2 When c23 � 0, then it follows from Equation 7.96 that c31 � 0 as
well. Returning back to equations 7.65, 7.66 provides

d2
12

�
� 2

12 � � 2
13

�
� d2

23

�
1 � � 2

12 � 2 � 12 c12
�

(7.101)

d2
31

�
� 2

12 � � 2
13

�
� d2

23

�
1 � � 2

13

�
(7.102)

Expressing� 13 from Equation 7.102 gives

pd2
23 � d2

31q� 2
13 � d2

31 � 2
12 � d2

23 (7.103)

x41 Case B2.1 When d2
23 � d2

31, then we can write

� 2
13 �

d2
31 � 2

12 � d2
23

d2
23 � d2

31
(7.104)
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to substitute it into Equation 7.101

d2
12

�
� 2

12 �
d2

31 � 2
12 � d2

23

d2
23 � d2

31



� d2

23

�
1 � � 2

12 � 2 � 12 c12
�

(7.105)

which we further manipulate to get a quadratic equation in � 12

�
d2

12 � d2
23 � d2

31

�
� 2

12 � 2c12 pd2
23 � d2

31q� 12 � d2
31 � d2

12 � d2
23 � 0 (7.106)

We get � 1, � 2 and � 3 from Equations 7.91, 7.92, 7.93.

x42 Case B2.2 Finally, when d2
23 � d2

31, then we get from Equation 7.103

� 12 � 1 (7.107)

and from Equation 7.101

� 2
13 �

d2
23

d2
12

p2 � 2 c12q � 1 (7.108)

and hence the positive

� 13 �

d
d2

23

d2
12

p2 � 2 c12q � 1 (7.109)

We get � 1, � 2 and � 3 from Equations 7.91, 7.92, 7.93.

x43 Selecting solutions The above process of� i computation often delivers several
solutions. It is important to notice that some of them may not satisfy the original
Equations 7.62{7.60. For instance, we always obtain solutions for the case A as well
as for some of the cases B but only one of the cases is actually valid. Hence, we need
to select only the solutions that satisfy Equations 7.62{7.60 and are meaningful, i.e.
are real and positive.

x44 A modern (more elegant) solution The classical solution is perfectly valid
but it was quite tedious to derive it. Let us now present another, somewhat more
elegant, solution, which exploits some of more recent results of algebraic geome-
try [16, 17].

Let us consider Equations 7.60, 7.61, 7.62 and proceed to Equations 7.65, 7.66,
but, this time, using all three pairs to get three equations in � 12, � 13

f 1 � d2
12

�
� 2

12 � � 2
13 � 2 � 12 � 13 c23

�
� d2

23

�
1 � � 2

12 � 2 � 12 c12
�

� 0 (7.110)

f 2 � d2
31

�
� 2

12 � � 2
13 � 2 � 12 � 13 c23

�
� d2

23

�
1 � � 2

13 � 2 � 13 c31
�

� 0 (7.111)

f 3 � d2
12

�
1 � � 2

13 � 2 � 13 c31
�

� d2
31

�
1 � � 2

12 � 2 � 12 c12
�

� 0 (7.112)

It is known [16, 17] that solutions to a set of k algebraic equations

f i px1; : : : ; xnq � 0; i � 1 : : : ; k (7.113)

in n variables, which have a �ninte number of solutions, can always be obtained
by deriving a polynomial gpxnq � 0 in the last variable by the following procedure.

56



T. Pajdla. Elements of Geometry for Computer Vision 2016-5-9 (pajdla@cvut.cz )

If the system, does not have any solution, the procedure willgenerate polynomial
gn � 1, i.e. a non-zero constant, leading to the contradiction 1� 0.

The procedure is as follows. First generate new equations bymultiplying all f i

by all possible monomials up to degreem

x1; : : : ; xn ; x2
1; x1 x2; : : : ; x2

n ; x3
1; x2

1 x2; : : : ; xm
n (7.114)

to get equations

f 1 � 0; : : : ; f n � 0; x1f 1 � 0; : : : ; xn f n � 0; x2
1f 1 � 0; x1 x2f 1 � 0; : : : ; xm

n f n � 0
(7.115)

The degreem needs to be chosen such that the next step yields the desired result.
It is always possible to choose suchm but it may sometimes be found only by
using more and more monomials until the Gaussian elimination of the matrix of
coe�cients, which combine monomials, does not produce a rowcorresponding to an
equation in xn only. Let us demonstrate this process by solving our problem.

We use the following four monomials of maximal degree two

� 12; � 13; � 12 � 13; � 2
12 (7.116)

Notice that we did not include the second degree monomial� 2
13 since it turns out that

equations generated by that monomial are not necessary. We obtain 15 � 3 � 4 � 3
equations �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f 1

f 2

f 3

� 12 f 1

� 12 f 2

� 12 f 3

� 13 f 1

� 13 f 2

� 13 f 3

� 12 � 13 f 1

� 12 � 13 f 2

� 12 � 13 f 3

� 2
12 f 1

� 2
12 f 2

� 2
12 f 3

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� M

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� 12 � 3
13

� 3
13

� 2
12 � 2

13
� 2

13 � 12

� 2
13

� 3
12 � 13

� 13 � 2
12

� 13 � 12

� 13

� 4
12

� 3
12

� 2
12

� 12

1

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� M m� 0 (7.117)

with

M�

�

�
�
�
�
�
�
�
�
�
�
�

0 0 0 0 m 1 0 0 � m 7 0 0 0 m 4 m 8 � m 2
0 0 0 0 m 5 0 0 m 9 � m 10 0 0 � m 3 0 m 2
0 0 0 0 � m 1 0 0 0 m 11 0 0 m 3 � m 12 m 6
0 0 0 m 1 0 0 � m 7 0 0 0 m 4 m 8 � m 2 0
0 0 0 m 5 0 0 m 9 � m 10 0 0 � m 3 0 m 2 0
0 0 0 � m 1 0 0 0 m 11 0 0 m 3 � m 12 m 6 0
0 m 1 0 � m 7 0 0 m 4 m 8 � m 2 0 0 0 0 0
0 m 5 0 m 9 � m 10 0 � m 3 0 m 2 0 0 0 0 0
0 � m 1 0 0 m 11 0 m 3 � m 12 m 6 0 0 0 0 0

m 1 0 � m 7 0 0 m 4 m 8 � m 2 0 0 0 0 0 0
m 5 0 m 9 � m 10 0 � m 3 0 m 2 0 0 0 0 0 0

� m 1 0 0 m 11 0 m 3 � m 12 m 6 0 0 0 0 0 0
0 0 m 1 0 0 � m 7 0 0 0 m 4 m 8 � m 2 0 0
0 0 m 5 0 0 m 9 � m 10 0 0 � m 3 0 m 2 0 0
0 0 � m 1 0 0 0 m 11 0 0 m 3 � m 12 m 6 0 0

�

�
�
�
�
�
�
�
�
�
�
�

(7.118)
and

m1 � d2
12 m4 � d2

12 � d2
23 m7 � 2d2

12 c23 m10 � 2d2
23 c31

m2 � d2
23 m5 � d2

23 � d2
31 m8 � 2d2

23 c12 m11 � 2d2
12 c31

m3 � d2
31 m6 � d2

31 � d2
12 m9 � 2d2

31 c23 m12 � 2d2
31 c12

(7.119)

57



T. Pajdla. Elements of Geometry for Computer Vision 2016-5-9 (pajdla@cvut.cz )

Matrix Mcontains coe�cients and vector mcontains the monomials.
Notice in Equation 7.117 that the last �ve monomials contain only on � 12. We

have deliberately ordered monomials to achieve this. Next,we do Gaussian elimi-
nation (with pivoting) of matrix Mand get a new matrix M1.

One can verify that that the 10th row of M1 has the �rst nine elements equal to
zero. Therefore

M1
10;: m� 0 (7.120)

is a polynomial only in � 12. In fact, it is exactly a non-zero multiple of polynomials
obtained in cases A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian eliminationwith pivoting, which
avoids dividing by elements close to zero. The resulting polynomial may be of degree
four (case A) but will have lower degrees in other cases.

x45 Computing camera orientation and camera center Having quantities � 1,
� 2, � 3, we shall compute camera projection center~C� and camera rotation R from
Equation 7.24.

The three points X 1, X 2 and X 3 are represented in the world coordinate system
pO; � q by vectors ~X 1� , ~X 2� and ~X 3� . With known � 1, � 2, � 3, we can represent them
also in the camera (orthonormal) coordinate systempC; � q by vectors

~Yi� � � i ~yi� � � i
~xi�

||~xi� ||
� � i

f ~x i


||f ~x i
 ||
� � i

~xi


||~xi
 ||
; i � 1; 2; 3 (7.121)

Coordinate vectors ~X i� are related to coordinate vectors~Yi� as follows

~Y1� � Rp~X 1� � ~C� q (7.122)
~Y2� � Rp~X 2� � ~C� q (7.123)
~Y3� � Rp~X 3� � ~C� q (7.124)

There are three vector equations inR3, which is nine scalar equations, and 12 un-
knowns in R and ~C� . Additional seven equations are provided by the fact that R is
an orthonormal matrix, i.e. RJ R� I and |R| � 1.

To compute R, we shall next eliminate ~C� from Equations 7.122{7.124

~Y2� � ~Y1� � Rp~X 2� � ~X 1� q (7.125)
~Y3� � ~Y1� � Rp~X 3� � ~X 1� q (7.126)

and use the property (Equation 2.47 in Section 2.3)

~X � � ~Y� �
R�J

|R�J |
p~X � � ~Y� q � Rp~X � � ~Y� q (7.127)

of the vector product of any two vectors ~X , ~Y in R3 and an orthonormal matrix R
to write

p~Y2� � ~Y1� q � p ~Y3� � ~Y1� q �
�

Rp~X 2� � ~X 1� q
	

�
�

Rp~X 3� � ~X 1� q
	

(7.128)

� R
�

p~X 2� � ~X 1� q � p ~X 3� � ~X 1� q
	

(7.129)
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which provides a triplet of independent vectors expressed in the two bases

~Z2� � ~Y2� � ~Y1� ; ~Z2� � ~X 2� � ~X 1� (7.130)
~Z3� � ~Y3� � ~Y1� ; ~Z3� � ~X 3� � ~X 1� (7.131)
~Z1� � ~Z2� � ~Z3� ; ~Z1� � ~Z2� � ~Z3� (7.132)

Rotation Rcan then be recovered from
�

~Z1� ~Z2� ~Z3�

�
� R

�
~Z1� ~Z2� ~Z3�

�
(7.133)

as
R�

�
~Z1� ~Z2� ~Z3�

� �
~Z1� ~Z2� ~Z3�

� � 1
(7.134)

With known Rwe get ~C� as

~C� � ~X i� � RJ ~Yi� ; i � 1; 2; 3 (7.135)
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8 Homography

We shall next investigate the relationship between projections of 3D points by two
perspective cameras into two images. In general, the projections depend on the
shape of the scene and camera poses and this relationship maybe very di�cult to
describe. However, there are several very important situations when the relationship
can be given in a form of a special image transform, thehomography.

Let us �rst consider the situation when two (di�erent) camer as share a common
projection center. That means, the cameras may have di�erent coordinate systems,
di�erent orientations but must have the same projection center. This situation often
arises when photographing with a camera rotating around itsprojection center, e.g.,
when taking images for constructing a panorama capturing wide view angle. We
shall see that the corresponding projections will be related by a homography.

Next, we shall look at a di�erent situation when the cameras are unconstrained,
i.e. they can be anywhere in the space and with completely di�erent poses and
coordinate systems, but 3D points are forced to lie in a single plane not containing
the camera centers. This situation arises, e.g., when photographing a 
at screen, a
poster or a facade from di�erent viewpoints. Again, the corresponding projections
of the points in the plane (but not the projections of the points out of the plane)
will be related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical projection centersC � C1,
which project point X from space to their respective image planes� and � 1, Fig-
ure 8.1. We introduce image coordinate systemspo; � q with � � r ~b1;~b2s in �
and po1; � 1q with � 1 � r ~b1

1;~b1
2s in � 1 and use them to construct the correspond-

ing camera coordinate systemspC; � q with � � r ~b1;~b2;~b3 �
ÝÑ
Cos and pC; � 1q with

� 1 � r ~b1
1;~b1

2;~b1
3 �

ÝÑ
Co1s.

Point X is projected to image points along the projection rays, which are inter-
sected with � and � 1. The projection of X in � is represented by vector~u� � r u; vsJ .
The projection of X in � 1 is represented by vector~u1

� 1 � r u1; v1sJ .
Vectors ~x and ~x1 are two direction vectors of the same ray and henceare linearly

dependent. Since they are both non-zero forX � C, their linear dependence is
equivalent with

D� PR : � ~x 1 � ~x (8.1)

To arrive at the relationship between the available coordinates of vectors~x and
~x1, we shall now pass from vectors to their coordinates. There holds

� ~x 1 � ~x (8.2)

� ~x 1
� 1 � ~x� 1 (8.3)

� ~x 1
� 1 � H~x� (8.4)
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�

� 1

o

o1

~u

~u1

~x

~x1

~b1

~b2

~b3 ~b1
1

~b1
2

~b1
3

C � C1

X

Figure 8.1: Cameras share a projections center. Image projections are related by a
homography.

true for some 3� 3 real matrix H with rank H� 3, which transforms coordinates of
a vector from basis� to basis � 1.

Considering the choices of camera coordinate systems, we see that

� ~x 1
� 1 � H~x� (8.5)

�

�

�
u1

v1

1

�

� � H

�

�
u
v
1

�

� (8.6)

We have obtained an interesting relationship. The above equations tell us that
the image projections are related by a transformation, which depends only on image
projections, and to �nd it, we do not need to know actual posiitons of points X in
space. This is the consequence of havingC � C1.

x46 Relating homography matrix to camera projection matrix Matrix H is re-
lated to camera projection matrices. Consider two camera projections given by
Equation 6.12

� ~x � � P
�

~X �

1

�
�

�
K R| � K R~C�

� �
~X �

1

�
� K R p~X � � ~C� q (8.7)

� 1~x1
� 1 � P1

�
~X �

1

�
�

�
K1R1| � K1R1~C�

� �
~X �

1

�
� K1R1p~X � � ~C� q (8.8)
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�

�

~x

~u ~y

~b1

~b2~b3

~d1

~d2
~d3

C

O
X ~X

Figure 8.2: All 3D points are in a single plane. Coordinates in the plane and in the
image are related by a homography.

for all ~X � PR3, which gives

� RJ K� 1 ~x� � ~X � � ~C� (8.9)

� 1R1J K1� 1~x1
� 1 � ~X � � ~C� (8.10)

and therefore

� 1R1J K1� 1~x1
� 1 � � RJ K� 1 ~x� (8.11)

� 1

�
~x� 1 � K1R1RJ K� 1 ~x� (8.12)

for all corresponding pairs of vectors~x� , ~x1
� 1. Let us now compare Equation 8.12

with Equation 8.5, i.e. with
� ~x 1

� 1 � H~x� (8.13)

We see that

H� K1R1RJ K� 1 when � �
� 1

�
(8.14)

This is particularly useful when K � K1 since then

H� K R1RJ K� 1 (8.15)

which implies that H is similar [4] to a rotation, i.e.

K� 1H K� R1RJ (8.16)

and hence has one eigenvalue equal to one, the other two eigenvalues are complex
conjugate with modulae [2] equal to one.
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x47 Homographies conjugated to rotations Let us study homographiesH con-
jugated to rotations S � R1R as in Equation 8.16. We shall �rst check that such
homographies are characterized by the following condition

eigpHq � p 1; x � i y; x � i y q for some realx; y such that x2 � y2 � 1 (8.17)

Eigenvalues of a rotation S can be written as p1; x � i y; x � i y q for some realx, y
such that x2 � y2 � 1. Consider

|H� � I | �
�
�K� 1

�
� |H� � I | |K| �

�
�K� 1 H K� K� 1 � I K

�
� � | S� � I | (8.18)

an therefore eigenvalues ofHare equal to eigenvalues ofS.
Next, assume that eigenvalues ofHare equal to eigenvalues of a rotationS. Then

we can write
S U� U � and H V� V � (8.19)

for a matrix � with the eignvalues on the diagonal and matricesU, resp. V, of eigen-
vectors of S, resp. H. Now, if y � 0, the eigenvalues are pairwise distinct. Then it
is possible [3, 4] to construct matricesU, V, from the respective eigenvectors of unit
length such that they are regular, and we can write

� � � (8.20)

V� 1H V � U� 1S U (8.21)

U V� 1H V U� 1 � S (8.22)

Q� 1 K� 1H K Q � S (8.23)

K� 1H K � Q S Q� 1 (8.24)

We introduced an upper triangular matrix K and a rotation Qsuch that V U� 1 � K Q,
which is always possible by the Gramm-Schmid orthogonalization process [4]. Matrix
Q S Q� 1 is a rotation and thus His similar to a rotation by an upper triangular matrix.

If y � 0 then the eigenvalues are eitherp1; 1; 1q or p1; � 1; � 1q. In the former
case,S � I and henceK� 1H K� I implies H � I , and henceH is a rotation. In the
latter case, S is a rotation by 180� and H is thus similar to a rotation.

Let us now characterize the homographies conjugated to a rotation algebraicly.
The characteristic polynomial of H is as follows

pp� q � | � I � H| � p � � 1q p� � x � y iq p� � x � y iq (8.25)

� � 3 � p 2x � 1q� 2 � p 2x � 1q� � 1 (8.26)

� � 3 � traceH� 2 � p H11 � H22 � H33q� � | H| (8.27)

since x2 � y2 � 1. SymbolsHij denote minors after removing rowi and column j .
We are thus getting two algebraic constraints onH

traceH� H11 � H22 � H33 and |H| � 1 (8.28)

which are polynomials of degre two and three in elements ofH, respectively, which
is a representative of the homography. Clearly, any-nonzero multiple of H satisfy-
ing Equation 8.28 also represents the same homography and therefore rank three
matrices constrained by the �rst equation in Equation 8.28 are permissible rep-
resentatives of homographies between images obtained by a rotating camera with
constant internal calibration.

Finally, when K � K1 � I , then H� S, i.e. a rotation, is a representative of such
homograpy and hence all non-zero multiples of rotations arepermissible representa-
tives of homographies between images obtained by a rotatingcalibrated camera.
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8.2 Homography between images of a plane

8.2.1 Image of a plane

Let study the relationship between the coordinates of 3D points X , which all lie in
a plane � , and their projections into an image, Figure 8.2. Coordinates of pointsX
are measured in a coordinate systempO; � qwith � � r ~d1; ~d2; ~d3s. Vectors ~d1; ~d2 span
plane � and therefore

~X � �

�

�
x
y
0

�

� (8.29)

for some realx, y.
The points X are projected by a perspective camera with projection matrix Pinto

image coordinates~u� � r u; vsJ , w.r.t. an image coordinate systempo; � q with � �
r~b1;~b2s. The corresponding camera coordinate system ispC; � q with � � p ~b1;~b2;~b3q.

To �nd the relationship between the coordinates of ~X � and ~u� , we project points
X by P into projections ~x� as

�

�

�
u
v
1

�

� � � ~x � � P
�

~X �

1

�
�

�
p1 p2 p3 p4

�

�

�
�
�

x
y
0
1

�

�
�
� �

�
p1 p2 p4

�
�

�
x
y
1

�

� � H~y�

(8.30)
where p1; p2; p3; p4 are the columns ofP.

Notice that 3 � 1 matrix ~y� � r x; y; 1sJ represents point X in the coordinate
system pC; � q with the basis � � p ~d1; ~d2; ~d4q, where the ~d4 �

ÝÝÑ
CO is the vector

assigned to the pair of pointspC; Oq. If point C is not in � , then vectors ~d1; ~d2; ~d4

are independent and hence form a basis. Therefore, matrix

H�
�
p1 p2 p4

�
(8.31)

represents a change of coordinates and has rank 3.
When we think about pair pC; � q as about a camera that shares its projection

center with camera pC; � q and imagine that points X are all (accidentally) in the
projection plane � , we see that we have recovered the relationship between cameras
sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scene are in a single plane.
Then, as we shall see, the projections of the 3D points, whichare in the plane, are
again related by a homography even when the camera centers are located at di�erent
points in the space.

Let us consider a plane� and two perspective cameras with (in general di�erent)
projection centersC and C1, which do not lie in � and the corresponding projection
matrices P and P1

P �
�
p1 p2 p3 p4

�
(8.32)

P1 �
�
p1

1 p1
2 p1

3 p1
4

�
(8.33)
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y'

�

�

� 1~x

~x1

~u

~u1

~y
~b1

~b2~b3

~b1
1

~b1
2

~b1
3

~d1

~d2
~d3

C

C1

O
X ~X

Figure 8.3: All 3D points are in a single plane. Two images of the points are related
by a homography.

where pi P R3 and p1
i PR3, i � 1; : : : ; 4 stand for the columns ofP, P1.

We establish coordinate systemspO; � q, pC; � q, pC1; � 1q in the standard way, see
Figure 8.3 to get

~X � �

�

�
x
y
0

�

� (8.34)

for some realx, y.
Point X P � is projected to the cameras as

� ~x � � P
�

~X �

1

�
�

�
p1 p2 p3 p4

�

�

�
�
�

x
y
0
1

�

�
�
� �

�
p1 p2 p4

�
�

�
x
y
1

�

� � G ~y�

� 1~x1
� 1 � P1

�
~X �

1

�
�

�
p1

1 p1
2 p1

3 p1
4

�

�

�
�
�

x
y
0
1

�

�
�
� �

�
p1

1 p1
2 p1

4

�
�

�
x
y
1

�

� � G1~y1
� 1

for some�; � 1 P Rzt0u and two new coordinate systemspC; � q with � � p ~d1; ~d2; ~d4q,
where the ~d4 �

ÝÝÑ
CO and pC1; � 1q with � 1 � p ~d1; ~d2; ~d1

4q, where the ~d1
4 �

ÝÝÑ
CO1.

We see that there are two di�erent vectors, ~y and ~y1, which appear on the right
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hand side of the equations in di�erent bases, i.e. as~y� and ~y1
� 1

� ~x � � G~y� (8.35)

� 1~x1
� 1 � G1~y1

� 1 (8.36)

with G� r p1; p2; p4s and G1 � r p1
1; p1

2; p1
4s.

Coordinate systemspC; � q and pC1; � 1q are so special that

~y� � ~y1
� 1 (8.37)

for all points in � . Consider that

~y� � p ~X �
ÝÝÑ
COq� � ~X � � ~d4� � ~X p~d1 ;~d2 ;~d4q � ~d4p~d1 ;~d2 ;~d4q �

�

�
x
y
1

�

� (8.38)

~y1
� 1 � p ~X �

ÝÝÑ
C 1Oq� 1 � ~X � 1 � ~d1

4� 1 � ~X p~d1 ;~d2 ;~d1
4q � ~d1

4p~d1 ;~d2 ;~d1
4q

�

�

�
x
y
1

�

� (8.39)

and therefore, whenC R� and C1 R� , we get

� 1~x1
� 1 � G1G� 1� ~x � (8.40)

which we can write as
� ~x 1

� 1 � H~x� (8.41)

for � � � 1

� and H� G1G� 1. Clearly, HPR3� 3, rank H� 3.
We could also interpret this situation such that two images of a plane are related

by the homography, which is a combination of the homographies relating the plane
to its two images.

8.2.3 Homography between images of a plane by cameras with th e
same center

In the derivation of Equation 8.41, we have never asked for centers C, C1be di�erent.
Indeed, Equation 8.40 is perfetly valid even whenC � C1. At the same time,
however, there also holds Equation 8.14 true, and thus we have

H � G1G� 1 (8.42)

�
�
p1

1 p1
2 p1

4

� �
p1 p2 p4

� � 1
(8.43)

H � K1R1RJ K� 1 (8.44)

�
�
p1

1 p1
2 p1

3

� �
p1 p2 p3

� � 1
(8.45)

Let us see now purely algebraic argument why the above holds true. Since the
cameras have the same projection center~C� �

�
c1 c2 c3

� J
, we can write

p4 � � K R~C� and p1
4 � � K1R1 ~C� (8.46)

66



T. Pajdla. Elements of Geometry for Computer Vision 2016-5-9 (pajdla@cvut.cz )

and hence

H � G1G� 1 (8.47)

�
�
p1

1 p1
2 p1

4

� �
p1 p2 p4

� � 1
(8.48)

� K1R1
�

i j � ~C�

� �
i j � ~C�

� � 1
RJ K� 1 (8.49)

� K1R1RJ K� 1 (8.50)

with i �
�
1 0 0

� J
and j �

�
0 1 0

� J
. We see that there always holds

�
p1

1 p1
2 p1

4

� �
p1 p2 p4

� � 1
�

�
p1

1 p1
2 p1

3

� �
p1 p2 p3

� � 1
(8.51)

true for two cameras with the same projection center irrespectively of where actually
the points in space are since we would get the same images for points obtained by
intersecting the rays with the plane z � 0 in the coordinate systempO; � q.

8.2.4 Homographies induced by a plane in the scene

Let us look at Equation 8.40 in more detail. We can write

� 1

�
~x1

� 1 � G1G� 1 ~x� �
�
p1

1 p1
2 p1

4

� �
p1 p2 p4

� � 1
~x� (8.52)

� A1

�

�
1 0
0 1
0 0

� ~C 1
�

�

�

�

�
1 0
0 1
0 0

� ~C�

�

�

� 1

A� 1~x� (8.53)

� A1

�

�
1 0 � x1

0 1 � y1

0 0 � z1

�

�

�

�
1 0 � x
0 1 � y
0 0 � z

�

�

� 1

A� 1~x� (8.54)

We have introduced new symbols to represent vectors

~C� �
�
x y z

� J
and ~C 1

� �
�
x1 y1 z1

� J
(8.55)

and have written the homography as a product of four matrices. Let us next compute
the product of the two middle matrices

� 1

�
~x1

� 1 � A1

�

�
1 0 px1� xq{z
0 1 py1� yq{z
0 0 z1{z

�

� A� 1~x� (8.56)

We see that the middle matrix on the right looks almost as the identity plus some-
thing. Let's express it in that way

� 1

�
~x1

� 1 � A1

�

�
1 0 px1� xq{z
0 1 py1� yq{z
0 0 1� p z1� zq{z

�

� A� 1~x� (8.57)
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We can now further rearrange expressions as follows

� 1

�
~x1

� 1 � A1

�

� I �

�

�
px1� xq{z
py1� yq{z
pz1� zq{z

�

�
�
0 0 1

�
�


 A� 1~x� (8.58)

� A1

�

I � p ~C 1
� � ~C� q

1
~C� p3q

�
0 0 1

�
�

A� 1~x� (8.59)

� A1A� 1

�

I � p ~C� � ~C 1
� q

1
~C� p3q

�
0 0 1

�
A� 1

�

~x� (8.60)

We denoted the third coordinate of ~C� by ~C� p3q.
Vector 1

~C� p3q

�
0 0 1

�
A� 1 has a geometrical interpretation. Consider the equa-

tion of plane � in coordinate systempO; � q

�
0 0 1 0

�
�

~X �

1

�
� 0 (8.61)

where r0 0 1sJ is the normal vector of plane � containing point ~X � written w.r.t.
pO; � q, i.e. ~nJ

�� � r 0 0 1s, where �� is the dual basis to basis� , Chapter 2.

Next, consider the camera coordinate systempC; � q with ~Y� � Ap~X � � ~C� q. We
see that

�
0 0 1 0

�
�

A� 1 ~Y� � ~C�

1

�
� 0 (8.62)

� �
0 0 1

�
A� 1 ~C� p3q

� �
~Y�

1

�
� 0 (8.63)

provides the unit normal ~n of plane � in the dual basis �� to basis �

~nJ
�� �

�
0 0 1

�
A� 1 (8.64)

We have obtained the following formula for the homography between points ~x� ,
~x1

� 1 in the two images, which is generated by the plane�

� 1

�
~x1

� 1 � A1A� 1

�

I � p ~C 1
� � ~C� q

1
~C� p3q

~nJ
��

�

~x� (8.65)

where~n �� is the normal vector of � in �� , ~C� p3q is the distance of� from the camera
center C, and � , � 1 are the distances of points from the respective principal planes
in multiples of the respective focal lengths.

x48 One fully calibrated camera We will now consider Equation 8.65 for the
situation when the �rst camera is fully calibrated, i.e.

P1 �
�

I | � ~C�

�
and P2 �

�
A1| a1

�
�

�
A1| � A1 ~C 1

�

�
(8.66)
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Then, bases� 1 and � become identical and Equation 8.65 can be written as

� 1~x1
� 1 � A1

�

I � p ~C 1
� � ~C� q

~nJ
��

d

�

~x� �

�

A1�
~t � 1

d
~nJ

��

�

~x� �

�

A1�
~t � 1

d
~nJ

�

�

~x�

(8.67)
where ~t � 1 are the coordinates of the vector fromC to C 1 in � 1. Notice that we
have used the fact that � is the standard basis and therefore~n�� transforms by the
same matrix as ~X � when chaning a basis. To stress that, we use~n� instead of ~n�� .
Symbol d stands for the (non-zero) distance of the plane� from the center of the
�rst camera, and a non-zero � 1 � � 1{ � .

x49 Two internally calibrated cameras Let us next have a look at the situation
when K � K1 � I . Matrices A, A1 become rotations, which we stress by writing

P1 �
�

R| � R~C�

�
and P2 �

�
R1| � R1 ~C 1

�

�
(8.68)

with orthonormal matrices R, R1. Equation 8.65 now becomes

� 1~x1

 1 � R1R� 1

�

I � p ~C 1

 � ~C
 q

1
~C� p3q

~nJ
�


�

~x
 �

�

R1R� 1 �
~t 
 1

d
~nJ

�


�

~x
 (8.69)

A question arises here. Does every rank three real 3� 3 matrix represent a homog-
raphy between two calibrated images induced by a plane in thescene? We see from
the following that the answer is yes.

Let us consider a real 3� 3 marix Hand its SVD decomposition [4, p. 411]

H� U

�

�
a

b
c

�

� VJ (8.70)

Now, if |H| ¡ 0, then we may ask fora ¥ b ¥ c ¥ 0 and |U| � | V| � 1. Otherwise,
we replacec by � c to have a ¥ b ¡ 0 ¡ c and |U| � | V| � 1. Next, when any two of
a; b; care equal, e.g.a � b, then we can write the decomposition as follows

H � U

�

�
a

b
c

�

� VJ � U

�

�
b

b
c

�

� VJ (8.71)

� U

�

� b

�

�
1

1
1

�

� �

�

�
0
0

c � b

�

�
�
1 0 0

�
�


 VJ (8.72)

� bU VJ � U

�

�
0
0

c � b

�

�
�
1 0 0

�
VJ (8.73)

Hence, we need to consider only the situation whena; b; care pairwise distinct. We
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can write

H � bU S VJ � U u vJ VJ � bR� t n J

S �

�

�
�

a c� b2

bpa� cq 0 �
?

b2 � c2
?

a2 � b2

bpa� cq
0 1 0

?
b2 � c2

?
a2 � b2

bpa� cq 0 a c� b2

bpa� cq

�

�
�

u �

�

�
�

?
a2 � b2

a� c
0

�
?

b2 � c2

a� c

�

�
�

vJ �
� ?

a2 � b2 0
?

b2 � c2
�

Notice that b is non-zero since it must be greater thanc else we would haveb � c,
which we excluded. Moreover,a � c ¡ 0 since they are either both positive or
|a| ¡ | c| and a is positive. Hence all the formulas above are meaningful. It is easy
to verify that SJ S� I and |S| � 1 and thereforeR� U S VJ is a rotation.

Consider a rank three real 3� 3 matrix H. We see that it must be possible to
write a non-zero multiple of Has S� ~v
 1 ~nJ

�
 for some rotation S and vectors~v�
 PR3

and unit ~n�
 PR3. Hence, the following equations

�
� H� ~v
 1 ~nJ

�


� J �
� H� ~v
 1 ~nJ

�


�
� I ;

�
�� � H� ~v
 1 ~nJ

�


� �
� � 1; ~nJ

�
 ~n�
 � 1 (8.74)

have to be satis�ed for some real� and some vectors~v
 1 P R3 and unit ~n�
 P R3.
This is a set of eight algebraic equations in seven variables. Clearly, the constraint
~nJ

�
 ~n�
 � 1 can be replaced by
�
0 0 1

�
~n�
 � � 1 to enforce that the plane normal

faces the �rst camera. To get polynomial equations, we multiply the left equation
by  2 � 1{ � 2 and the middle equation in Equation 8.74 by  3 � 1{ � 3 to get

�
H� ~u
 1 ~nJ

�


� J �
H� ~u
 1 ~nJ

�


�
�  2I ;

�
�� H� ~u
 1 ~nJ

�


� �
� �  3;

�
0 0 1

�
~n�
 � � 1 (8.75)

with ~u
 1 �  ~v 
 1. Interestingly, this system has1 12 solutions in general. Even more
interestingly, there are only four real solutions but with only two oposite values

1The following Maple [18] run demontrates the structure of so lutions to the system of equa-
tions 8.75.

Linear algebra shortcuts
>with(ListTools):with(LinearAlgebra):with(Groebner):
>E:=LinearAlgebra[IdentityMatrix](3):
>det:=LinearAlgebra[Determinant]:
>trn:=LinearAlgebra[Transpose]:
>M2L:=proc(M) convert(convert(M,Vector),list); end proc:
>X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:
>c2R:=c->simplify((E-X (c)).MatrixInverse(E+X (c))):
All solutions to a triangular Groebner Basis
>TriangularGBSolve:=proc(Eq,So)
local s, so, Si;

if nops(Eq)>0 then
Si:=[];
if nops(So)=0 then

Si:=[solve([Eq[1]])];
else
for so in So do

s:=[solve(subs(so,[Eq[1]]))];
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for  . Taking into account that point scales �; � 1 have to be positive, we get only
two solutions with only one positive  and two corresponding solutions. Hence, the
relative orientation of two calibrated cameras can be in a generic situation obtained
from four coplanar points up to two solutions.

Si:=[op(Si),op(map(f->f union so,s))];
end do;

end if;
TriangularGBSolve(Eq[2..],Si);

else
So;

end if
end proc:

Simulate a calibrated homography
>R0:=c2R(RandomVector(3,generator=-10..10)):
>t0:=RandomVector(3,generator=-10..10):
>n0:=<-1,-2,-2>/3:
>s0:=3:
>H0:=s0*(R0+t0.trn(n0));

H0:�

�

�
� 25

31 � 30
31 � 129

31
� 300

31 � 539
31 � 560

31
84
31 � 14

31 � 70
31

�

�

Formulas for H and R
>n:=<n1,n2,n3>:
>t:=<t1,t2,t3>:
>R:=H0-t.trn(n):
>H:=R+t.trn(n):
Equations
>eq:=convert(convert(expand([op(M2L(trn(R).R-s 2*E)),det(R)-s 3 ,n3+1]),set),list);
eq :� r n3� 1; 3151{31�p 50{31q � t1� n1� n12 � t12 � p 600{31q � n1� t2� n12 � t22 � p 168{31q � n1�
t3� n12 � t32 � s2 ; 9407{31�p 60{31q� t1� n2� n22 � t12 �p 1078{31q� n2� t2� n22 � t22 �p 28{31q� n2�
t3� n22 � t32 � s2 ; 10811{31�p 258{31q� t1� n3� n32 � t12 �p 1120{31q� n3� t2� n32 � t22 �p 140{31q�
t3� n3� n32 � t32 � s2 ; 5154{31�p 25{31q � t1� n2�p 30{31q � t1� n1� n1� n2� t12 � p 300{31q � n2�
t2� p 539{31q � n1� t2� n2� n1� t22 � p 84{31q � n2� t3� p 14{31q � n1� t3� n2� n1� t32 ; 5505{31�
p25{31q� t1� n3�p 129{31q� t1� n1� n1� n3� t12 �p 300{31q� n3� t2�p 560{31q� n1� t2� n3� n1� t22 �
p84{31q� t3� n3�p 70{31q� n1� t3� n3� n1� t32 ; 9830{31�p 30{31q� t1� n3�p 129{31q� t1� n2� n2�
n3� t12 �p 539{31q� n3� t2�p 560{31q� n2� t2� n2� n3� t22 �p 14{31q� t3� n3�p 70{31q� n2� t3� n2�
n3� t32 ; �p 725{31q� t3� n3�p 840{31q� t1� n2�p 126{31q� n1� t2�p 1470{31q� t1� n1�p 1701{31q�
n1� t3�p 406{31q� n2� t2�p 1700{31q� n2� t3�p 70{31q� n3� t2�p 1596{31q� t1� n3� 7014{31� s3s

The number of solutions
>G:=Groebner[Basis](eq,plex(op([t1,t2,t3,n1,n2,n3,s]))):
>Id:=PolynomialIdeals[PolynomialIdeal]([op(G)]):
>print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Id));
>print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Id));
"Hilbert dimension =", 0
"The number of solutions =", 12

Solve it
>S:=TriangularGBSolve(G,[]):
and substite the solutions to get s, R, n, t and select the real solutions only
>sRnt:=map(f->evalf(subs(f,[s,R/s,n,t/s])),S):
>select(f->foldl(`and`,true,op(MTM[isreal]~(f))),sRnt);
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8.3 Spherical image

Consider a camera rotating around a centerC and collecting n images all around
such that every ray from C is captured in some image. We can choose one camera,
e.g. the �rst one, and relate all other cameras to it as

� i ~x� 1 � Hi ~x� i ; i � 1; : : : ; n (8.76)

Since all vectors~x were captured, there inevitably will appear a vector with coordi-
nates

~x� 1 �

�

�
x
y
0

�

� (8.77)

Such vector does not represent any point in the a�ne image plane � 1 of the �rst
camera because it does not have the third coordinate equal toone. To be able to
represent rays in all directions, we have to introducespherical image, which is the
set of all unit vectors in R3 (also calledomnidirectional image). We sometimes use
only a subset of the sphere, typically a cylinder, to capturepanoramic image. In
such a case, we can remap pixels onto such cylinder and then unwarp the cylinder
into a plane. Notice however, that in such a representation,straight lines in space
do not project to straight lines in images.

All equations we have developed so far work with minor modi�cations also for
vectors with last zero coordinate. We will come back to it later when studying
projective planewhich is somewhere between the a�ne image plane and full spherical
image.

8.4 Homography { summary

Let us summarize the �ndings related to homography to see where it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let ru; vsJ and ru1; v1sJ be co-
ordinates of the projections of 3D points into two images by two perspective
cameras with identical projection centers;

�

� � 3:0

�

�
� 0:610 � 0:220 0:761
� 0:152 � 0:910 � 0:385

0:778 � 0:350 0:522

�

�

�

�
� 0:545
� 0:867
� 1:000

�

�

�

�
� 0:626

5:640
� 0:230

�

�

�

�

�

� � 3:0

�

�
� 0:602 � 0:344 0:720
� 0:559 � 0:462 � 0:688

0:570 � 0:817 0:860

�

�

�

�
� 0:500
� 1:000
� 1:000

�

�

�

�
� 0:667

5:330
� 0:667

�

�

�

�

�

� � 3:0

�

�
0:737 0:421 � 0:529

� 0:517 � 0:153 � 0:842
� 0:435 0:894 0:105

�

�

�

�
� 0:545
� 0:867
� 1:000

�

�

�

�
0:858

� 6:860
0:858

�

�

�

�

�

� � 3:0

�

�
0:636 0:411 � 0:654

� 0:765 � 0:809 � 0:583
� 0:768 0:421 � 0:483

�

�

�

�
� 0:500
� 1:000
� 1:000

�

�

�

�
0:734

� 6:600
0:270

�

�

�

�
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2. Image of a plane . Let ru; vsJ be coordinates of 3D points all in one plane
� , w.r.t. a coordinate system in � and ru1; v1sJ coordinates of their projections
by a perspective cameras with projection center not in the plane � ;

3. Two images of a plane Let ru; vsJ and ru1; v1sJ be coordinates of the pro-
jections of 3D points all in one plane� , into two images by two perspective
cameras with projection centers not in� ;

then there holds

DHPR3� 3; rank H� 3; so that @ ru; vsJ corrØ r u1; v1sJ D� P R : �

�

�
u1

v1

w1

�

� � H

�

�
u
v
w

�

�

(8.78)
true where w � w1 � 1 for perspective images and may be general for spherical
images.

In all three cases, coordinates of points are related by a homography.
We have used linear algebra to derive the relationship between the coordinates

of image points in the above form. The homography can be also represented in a
di�erent way.

To see that, we shall eliminate� as follows

�

�

�
u1

v1

1

�

� � H

�

�
u
v
1

�

� �

�

�
h11 h12 h13

h21 h22 h23

h31 h32 h33

�

�

�

�
u
v
1

�

� (8.79)

�u 1 � h11 u � h12 v � h13 (8.80)

�v 1 � h21 u � h22 v � h23 (8.81)

� 1 � h31 u � h32 v � h33 (8.82)

u1 �
h11 u � h12 v � h13

h31 u � h32 v � h33
(8.83)

v1 �
h21 u � h22 v � h23

h31 u � h32 v � h33
(8.84)

We see that mappingh obtained as

�
u1

v1

�
� h

��
u
v

�

�

�
h11 u� h12 v� h13
h31 u� h32 v� h33

h21 u� h22 v� h23
h31 u� h32 v� h33

�

(8.85)

is a mapping from a subset ofR2 to R2 but it is not linear ! It contains fractions of
a�ne functions.

Although we can understand the homography as a linear mapping in certain
sense, it is not a linear mapping in the standard sense.

Matrix H represents a linear mapping fromR3 to R3. However, we are not
interested in the individual vectors in R3 but in complete one-dimensional subspaces,
which correspond to the direction vectors representing projection rays.
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Notice that � can accommodate for any change of the length of
�
u v 1

� J

(except for making it zero) since it can be split into �; � 1 and used as

� 1

�

�
u1

v1

1

�

� � H�

�

�
u
v
1

�

� (8.86)

x1 � H x (8.87)

We can now think about x and x1 as about one-dimensional subspaces ofR3

generated by~x and ~x1. The \equation" 2

x1 � H x (8.88)

then actually means

D~x Px and D~x1 P x1 such that ~x1 � H~x (8.89)

Thus the homography can be seen as a mapping between one-dimensional subspaces
of R3. While R3 itself is a linear space, the set of its one-dimensional subspaces, in
the way we use them,is not a linear space and therefore the homography is not a
linear mapping although it is represented by a matrix H, which is used to multiply
vectors.

It is also important to notice the true relationship between homographies and
3 � 3 real matrices. Any 3� 3 real matrix of rank 3 represents a homography but
many di�erent matrices represent the same homography. Let's see why.

Let us considerHPR3� 3 and GP R3� 3 such that � H� Gfor some� � 0. We can
write

� 1~x1 � H~x (8.90)

� � 1~x1 � � H~x (8.91)

� � 1~x1 � G~x (8.92)

� 1~x1 � G~x (8.93)

We see that H and Grepresent thesame homography. Indeed, two matrices related
by a non-zero multiple represent the same homography. Hence, it suggests itself to
associate homographies with one-dimensional subspaces of3 � 3 matrices.

8.5 Constraint on the homographies of induced by two
planes

Let us now consider the situation when there are two planes� 1 and � 2 in the scene,
Figure 8.4. Then, the planes induce two homographiesH1, H2 between the two
images. We can write, Equation 8.65,

� 1
1 ~x1

� 1 � A1A� 1

�

I � p ~C 1
� � ~C� q

1
~C� 1 p3q

~nJ
1 ��

�

~x� � H1 ~x�

� 1
2 ~x1

� 1 � A1A� 1

�

I � p ~C 1
� � ~C� q

1
~C� 2 p3q

~nJ
2 ��

�

~x� � H2 ~x� (8.94)

2Monograph [14] very often uses \=" exactly in this sense of equal ity of one-dimensional subspaces.
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� 1

� 2

�

� 1~x1

~x1
1

~x2

~x1
2

~u1

~u1
1

~y1

~y1
1~y2

~y1
2

~b1

~b2~b3

~b1
1

~b1
2

~b1
3

~d1

~d2
~d3

C

C1

O
X 1

X 2

~X 1

Figure 8.4: There are two planes in the scene� 1 and � 2 inducing two homographies
H1, H2 between the two images.

which means that thare are matricesH1, H2 such that for every point ~x� in image
one and the corresponding point~x1

� 1 in image two there are real � 1
1, � 1

2 such that
Equaitons 8.94 hold true.

We are interested in �nding the constraints on arbitrary rep resentatives of the
two homographies, i.e. matricesG1 � � 1 H1 and G2 � � 2 H2 for some real� 1; � 2. We
see that there follows from Equations 8.94 that

� 1G1 � A1A� 1

�

I � p ~C 1
� � ~C� q

1
~C� 1 p3q

~nJ
1 ��

�

� ApI � ~t � ~vJ
1 �� q

� 2G2 � A1A� 1

�

I � p ~C 1
� � ~C� q

1
~C� 2 p3q

~nJ
2 ��

�

� ApI � ~t � ~vJ
2 �� q (8.95)

and thus

G� 1
2 G1 �

� 2

� 1
pI � ~t � ~vJ

2 �� q� 1pI � ~t � ~vJ
1 �� q (8.96)

which can be rewritten using

�
I � ~t � ~vJ

2 ��

	 � 1
� I �

~t � ~vJ
2 ��

1 � ~vJ
2 ��

~t �
(8.97)

as

G� 1
2 G1 �

� 2

� 1

�

I �
~t �

1 � ~vJ
2 ��

~t �

�

p~vJ
2 �� � ~vJ

1 �� q (8.98)
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Now, we see that there is a two-dimensional space of eigenvectors of G� 1
2 G1 for

~v2 �� � ~v1 �� since we are getting

G� 1
2 G1 ~w� �

� 2

� 1

�

I �
~t �

1 � ~vJ
2 ��

~t �

�

p~vJ
2 �� � ~vJ

1 �� q~w� �
� 2

� 1
~w� (8.99)

for every ~w�� such that p~v2 �� � ~v1 �� qJ ~w� � 0.
Vectors ~w� represent projections of the intersection linel of planes � 1, � 2 into

the �rst image. Line l is in both planes and therefore maps identically byH1 and H2.

8.6 Computing homography from image matches

Let us turn to the computational aspect of the homography relationship between
images. Our goal is to �nd the homography mapping from a few pairs of corre-
sponding image points. We shall see that this problem leads to solving a system of
linear equations.

8.6.1 General perspective cameras

Our goal is to �nd matrix Hin Equation 8.78 without assuming any knowledge about
cameras. Let us introduce symbols for rows of homographyH

H�

�

�
�

hJ
1

hJ
2

hJ
3

�

�
� and for the vector x �

�

�
u
v
1

�

� (8.100)

and rewrite the above matrix Equation 8.78 as

� u 1 � hJ
1 x (8.101)

� v 1 � hJ
2 x (8.102)

� � hJ
3 x (8.103)

Eliminate � from the �rst two equations using the third one

phJ
3 xqu1 � hJ

1 x (8.104)

phJ
3 xqv1 � hJ

2 x (8.105)

(8.106)

move all to the left hand side and reshape it usingxJ y � yJ x

xJ h1 � p u1xJ qh3 � 0 (8.107)

xJ h2 � p v1xJ qh3 � 0 (8.108)

(8.109)

Introduce notation
h �

�
hJ

1 hJ
2 hJ

3

� J
(8.110)
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and express the above two equations in a matrix form
�

u v 1 0 0 0 � u1u � u1v � u1

0 0 0 u v 1 � v1u � v1v � v1

�
h � 0 (8.111)

Every correspondenceru; vsJ corrØ r u1; v1sJ brings two rows to a matrix
�

�
�

u v 1 0 0 0 � u1u � u1v � u1

0 0 0 u v 1 � v1u � v1v � v1

...

�

�
� h � 0 (8.112)

M h � 0 (8.113)

If � G� H, � � 0 then both G; H represent the same homography. We are therefore
looking for one-dimensional subspaces of 3� 3 matrices of rank 3. Each such subspace
determines one homography. Also note that the zero matrix,0, does not represent
an interesting mapping.

We need therefore at least 4 correspondences in a general position to obtain rank
8 matrix M. By a general position we mean that the matrix Mmust have rank 8 to
provide a single one-dimensional subspace of its solutions. This happens when no 3
out of the 4 points are on the same line.

Notice that Mcan be written in the form

M�

�

�
�
�
�
�
�
�
�
�

u1 v1 1 0 0 0 � u1
1u1 � u1

1v1 � u1
1

u2 v2 1 0 0 0 � u1
2u2 � u1

2v2 � u1
2

...
0 0 0 u1 v1 1 � v1

1u1 � v1
1v1 � v1

1
0 0 0 u2 v2 1 � v1

2u2 � v1
2v2 � v1

2
...

�

�
�
�
�
�
�
�
�
�

(8.114)

with indices naming di�erent points, which can be rewritten more concisely as

M�

�

�
�
�
�
�
�
�
�
�
�

xJ
1 0J � u1

1 xJ
1

xJ
2 0J � u1

2 xJ
2

...
0J xJ

1 � v1
1 xJ

1

0J xJ
2 � v1

2 xJ
2

...

�

�
�
�
�
�
�
�
�
�
�

(8.115)

with 0J � r 0; 0; 0s.

x50 A more general procedure for computing H Let us next give a more general
procedure for computing H, which will be analogical to the general procedure for
computing Qin x30.

We start from Equation 8.78

� x1 � H x (8.116)
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with x � r u; v; wsJ and x1 � r u1; v1; w1sJ and follow the derivation in x30 to get

� x1 � H x (8.117)
�
x1�

� H x � 0 (8.118)

xJ HJ �
x1� J

� � 0J (8.119)

vpxJ HJ �
x1� J

� q � vp0J q (8.120)

p
�
x1�

� b xJ qvpHJ q � vp0J q (8.121)
�

�

�

�
0 � w1 v1

w1 0 � u1

� v1 u1 0

�

� b xJ

�


 vpHJ q � vp0J q (8.122)

�

�
0J � w1xJ v1xJ

w1xJ 0J � u1xJ

� v1xJ u1xJ 0J

�

� vpHJ q � vp0J q (8.123)

For more correspondences numbered byi , we then get
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0J � w1
1xJ

1 v1
1xJ

1

0J � w1
2xJ

2 v1
2xJ

2
...

w1
1xJ

1 0J � u1
1xJ

1

w1
2xJ

2 0J � u1
2xJ

2
...

� v1
1xJ

1 u1
1xJ

1 0J

� v1
2xJ

2 u1
2xJ

2 0J

...

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

vpHJ q � 0 (8.124)

which is, for w � 1, equivalent to Equation 6.30. Notice that vpHJ q � h from
Equation 8.113.

8.6.2 Calibrated cameras

Let us now look at some situations when cameras have constantintternal calibration
or are fully calibrated.

x51 Homography induced by rotating a calibrated camera This is a simple situ-
ation. Let us construct a rotation matrix representing a homography from one and
half matching image points. Consider two distinct image points x, y in the �rst im-
age that are mapped on pointsx1, y1 in the second image as

�
x1{|| x1|| y1{|| y1||

�
�

R
�
x{|| x|| y{|| y||

�
by a rotation R. We can decomposeR into a composition of two

simple rotations R� R2 R1 such that

�
x1{|| x1|| y1{|| y1||

�
� R2

�

�
0 0
0 � 1

1  1

�

� ;

�

�
0 0
0 �
1  

�

� � R1
�
x{|| x|| y{|| y||

�
(8.125)
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with �;  such that � 2 �  2 � � 12 �  12 � 1. Write

R1 �
�
r 11 r 12 r 13

� J
and R2 �

�
r 21 r 22 r 23

�
(8.126)

to see that

r 11 � s1 px{|| x|| � y{|| y||q{||px{|| x|| � y{|| y||q|| (8.127)

r 12 � p x{|| x|| � r 11q{||px{|| x|| � r 11q|| (8.128)

r 13 � r 11 � r 12 (8.129)

r 21 � s2 px1{|| x1|| � y1{|| y1||q{||px1{|| x1|| � y1{|| y1||q|| (8.130)

r 22 � p x1{|| x1|| � r 21q{||px1{|| x1|| � r 21q|| (8.131)

r 23 � r 21 � r 22 (8.132)

where the signss1; s2 P t� 1; � 1u are chosen to make, e.g.,� ¡ 0, � 1 ¡ 0. Notice
that this procedure setsReven when vectors

�
x{|| x|| y{|| y||

�
can't be exactly trans-

formed to vectors
�
x1{|| x1|| y1{|| y1||

�
by a rotation, which is often the case when

they are estimated form noisy measurements. Nevertheless,if the error a�ecting the
vectors is small,Rso obtained is still close to the true rotation between the cameras.

x52 Homography induced by rotating a camera with constant internal calib ration
Consider a point x �

�
x y 1

� J
in the �rst image that is mapped on a point

x1 �
�
x1 y1 1

� J
in the second image by� x1 � K� 1R K xwith rotation R and a

camera calibration matrix K.
We have seen, Equation 8.28, that the following two equations have to be satis�ed

0 � traceH� p H11 � H22 � H33q

� h11 � h22 � h33 � h11 h22 � h11 h33 � h12 h21 � h13 h31 � h22 h33 � h23 h32

1 � | H| (8.133)

� h11 h22 h33 � h11 h23 h32 � h12 h21 h33 � h12 h23 h31 � h13 h21 h32 � h13 h22 h31

with hij , i; j � 1; 2; 3 denoting the elements ofH. It is easy to check in the Maple [18]
computer algebra system3 that the Hilbert dimension [16] of the system 8.133 is equal

3Maple [18] script analyzing the computation of a homography i nduced by a rotating camera with
constant internal parameters. We note that some of the funct ions used here have been de�ned
in previous Maple examples.

Setup the equations
>H:=<<h11|h12|h13>,<h21|h22|h23>,<h31|h32|h33>>:
>Heq:=[det(H)-1,simplify(det(H-E),[det(H)=1])];
>HilbertDimension(Heq);
7

Simulate projections
>K:=<<10|1|5>,<0|12|6>,<0|0|1>>:
>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:
>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:
>X:=<<0|1|1|0>,<0|0|1|1>,<0|0|0|0>,<1|1|1|1>>:
>x1:=a2h(h2a(P1.X)):
>x2:=a2h(h2a(P2.X)):
>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]):
Check eigenvalues of H0
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to seven. Therefore, we will need seven independent linear equations to reduce the
Hilbert dimension to zero and thus obtain a �nite number of solutions ??. We
see that we can use four points to add eight independent linear equations and so
obtain a single solution. However, if point measurements inimages were a�ected
by measurement noise, using all eight equations would almost surely produce an

e:=Eigenvalues(H0),abs~(trn(e));�

�
1

77
85 � 36

85 i
77
85 � 36

85 i

�

� ;
�

1 1 1
�

Add two independent linear equations per a corresponding pair of image points
eq:=[op(Heq), op(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))];

eq :�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

h11 � h22 � h33 � h11 h22 � h11 h33 � h12 h21 � h13 h31 � h22 h33 � h23 h32

h11 h22 h33 � h11 h23 h32 � h12 h21 h33 � h12 h23 h31 � h13 h21 h32 � h13 h22 h31 � 1

� 22
5 h21 � 54252

565 h31 � 74
5 h22 � 182484

565 h32 � h23 � 2466
113 h33

� 22
5 h11 � 24068

565 h31 � 74
5 h12 � 80956

565 h32 � h13 � 1094
113 h33

� 52
7 h21 � 7176

35 h31 � 18h22 � 2484
5 h32 � h23 � 138

5 h33

� 52
7 h11 � 832

7 h31 � 18h12 � 288h32 � h13 � 16h33

� 23
5 h21 � 9522

41 h31 � 126
5 h22 � 52164

41 h32 � h23 � 2070
41 h33

� 23
5 h11 � 16261

205 h31 � 126
5 h12 � 89082

205 h32 � h13 � 707
41 h33

� 53
35 h21 � 130698

2765 h31 � 666
35 h22 � 1642356

2765 h32 � h23 � 2466
79 h33

� 53
35 h11 � 31853

2765 h31 � 666
35 h12 � 400266

2765 h32 � h13 � 601
79 h33

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Solve it
>Basis(eq,plex(op(indets(H))));
r3825h11 � 3319; 450h12 � 43; 3825h13 � 7337; 85h21 � 36; 5h22 � 4; 85h23 � 522; 3825h31 �
38; 450h32 � 11; 3825h33 � 4376s
We are getting one solution but we have used eight linear equations although seven
linear equations should be sufficient to get a finite number of solutions. Let us
use seven linear equations only.
>Basis(eq[1..nops(eq)-1],plex(op(indets(H)))):
We see that we are getting a degree six polynomial in h33

>B[1];
1384905521719726207524518830400390625h6

33 � 4889332606744002799184541025140000000h5
33 �

3004780464450070944458597429463562500h4
33 � 62963310535984882573971620665889376000h3

33 �
1098716737305688573847805032564563200h2

33 � 231760248490986847248483050694397009920h33 �
176966810281848547933751731455841501184

and six solutions for H
>S:=TriangularGBSolve(B,[]):
>dg:=Digits: eDigits:=10:
>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);
>Digits:=dg:�

�
�
�

3319
3825

43
450

7337
3825

� 36
85 4{5 522

85

� 38
3825 � 11

450
4376
3825

�

�
�
� ,

�

�
�
�

27989
113075

11116
68877

46056
11543

� 55317
33688

29162
29109

62207
6739

� 4819
93927 � 3479

158824
9932
7517

�

�
�
� ,

�

�
�
�

� 51941
3866

174177
144175

213038
5423

� 40431
1690

36210
11627

710577
12973

� 57914
70849

6959
87760

43100
19401

�

�
�
�

�

�
�
�

40441
1236 � 20953

8193 � 69409
809

132430
2457 � 26276

4897 � 1327299
11857

72875
39356 � 5270

22337 � 94659
37021

�

�
�
� ,

�

�
�
�

91103
21006 � 63957

17956 i � 19612
29061 � 16799

28267 i � 137213
6863 � 23642

1355 i

178138
16263 � 43433

4596 i � 114375
43187 � 27263

11331 i � 78611
2342 � 135829

4558 i

15541
42367 � 5675

17974 i 3263
533530 � 4388

462787 i � 24252
8569 � 122693

46803 i

�

�
�
�

�

�
�
�

91103
21006 � 63957

17956 i � 19612
29061 � 16799

28267 i � 137213
6863 � 23642

1355 i

178138
16263 � 43433

4596 i � 114375
43187 � 27263

11331 i � 78611
2342 � 135829

4558 i

15541
42367 � 5675

17974 i 3263
533530 � 4388

462787 i � 24252
8569 � 122693

46803 i

�

�
�
�
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inconsistent system. Therefore, it make sense to use only seven linear equations,
which give six solutions and produce six homographies conjugated to a rotation
for any four (or more precisely, 3� 1

2) points in two images. If the error in the
measuerement is small, one of the so obtainedH is close to the actual homography
between the images.

x53 Homography induced by a plane observed by a moving calibrated camera
Let us �rst consider a point x �

�
x y 1

� J
in the �rst image that is mapped on a

point x1 �
�
x1 y1 1

� J
in the second image by� x1 � p R� u nJ qx with rotation R,

unit real vector n and a vector u.
Paragraph x49 shows how to decompose a homoghraphy, represented byH, be-

tween two calibrated images induced by a plane in the scene into R, ~t 
 1{ ~C� and ~n�
 .
Let us now show how to estimate a decomposableH directly from image data. We
will parameterize rotations using the Cayley parameterization []

Rpc1; c2; c3q �

�

�
�
�
�

c2
1 � c2

2 � c2
3 � 1

c2
1 � c2

2 � c2
3 � 1

2 pc1 c2 � c3q
c2

1 � c2
2 � c2

3 � 1
2 pc1 c3 � c2q
c2

1 � c2
2 � c2

3 � 1
2 pc1 c2 � c3q
c2

1 � c2
2 � c2

3 � 1
� c2

1 � c2
2 � c2

3 � 1
c2

1 � c2
2 � c2

3 � 1
2 pc2 c3 � c1q
c2

1 � c2
2 � c2

3 � 1
2 pc1 c3 � c2q
c2

1 � c2
2 � c2

3 � 1
2 pc2 c3 � c1q
c2

1 � c2
2 � c2

3 � 1
� c2

1 � c2
2 � c2

3 � 1
c2

1 � c2
2 � c2

3 � 1

�

�
�
�
�

(8.134)

for c1; c2; c3 P R, which excludes rotations by 180� , since two perspective cameras
can't look the opposite directions when seeing a non-degenerate piece of a plane in
space. Similarly, we will assume that~n�
 3 � 1 since the �rst (as well as the second)
camera has to look at the plane. We are free to orient the planenormal towards the
�rst camera to remove unnecessary ambiguity and to reduce the number of solutions
to one half.

When the data is exact, we see that we are getting 11 solutions in general, out
of which three are real4. The ideal generated by the equations from four co-planar
points is radical but it is not prime [16]. We see that the corresponding variety is

Notice that the first solution is equal to the simulated homography, while
the othter solutions (shown only up to 10 digits precision to avoid too long
expressions) are ``artifacts'' of the formulation.

4Maple [18] script analyzing the computation of a homography b etween two cali-
brated images induced by a plane in a scene observed by the cameras. We note
that some of the functions used here have been de�ned in previous Maple exam-
ples.

Constraints on a homography induced by a plane between calibrated images
>n:=<n1,n2,n3>:
>t:=<t1,t2,t3>:
>R:=c2R(<c1,c2,c3>):
>H:=R+t.trn(n);

H:�

�

�
�

c12 � c22 � c3 2 � 1
c12 � c22 � c32 � 1 � t1n1 2 c1 c2� c3

c12 � c22 � c32 � 1 � t1n2 2 c1 c3� c2
c12 � c22 � c32 � 1 � t1n3

2 c1 c2� c3
c12 � c22 � c32 � 1 � t2n1 � c12 � c22 � c32 � 1

c1 2 � c22 � c32 � 1 � t2n2 2 c2 c3� c1
c12 � c22 � c3 2 � 1 � t2n3

2 c1 c3� c2
c12 � c22 � c32 � 1 � t3n1 � 2 � c2 c3� c1

c1 2 � c22 � c32 � 1 � t3n2 � c12 � c22 � c32 � 1
c12 � c22 � c32 � 1 � t3n3

�

�
�

Simulate projections
>R1:=c2R(<1,2,3>): C1:=<<2,1,3>>: P1:=<R1|-R1.C1>:
>R2:=c2R(<3,4,5>): C2:=<<2,3,1>>: P2:=<R2|-R2.C2>:
>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]);
>X:=<<0|10|10|0>,<0|0|10|10>,<0|0|0|0 >,<1|1|1|1>>:
>x1:=a2h(h2a(P1.X)):
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a union of three irreducible variaties, each consisting of asingle real point, and a
component consisting of eight non-real points.

When the data are a�ected by measurement noise, however, thesame formulation
produces 12 solutions, out of which, now, four are real. The ideal generated by
corrupted measurements is now prime, primary and maximal [16].

>x2:=a2h(h2a(P2.X)):
Setup equations
>eq:=[n3+1,op(numer(normal(Flatten(

map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])
))))]:

Solve them
>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):
and analyze the ideal
>Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):
print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));
print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));
print("Is radical =",PolynomialIdeals[IsRadical](Bi));
print("Is prime =",PolynomialIdeals[IsPrime](Bi));
print("Is primary =",PolynomialIdeals[IsPrimary](Bi));
print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

"Hilbert dimension =", 0
"The number of solutions =", 11
"Is radical =", true
"Is prime =", false
"Is primary =", false
"Is maximal =", false
We see that the ideal can be obtained as an intersection of four prime ideals
>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):
BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):
map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))] ,
BB);

[[0, 1], [0, 1], [0, 1], [0, 8]]

which consists of single and eight points, respectively. There are 11 solutions
for t3
>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));
rt311 ; t310 ; t39 ; t38 ; t37 ; t36 ; t35 ; t34 ; t33 ; t32 ; t3; 1s

Let us get solutions to all variables
>S:=TriangularGBSolve(B,[]): nops(S);
11

We see that we are also getting 11 solutions. Let's select the real ones and
substitute back to H, R, n, t
>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):
>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);
3

to see that we are left with only three solutions. Let's compare it to the
simulation.
>[H0,R0,-n0/n0[3],-t0*n0[3]];�

�

�

�
247
255

104
255

4
17

� 316
765

113
765 � 2

153
� 32

765
76

765
167
153

�

�

�

�
145
153

40
153

28
153

� 232
765

701
765

40
153

� 76
765 � 232

765
145
153

�

�

�

�
� 2

5
� 14

5
� 1

�

�

�

�
� 8

153
14
51

� 22
153

�

�

�

�

>convert(sH,rational);�

�

�

�
247
255

104
255

4
17

� 316
765

113
765 � 2

153
� 32

765
76

765
167
153

�

�

�

�
145
153

40
153

28
153

� 232
765

701
765

40
153

� 76
765 � 232

765
145
153

�

�

�

�
� 2

5
� 14

5
� 1

�

�

�

�
� 8

153
14
51

� 22
153

�

�

�

�
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We also see that for small noise, one of the four solutions is reasonably close to
the true simulated solution.

�

�

�

�
� 247

255 � 104
255 � 4

17
316
765 � 113

765
2

153
32

765 � 76
765 � 167

153

�

�

�

�
� 37

45 � 428
765 � 16

153
� 16

45
496
765 � 103

153
4
9 � 79

153 � 112
153

�

�

�

�
� 28

25
29
25

� 1

�

�

�

�
20

153
� 35

51
55

153

�

�

�

�

�

�
�
�

�

�
�
�

247
255

104
255

4
17

� 316
765

113
765 � 2

153

� 32
765

76
765

167
153

�

�
�
�

�

�
�
�

2249
3825

3068
3825 � 16

153

� 596
765

403
765 � 52

153

� 832
3825

1076
3825

143
153

�

�
�
�

�

�
�
�

� 28
25

29
25

� 1

�

�
�
�

�

�
�
�

� 52
153

� 50
153

� 8
51

�

�
�
�

�

�
�
�

We see that the first solution equals the sumulation. Let's next add noise of
about 0.1% of the measurement range.
>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:
>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:
>eq:=[n3+1,op(numer(normal(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))))]:
and analyze the ideal
>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):
Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):
print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));
print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));
print("Is radical =",PolynomialIdeals[IsRadical](Bi));
print("Is prime =",PolynomialIdeals[IsPrime](Bi));
print("Is primary =",PolynomialIdeals[IsPrimary](Bi));
print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

"Hilbert dimension =", 0
"The number of solutions =", 12
"Is radical =", true
"Is prime =", true
"Is primary =", true
"Is maximal =", true
We see that the ideal is prime and consists of a single component of 12 points
>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):
BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):
map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],
BB);

[[0, 12]]

There are 12 solutions for t3
>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));
rt312 ; t311 ; t310 ; t39 ; t38 ; t37 ; t36 ; t35 ; t34 ; t33 ; t32 ; t3; 1s
>S:=TriangularGBSolve(B,[]): nops(S); map(f->simplify(eval(B,f)),S);
12
out of which four are real
>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):
>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);
4
Let's compare them to the simulation.
>[evalf[3](H0),evalf[3](R0),evalf[3](-n0/n0[3]),evalf[3](-t0*n0[3])];�

�

�

�
0:969 0:408 0:235

� 0:413 0:148 � 0:013
� 0:042 0:099 1:090

�

�

�

�
0:948 0:261 0:183

� 0:303 0:916 0:261
� 0:099 � 0:303 0:948

�

�

�

�
� 0:400
� 2:800
� 1:000

�

�

�

�
� 0:052

0:274
� 0:144

�

�

�

�

>map(f->print(evalf[3](f)),sH):
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�

�

�

�
� 0:969 � 0:410 � 0:237

0:413 � 0:147 0:014
0:042 � 0:099 � 1:090

�

�

�

�
� 0:833 0:543 0:105

0:543 0:767 0:342
0:105 0:342 � 0:934

�

�

�

�
� 0:398
� 2:790
� 1:000

�

�

�

�
0:342
0:328
0:158

�

�

�

�

�

�

�

�
� 0:969 � 0:410 � 0:237

0:413 � 0:147 0:014
0:042 � 0:099 � 1:090

�

�

�

�
� 0:820 � 0:563 � 0:104
� 0:358 0:646 � 0:674

0:446 � 0:516 � 0:731

�

�

�

�
� 1:120

1:150
� 1:000

�

�

�

�
0:133

� 0:688
0:361

�

�

�

�

�

�

�

�
0:969 0:410 0:237

� 0:413 0:147 � 0:014
� 0:042 0:099 1:090

�

�

�

�
0:948 0:261 0:183

� 0:303 0:916 0:262
� 0:099 � 0:304 0:948

�

�

�

�
� 0:398
� 2:790
� 1:000

�

�

�

�
� 0:053

0:276
� 0:145

�

�

�

�

�

�

�

�
0:969 0:410 0:237

� 0:413 0:147 � 0:014
� 0:042 0:099 1:090

�

�

�

�
0:568 0:803 � 0:105

� 0:780 0:525 � 0:342
� 0:219 � 0:282 0:934

�

�

�

�
� 1:120

1:150
� 1:000

�

�

�

�
� 0:341
� 0:328
� 0:158

�

�

�

�

We see that the third solution corresponds to the simulation.
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9 Projective plane

9.1 Motivation { perspective projection in a�ne space

x54 Geometric model of perspective projection in a�ne space The perspective
projection of a point X by a camera with projection center C can be obtained
geometrically in 3D a�ne space by taking all lines passing through the points C and
X and �nding the intersections with the (a�ne) image plane � .

Three di�erent situations may arise, Figure 9.1.

1. If X � C, then there is an in�nite number of lines passing through C � X ,
which intersect � in all its points, and therefore the projection of X contains
the whole plane� .

2. If point Y � C lies in the plane � , which is parallel to � and passing through
C, then the line passing troughC and Y (which there is exactly one)does not
intersect the projection plane � , and therefore, the projection ofX is empty.

3. If X does not lie in the plane� , then there is exactly one line passing through
points C and X and this line intersects the projection plane� in exactly one
point x. Hence the projection ofX contains exactly one point x.

Let us compare this a�ne geometrical model of the perspective projection with the
algebraic model of the perspective projection, which we have developed before.

x55 Algebraic model of perspective projection in a�ne space The projection
~x� of ~X � by a perspective camera with image projection matrix

P� �
�

A| � A ~C�

�
(9.1)

is

� ~x � �
�

A| � A ~C�

� �
~X �

1

�
(9.2)

for some� PR.
We shall analyze the three situations, which arise with the geometrical model of

a�ne projection.

1. If X � C, then

� ~x � �
�

A| � A ~C�

� �
~C�

1

�
� ~0 (9.3)

i.e. we obtain the zero vector. What does it say about~x� ? Clearly, ~x� can be
completely arbitrary (even the zero vector) when we set� � 0. Alternatively,
we can choose� � 0 and thus enforce~x� � ~0. Both choices are possible. We
shall use the latter one since we will see that it better �ts the other cases. We
will use ~x� � ~0 to (somewhat strangely) represent all non-zero vectors inR3.
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C

X

Y
x

�

�

~x

~y

Figure 9.1: Geometric model of perspective projection in a�ne space. PointC has
in�nite (i.e. not unique) projection, point X has exactly one projection
x. Point Y has no projection.

2. If point Y � C lies in the plane � , then

� ~x � �
�

A| � A ~C�

� �
~Y�

1

�
� Ap~Y� � ~C� q (9.4)

which, taking into account rank A � 3, implies

� A� 1~x� � ~Y� � ~C� (9.5)

Matrix A� 1 transforms ~x� into ~x� and therefore its columns

A� 1 �
�
~b1�

~b2�
~b3�

�
(9.6)

are the basic vectors of the camera coordinate system in the world basis � .
Hence

�
�
~b1�

~b2�
~b3�

�
~x� � ~Y� � ~C� (9.7)

which means that vector ~Y� � ~C� can be written as a linear combination of the
camera coordinate system basic vectors

� p ~b1� � � q ~b2� � � r ~b3� � ~Y� � ~C� (9.8)

with p; q; r PR. Now, sinceY lies in a plane parallel to � , vector ~Y� � ~C� can
be written as a linear combination of the �rst two basic vectors of the camera
coordinate system, and thereforer � 0, i.e.

~x� �

�

�
p
q
0

�

� (9.9)

We also see that� � 0 since otherwise we would get the zero vector on the
left but that would correspond to Y � C, which we have excluded.
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Table 9.1: Comparison of the geometrical and algebraic projection models in a�ne
space.

Point position Projection
Geometrical model in a�. space Algebraic model in a�. space

X R� one point of � � � 0, ~x� �

�

�
u
v
1

�

� , (~x� � ~0)

C � X P � no point � � 0, ~x� �

�

�
u
v
0

�

� , ~x� � ~0

X � C all points of � � � 0, ~x� � ~0

3. If X does not lie in the plane � , then the coe�cient r P R in the linear
combination

� A� 1 ~x� � ~X � � ~C� (9.10)

� p ~b1� � � q ~b2� � � r ~b3� � ~X � � ~C� (9.11)

is non-zero. In that case we can write

�

�

�
p
q
r

�

� � Ap~X � � ~C� q (9.12)

p� r q

�

�
�

p
r
q
r
1

�

�
� � Ap~X � � ~C� q (9.13)

� 1

�

�
u
v
1

�

� � Ap~X � � ~C� q (9.14)

As in the case two,� � 0 since otherwise we would get the zero vector on the
left and that would correspond to X � C, which we have excluded.

The comparison of the two models of perspective projection,Table 9.1 shows that

1. We can always assume� � 0.

2. The \projection" of C is represented by the zero vector while the projections
of all other points are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points in the
a�ne space.

4. The geometrical projection model is less capable than thealgebraic projection
model since it can't model the projection of points in � di�erent from C.
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(e)(c)(b)(a) (d)

A 2A 2A 2
A 2A 2

A 3 A 3 A 3 A 3A 3

O OOO

Figure 9.2: (a) Two dimensional a�ne plane A 2 can be (b) embedded in the three
dimensional a�ne space A 3. There is a point O P A 3, O RA2. (c) For
each point X in A 2, there is exactly one line throughX and O in A 3. (d)
There is exactly one pencil of lines throughO, which do not correspond
to any point in A 2, in A 3. (e) Each line in the pencil corresponds to a
set of parallel lines with the same direction inA 2.

The previous analysis clearly shows that the a�ne geometrical model of the per-
spective projection is somewhat de�cient. It can't model projections of some points
in the space. This de�ciency leads to inventing a generalized model of the geometry
around us in order to model the perspective projection completely by intersections
of geometrical entities. This generalization of the a�ne space is called theprojective
space.

Let us look at the most important projective space, which is the projective plane.
We shall �rst develop a concrete projective plane by improving the a�ne plane
exactly as much as necessary to achieve what we want, i.e. to be able to distinguish
projections of all points in the space. In fact, this will be extremely easy since we
have already done all the work, and we only need to \upgrade" the notion of point,
line, intersection and join (i.e. making the line from two distinct points). Later, we
shall observe that such an \upgrade" will also lead to an interesting simpli�cation
and generalization of the principles of geometry.

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

A real a�ne plane A 2 can be imagined as a subset of a real a�ne spaceA 3, Figure 9.2.
There is a point O in A 3, which is not in A 2. For each point X in A 2, there is exactly
one line in A 3, which passes throughX and O. Now, there is a set of lines inA 3,
which pass through O but do not pass through any point of A 2. This is the set of
lines parallel to A 2 that pass through O. These lines �ll the plane of A 3, which is
parallel to A 2 and which contains the point O.

The set of all lines in A 3 passing through O will be called the real projective
planeand denoted asP2. The lines of A 3 passing throughO will be called the points
of the real projective plane.1

1The previous de�nition can be given without referring to any a �ne plane. We can take a point
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Figure 9.3: Algebraic model of the real projective plane.

The lines in A 3 passing through O, which intersect A 2, are in one-to-one cor-
respondence with points in the a�ne plane A 2 and hence will be called thea�ne
points of the projective plane2 of the projective plane. The set of lines inA 3 passing
through O, which do not intersect A 2, are the \additional" points of the projective
plane and will be called theideal points of the projective plane3.4

To each ideal point P (i.e. a line l of A 3 through O parallel to A 2), there corre-
sponds exactly one set of parallel lines inA 2 which are parallel to l in A3. Di�erent
sets of parallel lines inA 2 are distinguished by their direction. In this sense, ideal
points correspond to directions in A 2 and can also be understood as points where
parallel lines of A 2 intersect. Notice that the parallel lines of A2 do not intersect in
A 2, becauseP is not in A 2, but they intersect in the real projective plane obtained
as the extension ofA 2.

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model inA 3 to an algebraic model inR3

which allows us to do computations.
Let us choose a coordinate systempO;~b1;~b2;~b3q in A 3 with the origin in O, with

basic vectors~b1;~b2 from the coordinate systempo;~b1;~b2qin A 2 and with ~b3 � ' pO; oq,
Figure 9.3.

Lines in A 3, which pass throughO, correspond to one-dimensional subspaces of

O in A 3 and the set of all lines in A 3 passing through O and call it a projective plane. In the
above example, however, we have obtained the projective plane as an extension of a given a�ne
plane A 2 . In such a case, we can distinguish two sets of points { a�ne po ints and ideal points
{ in the projective plane.

2Vlastn�� body in Czech. Finite points in [14].
3Nevlastn�� body in Czech. Points at in�nity in [14].
4Notice that words \point" and \line" actually need to be acco mpanied by adjectives for the above

to make sense beacause lines ofA 3 become points of A 2 . Also notice that this division of the
points of the projective plane makes sense only when we startwith a given a�ne plane or when
we start with a projective plane and select one plane of lines in A 3 as the set of ideal points.
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R2

R3

~0

~b1

~b2

~b3

XY

Figure 9.4: Points of the real projective plane are represented by one-dimensional
subspaces ofR3. One selected two-dimensional a�ne subspace deter-
mines the ideal points.

R3 and therefore, in R3, points of the real projective plane will be represented by
one-dimensional subspaces.

The real projective plane is the set of all one-dimensional subspaces ofR3.
The a�ne plane is a subset of the set of all one-dimensional subspaces ofR3,

which we obtain after removing all one-dimensional subspaces that lie in a two-
dimensional subspace ofR3.

There are (in�nitely) many possible choices of sets of one-dimensional subspaces
which can model the a�ne plane within the real projective pla ne. The choice of a
particular subset, which will model a concrete1 a�ne plane, can be realized by a
choice of a basis inR3.

Let us select a basis� � p ~b1;~b2;~b3q of R3. Then, all the one-dimensional sub-
spaces generated by vectors

~x� �

�

�
x
y
1

�

� x; y P R (9.15)

will represent a�ne points, point X in Figure 9.4, and all the one-dimensional sub-
spaces generated by vectors

~x� �

�

�
x
y
0

�

� x; y P R; x � 0 or y � 0 (9.16)

will represent the ideal points, e.g. point Y in Figure 9.4.
It is clear that the a�ne points are in one-to-one correspondence with all points

in a two-dimensional a�ne space (plane) and the ideal points are exactly what we
need to add to the a�ne points to get all one-dimensional subspaces ofR3.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g.l in Figure 9.5, in the a�ne plane contain points
represented by one-dimensional subspaces generated, e.g., by ~x and ~y. This set of
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A 3

A 2

O

~x
~y

~z

l

~l

Figure 9.5: Lines of the real projective plane correspond totwo-dimensional sub-
spaces ofR3 but can be also represented by one-dimensional subspaces
of R3.

one-dimensional subspaces of points onl �lls almost a complete two-dimensional
subspace ofR3 with the exception of one one-dimensional subspace, generated by ~z,
which represents an ideal point. After adding the subspace generated by~z to the set
of all one-dimensional subspaces representing points onl, we completely �ll a two-
dimensional subspace ofR3, which hence corresponds to theprojective completion
of the a�ne line l , which we will further call line, too.

Hence, in the real projective plane,lines correspond to two-dimensional subspaces
of R3.

We would like to do calculations with lines as we do calculations with points.
Let us develop a convenient representation of lines now. A straightforward way how
to represent a two-dimensional subspace inR3 is to select a basis (i.e. two linearly
independent vectors) of the subspace, e.g.~x and ~y for the line l . There are many
ways how to choose a basis and therefore the representation is far from unique.
Moreover, having two bases, it is not apparent whether they represent the same
subspace.

For instance, two pairs of linearly independent vectorsp~x1, ~y1q and p~x2, ~y2q rep-
resent the same line if and only if they generate the same two-dimensional subspace.
To verify that, we, for instance, may check whether

rank
�
~x1� ~y1� ~x2� ~y2�

�
� 2 (9.17)

where we write all the four vectors~x1, ~y1; ~x2, ~y2 w.r.t. a basis � of R3.
Yet, there is another quite convenient way how to represent atwo dimensional

subspace inR3. Since 3� 2� 1, we can �nd for each two-dimensional subspace, spec-
i�ed by a basis p~x; ~yq, exactly one one-dimensional subspace of the three-dimensional
dual linear space. Call the basis of this new one-dimensional subspace~l. Then there
holds

~l
J

��

�
~x� ~y�

�
� 0 (9.18)
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A 3

�

A 2

O

~l8

Figure 9.6: The ideal line is the set of all projective points(i.e. all lines of A3 through
C, which have no intersection with A 2. It is a plane � . There is exactly
one, which is perpendicular to sigma, which is generated by vector l8 .

where �� is the dual basis to� . Therefore, we can represent lines in the real projective
plane by one-dimensional subspaces in this way.

We have developed an interesting representation of points and lines where both
points and lines are represented by one-dimensional subspaces of R3. Points are
represented by one-dimensional subspaces ofV � R3, which is connected by' to
the three-dimensional spaceA 3 of the geometrical model of the real projective plane.
The lines are represented by one-dimensional subspaces of the space�V , which is the
space dual toV . Using the basis�� in �V , which is dual to basis� in V , the coordinates
~l �� as well as coordinates of~x� become vectors inR3 which satisfy Equation 9.18.

The line of A 3 generated by~l in Figure 9.5 is shown as perpendicular5 to the plane
generated by ~x, ~y. Indeed, in the geometrical model of the real projective plane,
we can use the notion of perpendicularity to uniquely construct the (perpendicular)
line to the plane corresponding tol in A 2.

9.2.4 Ideal line

The set of all one-dimensional subspaces ofR3, which do not correspond to points
in the a�ne plane, i.e. the set of all ideal points, forms itself a two-dimensional
subspace ofR3 an hence a line in the projective plane, which is not in the a�ne
plane. It is the ideal line6 of the projective plane associated with the selected a�ne
plane in that projective plane. It is represented by vector~l8 in Figure 9.6.

For each a�ne plane, there is exactly one ideal line (a two-dimensional sub-
space ofR3). Conversely, by selecting one line in a projective plane (i.e. one two-

5 In A 3 , line and plane are perpendicular when they contain the righ t angle. The right angle is one
quarter of a circle.

6Nevlastn�� p�r��mka in Czech, line at in�nity in [14].
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dimensional subspace ofR3) the associated a�ne plane is determined as the set of
all points (one-dimensional subspaces ofR3) which are not contained in the selected
ideal line (two-dimensional subspace).

9.2.5 Homogeneous coordinates

Once a coordinate system is �xed in an a�ne plane, every point of the a�ne plane
has unique coordinates, which are the coordinates of its vector in the basis of the
coordinate system.

A point in a real projective plane is represented by a one-dimensional subspace
of R3. One-dimensional subspaces are represented by their basesconsisting of a
single non-zero vector. There are in�nitely many bases representing the same one-
dimensional subspace. Two basic vectors of the same one-dimensional subspace are
related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projective space, we
actually talk about coordinates of a particular basic vector of the one-dimensional
subspace that represents the point.

For instance, vectors �

�
1
0
1

�

� and

�

�
2
0
2

�

� (9.19)

are basic vectors of the same one-dimensional subspace since they are related by a
non-zero multiple. These are two di�erent \coordinates" of the same point in the
real projective plane.

Hence, the \coordinates" of a point in the real projective plane are not unique.
This is so radically departing from the fundamental property of coordinates, their
uniqueness, that it deserves a new name. To distinguish the coordinates of a point in
the a�ne plane, which are unique, from the \coordinates" of a point in the projective
plane, which are not unique, we shall introduce new namehomogeneous coordinates.

Homogeneous coordinates of a pointin the real projective plane are the coordi-
nates of a basic vector of the one-dimensional subspace, which represents the point.

Homogeneous coordinates of a linein the real projective plane are the coordinates
of a basic vector of the one-dimensional subspace, which represents the line.

A point in an a�ne plane can be represented by a�ne as well as by homogeneous
coordinates. Let us see the relationship between the two.

Let us have a pointX in a two-dimensional real a�ne plane, which is represented
by coordinates �

x
y

�
(9.20)

By extending the real a�ne plane to the real projective plane with the ideal line
identi�ed with the two-dimensional subspace z � 0, we can represent pointX by a
one-dimensional subspace ofR3 generated by its basic vector

�

�
x
y
1

�

� (9.21)

Thus, X has a�ne coordinates
�
x y

� J
and homogeneous coordinates

�
u v w

� J
,

where u � � x , v � � y , and w � � 1 for some� PR, � � 0.

93



T. Pajdla. Elements of Geometry for Computer Vision 2016-5-9 (pajdla@cvut.cz )

A 3

A 2

O

~x

l

~l

Figure 9.7: A point x is incident with a line l if and only if it can generate the line
with another point y. Lines in A 3 representing the point and the line
are perpendicular to each other.

Ideal points do not have a�ne coordinates. Their homogeneous coordinates are
�
x y 0

� J
(9.22)

where x; y PR and either x � 0 or y � 0.
The zero vector~0 is not a basis of any one-dimensional space and thus represents

neither a point nor a line.

9.2.6 Incidence of points and lines

We say that a point x is incident with line l if and only if it can generate the line
with another point y, Figure 9.7. In the representation of subspaces ofR3, it means
that

~l
J

�� ~x� � 0 (9.23)

This means that the one-dimensional subspace ofR3 representing the line is orthogo-
nal to the one-dimensional subspace ofR3 representing the point w.r.t. the standard
(Euclidean) scalar product. In the geometrical model of thereal projective plane it
means that the line ofA 3 representingx is perpendicular to line ofA 3 representingl .

Let us write explicitly the coordinates of the bases generating the one-dimensional
subspaces as

~x� �

�

�
x
y
z

�

� ~l �� �

�

�
a
b
c

�

�

then we get
a x � b y � c z � 0

and for a�ne points represented with z � 1 this formula reduces to

a x � b y � c � 0

which is the familiar equation of a line in the two dimensional real a�ne plane.
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Figure 9.8: The join of two distinct points is the unique line passing through them.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with
exactly one line l . The join of two distinct points is the unique line passing through
them.

In the real projective plane, two distinct points are represented by two di�erent
one-dimensional subspaces with bases~x and ~y.

The homogeneous coordinates of this line, i.e. the coordinates of the basic vectors
of the one-dimensional subspace representing the line, canbe obtained by solving
the following system of homogeneous equations for coordinates of the vector~l

~l
J

�� ~x� � 0 (9.24)

~l
J

�� ~y� � 0 (9.25)

w.r.t. � and �� in R3. The set of solutions forms the one-dimensional subspace that
represents the linel .

We have seen in Section 2.3 that vector~l �� can be conveniently constructed by
the vector product as

~l �� � ~x� � ~y� (9.26)

Notice, that in the real projective plane as well as in the real a�ne plane, there is
exactly one line incident with two distinct points.

9.2.8 Meet of lines

Every two distinct lines k and l in a projective plane are incident exactly to one
point x. The meet of two distinct lines is the unique point incident with them.

In the real projective plane, two distinct lines are represented by two di�erent
one-dimensional subspaces with bases~k and ~l.

The homogeneous coordinates of this point, i.e. the coordinates of the vectors in
the one-dimensional subspace representing the point, can be obtained by solving the

95



T. Pajdla. Elements of Geometry for Computer Vision 2016-5-9 (pajdla@cvut.cz )

A 3

A 2

O

~x

~l

~k

l

k

Figure 9.9: The meet of two distinct lines is the unique point incident with them.

following system of homogeneous equations for coordinatesof the vector ~x w.r.t. �
in R3

~k
J

�� ~x� � 0

~l
J

�� ~x� � 0

The set of solutions forms the one-dimensional subspace that represents point x. To
get one basic vector in the subspace, we may again employ the vector product in R3

and compute

~x� � ~k �� � ~l ��

Notice, that in the real projective plane there is exactly one point incident to two
distinct lines.

This is not true in an a�ne plane because there are (parallel) lines that have no
point in common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines in projective
plane mapped by a homography.

Let us have two points represented by vectors~x� , ~y� . We now map the points,
represented by vectors~x� , ~y� , by a homography, represented by matrixH, to points
represented by vectors~x1

� 1, ~y1
� 1 such that there are � 1; � 2 PR; � 1� 2 � 0

� 1 ~x1
� 1 � H~x� (9.27)

� 2 ~y1
� 1 � H~y� (9.28)

Homogeneous coordinates~p�� of the line passing through points represented by~x� ,
~y�� and homogeneous coordinates~p1

�� 1 of the line passing through points represented
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by ~x1
� 1, ~y1

� 1 are obtained by solving the linear systems

~pJ
�� ~x� � 0 and ~p1

�� 1
J
~x1

� 1 � 0 (9.29)

~pJ
�� ~y� � 0 ~p1

�� 1
J
~y1

� 1 � 0 (9.30)

for a non-trivial solutions. Writing down the incidence of points and lines, we get

� 1 ~pJ
�� H� 1 ~x1

� 1 � 0 ô ~pJ
�� H� 1 ~x1

� 1 � 0

� 2 ~pJ
�� H� 1 ~y1

� 1 � 0 ô ~pJ
�� H� 1 ~y1

� 1 � 0

We see that~p1
�� 1 and H�J ~p�� are solutions of the same set of homogeneous equations.

When ~x� , ~y� are independent, then there is� PR such that

� ~p 1
�� 1 � H�J ~p�� (9.31)

since the solution space is one-dimensional. Equation 9.31gives the relationship
between homogeneous coordinates of a line and its image under homography H.

9.3.1 Join under homography

Let us go one step further and establish formulas connectingline coordinates con-
structed by vector products. Construct joins as

~p�� � ~x� � ~y� and ~p1
�� 1 � ~x1

� 1 � ~y1
� 1 (9.32)

and use Equation 2.47 to get

~x� 1 � ~y� 1 �
H�J

|H�J |
p~x� � ~y� q (9.33)

p� 1 ~x1
� 1q � p � 2 ~y1

� 1q �
H�J

|H�J |
p~x� � ~y� q (9.34)

~x1
� 1 � ~y1

� 1 �
H�J

� 1 � 2 |H�J |
p~x� � ~y� q (9.35)

~p1
�� 1 �

H�J

� 1 � 2 |H�J |
~p�� (9.36)

9.3.2 Meet under homography

Let us next look at the meet. Let point ~x be the meet of lines~p and ~q with line
cordinates ~p�� , ~q�� , which are related by a homographyH to line coordinates ~p1

�� 1 and
~q1

�� 1 by

� 1 ~p1
�� 1 � H�J ~p�� (9.37)

� 2 ~q1
�� 1 � H�J ~q�� (9.38)

for some non-zero� 1, � 2. Construct meets as

~x� � ~p�� � ~q�� and ~x1
� 1 � ~p1

�� 1 � ~q1
�� 1 (9.39)

and, similarly as above, use Equation 2.47 to get

~x1
� 1 �

pH�J q�J

� 1 � 2 |pH�J q�J |
~x� �

H
� 1 � 2 |H|

~x� (9.40)
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9.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We consider
two pairs of points represented by their homogeneous coordinates ~x� , ~y� , and ~z� ,
~w� and the corresponding pairs of points with their homogeneous coordinates~x1

� 1,
~y1

� 1, and ~z1
� 1, ~w1

� 1 related by homography Has

� 1 ~x1
� 1 � H~x� ; � 2 ~y1

� 1 � H~y� ; � 3 ~z1
� 1 � H~z� ; � 4 ~w1

� 1 � H~w� (9.41)

Let us now consider point

~v1
� 1 � p ~x1

� 1 � ~y1
� 1q � p ~z1

� 1 � ~w1
� 1q (9.42)

�
�

H�J

� 1 � 2 |H�J |
p~x� � ~y� q



�

�
H�J

� 3 � 4 |H�J |
p~z� � ~w� q



(9.43)

�
H|H|

� 1 � 2 � 3 � 4
p~x� � ~y� q � p ~z� � ~w� q (9.44)

�
H|H|

� 1 � 2 � 3 � 4
~v� (9.45)

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as com-
binations of joins and meets indeed behave under a homography as homogeneous
coordinates constructed from a�ne coordinates of points.

Secondly, when the homography is a rotation and homogeneouscoordinates are
unit vecors, all � 's become equal to one, the determinant ofH is one andH�J � H.
Therefore, all homogeneous coordinates in the previous forulas become related just
by H.

9.4 Vanishing points

When modeling perspective projection in the a�ne space with a�ne projection
planes, we meet somewhat unpleasant situations. For instance, imagine a projection
of two parallel lines K; L , which are in a plane � in the space into the projection
plane � through the center C, Figure 9.10.

The lines K; L project to image lines k; l . As we go with two points X; Y along
the lines k; l away from the projection plane, their imagesx; y get closer and closer
to the point v in the image but they do not reach point v. We shall call this point
of convergence of linesK , L the vanishing point7.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in� , each set with a di�erent direction, then all
the points of convergence in the image will �ll a complete line h.

The line h is called thevanishing line or the horizon8 when � is the ground plane.

7 �Ub�e�zn��k in Czech.
8Horizont in Czech
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Figure 9.10: Vanishing point v is the point towards projections x an y tend as X
and Y move away from � but which they never reach.

C
h

�

�

Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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Now, imagine that we project all points from � to � using the a�ne geometrical
projection model. Then, no point from � will project to h. Similarly, when projecting
in the opposite direction, i.e. � to � , line h has no image, i.e. it does not project
anywhere to � .

When using the a�ne geometrical projection model with the real projective plane
to model the perspective projection (which is equivalent tothe algebraic model in
R3), all points of the projective plane � (obtained as the projective completion of
the a�ne plane � ) will have exactly one image in the projective plane� (obtained as
the projective completion of the a�ne plane � ) and vice versa. This total symmetry
is useful and beautiful.
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10 Projective space

10.1 Motivation { the union of ideal points of all a�ne
planes

Figure 10.1(a) shows a perspective image of three sets of parallel lines generated by
sides of a cube in the three-dimensional real a�ne space. Theimages of the three
sets of parallel lines converge to vanishing pointsV1, V2 and V3. The cube has six
faces. Each face generates two pairs of parallel lines and hence two vanishing points.
Each face generates an a�ne plane which can be extended into aprojective plane by
adding the line of ideal points of that plane. The projection of the three ideal lines
are vanishing linesl12 � V1 _ V2, l23 � V2 _ V3 and l31 � V3 _ V1. Imagine now all
possible a�ne planes of the three-dimensional a�ne space and their corresponding
ideal points. Let us take the union V of the sets of ideal points of all such planes.
There is exactly one ideal point for every set of parallel lines in V , i.e. there is a
one-to-one correspondence between elements ofV (ideal points) and directions in
the three-dimensional a�ne space. Notice also that every plane � generates one
ideal line l8 of its ideal points and that all other planes parallel with � generate the
samel8 , Figure 10.1.

It suggests itself to extend the three-dimensional a�ne space by adding the set
V to it, analogically to how we have extended the a�ne plane. In this new space,
all parallel lines will intersect. We will call this space the three-dimensional real
projective spaceand denote it P3. Let us develop an algebraic model ofP3. It is
practical to require this model to encompass the model of thereal projective plane.
The real projective plane is modeled algebraically by subspaces ofR3. Let us observe
that subspaces ofR4 will be a convenient algebraic model ofP3.

We start with the three-dimensional real a�ne space A3 and �x a coordinate
system pO; � q with � � p ~d1; ~d2; ~d3q. An a�ne plane � is a set of points of A3

represented inpO; � q by the set of vectors

� � tr x; y; zsJ | a x � b y � c z � d � 0; a; b; c; dPR; a2 � b2 � c2 � 0u (10.1)

We see that the point of � represented by vectorrx; y; zsJ can also be represented
by one-dimensional subspacet � rx; y; z; 1sJ | � P Ru of R4 and hence� can be seen
as the set

� � tt � rx; y; z; 1sJ | � P Ru | ra; b; c; ds rx; y; z; 1sJ � 0; a; b; c; dP R; a2 � b2 � c2 � 0u
(10.2)

of one-dimensional subspaces ofR4.
Notice that we did not require � � 0 in the above de�nition. This is because

we establish the correspondence between a vectorrx; y; zs and the corresponding
complete one-dimensional subspacet � rx; y; z; 1sJ ; � P Ru of R4 and since every
linear space contains zero vector, we admit zero� .
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V1 V2

V3

� 8

� 8

A 3

A 2 l8

(a) (b)

Figure 10.1: (a) A perspective image of a cube generates three vanishing points V1,
V2 and V3 and hence also three vanishing linesl12, l23 and l31. (b) Every
plane adds one line of ideal points to the three-dimensionala�ne space.
Every ideal point corresponds to one direction, i.e. to a setof parallel
lines. Each ideal line corresponds to a set of parallel planes.

Every rx; y; zsJ P R3 represents inpO; � q a point of A3 and hence the subset

A3 � tt � rx; y; z; 1sJ | � PRu |x; y; z PRu (10.3)

of one-dimensional subspaces ofR4 representsA3.
We observe that we have not used all one-dimensional subspaces ofR4 to repre-

sent A3. The subset

� 8 � tt � rx; y; z; 0sJ | � P Ru |x; y; z PR; x2 � y2 � z2 � 0u (10.4)

of one-dimensional subspaces ofR4 is in one-to-one correspondence with all non-
zero vectors ofR3, i.e. in one-to-one correspondence with the set of directions in A3.
This is the set of ideal points which we add toA3 to get the three-dimensional real
projective space

P3 � tt � rx; y; z; wsJ | � PRu |x; y; z; w PR; x2 � y2 � z2 � w2 � 0u (10.5)

which is the set of all one-dimensional subspaces ofR4. Notice that P3 � A3 Y � 8 .

x56 Points Every non-zero vector ofR4 generates a one-dimensional subspace and
thus represents a point ofP3. The zero vector r0; 0; 0; 0sJ does not represent any
point.

x57 Planes A�ne planes � A3 , Equation 10.2, are in one-to-one correspondence to
the subset

� A3 � tt � ra; b; c; dsJ | � PRu |a; b; c; dPR; a2 � b2 � c2 � 0u (10.6)

of the set of one-dimensional subspaces ofR4. There is only one one-dimensional sub-
space ofR4, t � r0; 0; 0; 1sJ | � P Ru missing in � A3 . It is exactly the one-dimensional
subspace corresponding to the set� 8 of ideal points of P3

� 8 � tt � rx; y; z; wsJ | � P Ru |x; y; z; w PR; x2� y2� z2 � 0; r0; 0; 0; 1s rx; y; z; wsJ � 0u
(10.7)
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We can take another view upon planes and observe that a�ne planes are in one-
to-one correspondence with the three-dimensional subspaces ofR4. The set � 8 also
corresponds to a three-dimensional subspace ofR4. Hence � 8 can be considered
another plane, the ideal planeof P3.

The set of planes ofP3 can be hence represented by the set of one-dimensional
subspaces ofR4

� P3 � tt � ra; b; c; dsJ | � PRu |a; b; c; dPR; a2 � b2 � c2 � d2 � 0u (10.8)

but can also be viewed as the set of three-dimensional subspaces ofR4.
We see that there is a duality between points and planes ofP3. They both

are represented by one-dimensional subspaces ofR4 and we see that point X rep-
resented by vector ~X � r x; y; x; w sJ is incident to plane � represented by vector
~� � r a; b; c; dsJ , i.e. X � � , when

~� J ~X �
�
a b c d

�

�

�
�
�

x
y
z
w

�

�
�
� � a x � b y � c z � d w � 0 (10.9)

x58 Lines Lines in P3 are represented by two-dimensional subspaces ofR4. Unlike
in P2, lines are not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters ofimage formation are
determined from properties of the observed scene or knowledge of camera motions.
We will study camera auto-calibration methods and tasks related to metrology in
images. We have seen in Chapter 7 that to measure the angle between projection
rays we needed only matrixK. Actually, it is enough to know matrix 1

! � K�J K� 1

to measure the angle between the rays corresponding to imagepoints ~x1� , ~x2� as

cos= p~x1; ~x2q �
~xJ

1� K�J K� 1~x2�

}K� 1~x1� }} K� 1~x2� }
�

~xJ
1� ! ~x 2�

b
~xJ

1� ! ~x 1�

b
~xJ

2� ! ~x 2�

(11.1)

Knowing ! is however (almost) equivalent to knowing K since K can be recovered
from ! up to two signs as follows.

x59 Recovering K from ! Let us give a procedure for recoveringK from ! . As-
suming

K �

�

�
k11 k12 k13

0 k22 k23

0 0 1

�

� (11.2)

we get

K� 1 �

�

�
k11 k12 k13

0 k22 k23

0 0 1

�

�

� 1

�

�

�
�
�

1
k11

� k12
k11 k22

k12 k23 � k13 k22
k11 k22

0 1
k22

� k23
k22

0 0 1

�

�
�
� �

�

�
m11 m12 m13

0 m22 m23

0 0 1

�

�

(11.3)
for some realm11; m12; m13; m22 and m23. Equivalently, we get

K �

�

�
�

1
m11

� m12
m11 m22

m12 m23 � m13 m22
m11 m22 m23

0 1
m22

� m23
m22

0 0 1

�

�
� (11.4)

Introducing the following notation

! � K�J K� 1 �

�

�
! 11 ! 12 ! 13

! 12 ! 22 ! 23

! 13 ! 23 ! 33

�

� (11.5)

1 In [14], ! is called the image of the absolute conic.
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yields
�

�
! 11 ! 12 ! 13

! 12 ! 22 ! 23

! 13 ! 23 ! 33

�

� �

�

�
m2

11 m11 m12 m11 m13

m11 m12 m2
12 � m2

22 m12 m13 � m22 m23

m11 m13 m12 m13 � m22 m23 m2
13 � m2

23 � 1

�

�

(11.6)
which can be solved forK� 1 up to the sign of the rows ofK� 1 as follows. Equation 11.6
provides equations

! 11 � m2
11 ñ m11 � s1

?
! 11

! 12 � m11 m12 ñ m12 � ! 12{ps1
?

! 11q � s1 ! 12{
?

! 11

! 13 � m11 m13 ñ m13 � ! 13{ps1
?

! 11q � s1 ! 13{
?

! 11

! 22 � m2
12 � m2

22 ñ m22 � s2

b
! 22 � m2

12 � s2

b
! 22 � ! 2

12{ ! 11

! 23 � m12 m13 � m22 m23 ñ m23 � s2 p! 23 � ! 12 ! 13{ ! 11q{
b

! 22 � ! 2
12{ ! 11

� s2 p! 11 ! 23 � ! 12 ! 13q{
b

! 2
11! 22 � ! 11 ! 2

12

which can be solved formij with s1 � � 1 and s2 � � 1. Hence

K �

�

�
�

s1
?

! 11 s1 ! 12{
?

! 11 s1 ! 13{
?

! 11

0 s2
a

! 22 � ! 2
12{ ! 11 s2 p! 23 � ! 12 ! 13{ ! 11q{

a
! 22 � ! 2

12{ ! 11

0 0 1

�

�
�

� 1

(11.7)

Signs s1, s2 are determined by the choice of the image coordinate system.The
standard choice iss1 � s2 � 1, which corresponds tok11 ¡ 0 and k22 ¡ 0.

Notice that
?

! 11 is never zero for a real camera sincem11 � 1
k11

� 0. There also
holds true

b
! 22 � ! 2

12{ ! 11 �
b

m2
11 � m2

12 �

d
1

k2
11

�
k2

12

k2
11 k2

22
�

1
k11 k22

b
k2

22 � k2
12 � 0

(11.8)
since|k12| is much smaller than |k22| for all real cameras.

11.1 Constraints on !

Matrix ! is a 3� 3 symmetric matrix and by this it has only six independent elements
! 11; ! 12; ! 13; ! 22; ! 23 and ! 33. Let us next investigate additional constratints on ! ,
which follow from di�erent choices of K.

x60 Constraints on ! for a general K Even a generalK yields a constraint on ! .
Equation 11.6 relates the six parameters of! to only �ve parameters m11; m12; m13; m22
and m23 and hence the six parameters of! can't be independent. Indeed, let us see

105



T. Pajdla. Elements of Geometry for Computer Vision 2016-5-9 (pajdla@cvut.cz )

that the following identity holds true

p! 2
23 �

! 2
13 ! 2

12

! 2
11

� p ! 22 �
! 2

12

! 11
q p! 33 �

! 2
13

! 11
� 1qq2 � 4

! 2
13 ! 2

12

! 2
11

p! 22 �
! 2

12

! 11
q p! 33 �

! 2
13

! 11
� 1q

�
�

pm12m13 � m22m23q2 �
pm11m13q2pm11m12q2

m4
11

�p m2
12 � m2

22 �
pm11m12q2

m2
11

qpm2
13 � m2

23 � 1 �
pm11m13q2

m4
11

� 1q

 2

� 4
pm11m13q2pm11m12q2

m4
11

pm2
12 � m2

22 �
pm11m12q2

m2
11

qpm2
13 � m2

23 � 1 �
pm11m13q2

m4
11

� 1q

�
�
pm12m13 � m22m23q2 � p m12m13q2 � p m22m23q2

� 2
� 4pm12m13q2pm22m23q2

� p 2pm12m13qpm22m23qq2 � 4pm12m13q2pm22m23q2

� 0 (11.9)

Since! 11 � 0, we get the following equivalent identity

p! 2
11! 2

23 � ! 2
13 ! 2

12 � p ! 11! 22 � ! 2
12q p! 11! 33 � ! 2

13 � ! 11qq2

� 4 ! 2
13 ! 2

12 p! 11! 22 � ! 2
12q p! 11! 33 � ! 2

13 � ! 11q � 0 (11.10)

which is a polynomial equation of degree eight in elements of! .
We shall see next that it makes sense to introduce a new matrix


 �

�

�
1 o12 o13

o12 o22 o23

o13 o23 o33

�

� �

�

�
�
�

1 ! 12
! 11

! 13
! 11

! 12
! 11

! 22
! 11

! 23
! 11

! 13
! 11

! 23
! 11

! 33
! 11

�

�
�
� (11.11)

which contains only �ve unknowns, and use Equation 11.10 to get the positive ! 11

from 
 by solving the following quadratic equation

a2 ! 2
11 � a1 ! 11 � a0 � 0 (11.12)

with

a2 � � 4o23
2o13

2o12
2 � o23

4 � 2o23
2o22 o33 � 2o13

2o12
2o22 o33 (11.13)

� 2o22
2o33o13

2 � o12
4o33

2 � 2o23
2o22 o13

2 � 2o23
2o12

2o33

� o22
2 o13

4 � o22
2o33

2 � 2o22 o33
2o12

2

a1 � 2o13
2o12

2 o22 � 2o23
2o22 � 2o22

2 o33 � 2o12
4 o33 (11.14)

� 4o22 o33o12
2 � 2o23

2o12
2 � 2o22

2o13
2

a0 � � 2o22 o12
2 � o22

2 � o12
4 (11.15)

x61 Constraints on ! for K from square pixels Cameras have often square pixels,
i.e. }~b1} � | ~b2} � 1 and = p~b1;~b2q � � {2, which implies, Equations 7.13, 7.15, 7.16, a
simpli�ed

K �

�

�
k11 0 k13

0 k11 k23

0 0 1

�

� (11.16)
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�

�

K
Lk

l

C

~v �

�

K 1
L 1

K 2

L 2k1 l1
k2

l2C

~v1

~v2

(a) (b)

Figure 11.1: (a) Parallel linesK , L are projected to linesk, l with vanishing point
represented by~v. Vector ~v is parallel to k, l . (b) Vectors ~v1, ~v2 contain
the same angle as pairs of linesK 1, K 2 or L 1, L 2.

This gives also simpler

! �
1

k2
11

�

�
1 0 � k13

0 1 � k23

� k13 � k23 k2
11 � k2

13 � k2
23

�

� (11.17)

We see that we get the following three identities

! 12 � 0 (11.18)

! 22 � ! 11 � 0 (11.19)

! 2
13 � ! 2

23 � ! 11! 33 � ! 11 � 0 (11.20)

We also get simpler


 �

�

�
1 0 o13

0 1 o23

o13 o23 o33

�

� � k2
11 ! �

�

�
1 0 � k13

0 1 � k23

� k13 � k23 k2
11 � k2

13 � k2
23

�

� (11.21)

and use Equation 11.21 to get

k2
11 � o33 � o2

13 � o2
23 (11.22)

k13 � � o13 (11.23)

k23 � � o23 (11.24)

11.2 Camera calibration from angles between projection
rays

We will now show how to calibrate a camera by �nding the matrix ! � K�J K� 1.
In general, matrix ! is constrained by knowing angles contained between pairs

of projection rays. Consider two projection rays with direction vectors ~x1, ~x2. Then
the angle between them is related to! and 
 by

cos= p~x1; ~x2q �
~xJ

1� ! ~x 2�
b

~xJ
1� ! ~x 1�

b
~xJ

2� ! ~x 2�

�
~xJ

1� 
 ~x2�
b

~xJ
1� 
 ~x1�

b
~xJ

2� 
 ~x2�

(11.25)
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�

~x1

~x2

~x3

~b1

~b2

~b1
3

~d1

~d2

~d3

d12

d23

d31

O � o

C

~C X 1

X 2

X 3

~X 2

Figure 11.2: Images of three points with known angles between their rays can be used
to calibrate cameras with square pixels. The position of image center
~C� 1 can be computed in the ortogonal coordinate systempo; � 1q using
the absolute pose problem from Chapter 7.3. MatrixK is composed
from coordinates of ~C� 1.

Squaring the above and clearing the denominators gives

pcos= p~x1; ~x2qq2p~xJ
1� 
 ~x1� q p~xJ

2� 
 ~x2� q � p ~xJ
1� 
 ~x2� q2 (11.26)

which is a second order equation in elements of
 . To �nd 
 , which has �ve inde-
pendent parameters for a generalK, we need to be able to establish �ve pairs of rays
with known angles and solve a system of �ve quadratic equations 11.26 above.

x62 Camera with square pixels A simpler situation arises when the camera has
square pixels. Then, we can use constraints fromx61 to recover! and K from three
pairs of rays containing known angles. That amounts to solving three second order
equations 11.26 ino13; o23; o33.

However, this is actually exactly the same problem as we havealready solved in
Section 7.3. Figure 11.2 shows an image plane� with a coordinate system po; � 1q
with � 1 � p ~b1;~b2;~b1

3qderived from the image coordinate systempo; � q. Having square
pixels, vectors~b1, ~b2 can be complemented with~b1

3 to form an orthogonal coordinates
system pO � o; � 1q. Next, we choose the global orthonormal coordinate system,
pO � o; � q, � � p ~d1; ~d2; ~d3q, such that

~d1 �
~b1

||~b1||
; ~d2 �

~b2

||~b1||
; and ~d3 �

~b1
3

||~b1||
(11.27)
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and hence

~x� �

�

�
�

||~b1|| 0 0
0 ||~b1|| 0
0 0 ||~b1||

�

�
� ~x� 1 (11.28)

We know angles= p~x1; ~x2q, = p~x2; ~x3q and = p~x3; ~x1q. We also know image points
~u1� � ~X 1� 1, ~u2� � ~X 2� 1, ~u3� � ~X 3� 1 and thus we can compute distancesd12 �
|| ~X 2� 1 � ~X 1� 1||, d23 � || ~X 3� 1 � ~X 2� 1|| and d31 � || ~X 3� 1 � ~X 1� 1||. Having that, we
can �nd the pose ~C� 1 � r c1; c2; c3sJ of the camera centerC in pO; � 1q by solving the
absolute pose problem from Chapter 7.3. We will select a solution with c3   0 and,
if necessary, use a fourth point in� to choose the right solution among them. To
�nd K, we can form the following equation

�

�
0
0
1

�

� �
1
f

�
K R| � K R~C�

�

�

�
�
�

0
0
0
1

�

�
�
� (11.29)

since point o is represented byr0; 0; 1sJ in � and by r0; 0; 0sJ in � . Coordinate
system pO; � q is chosen such thatR� I and ~C� � || ~b1|| ~C� 1 and thus we get

K� 1

�

�
0
0
1

�

� � �
||~b1||

f
~C� 1 (11.30)

Now, let us consider matrix K as in Equation 11.16 and use the intepretation of
elements ofK from Chapter 7, Equations 7.16, 7.17. We can write

K �

�

�
�

f
}~b1 }

0 k13

0 f
}~b1 }

k23

0 0 1

�

�
� an thus K� 1 �

�

�
�

}~b1 }
f 0 � }~b1 }

f k13

0 }~b1 }
f � }~b1 }

f k23

0 0 1

�

�
� (11.31)

and use it in Equation 11.30 to get
�

�
�

k13

k23

� f
}~b1 }

�

�
� �

�

�
c1

c2

c3

�

� (11.32)

and thus

K �

�

�
� c3 0 c1

0 � c3 c2

0 0 1

�

� (11.33)

11.3 Camera calibration from vanishing points

Let us �rst make an interesting observation about parallel lines in space an its
corresponding vanishing point in an image. Let us consider apair of parallel lines
K , L in space as shown in Figure 11.1(a). There is an a�ne plane� containing the
lines. The linesK , L are projected to image plane� into lines k, l , respectively.
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Now, �rst extend a�ne plane � to a projective plane � using the camera center
C. Then, de�ne a coordinate systempC; � q with orthonormal basis � � p ~d1; ~d2; ~d3q
such that vectors ~d1; ~d2 span a�ne plane � .

Let ~K �� , ~L �� be homogeneous coordinates of linesK , L w.r.t. �� . Then

~w� � ~K �� � ~L �� (11.34)

are homogeneous coordinates of the intersection of linesK , L in �.
Next, extend the a�ne plane � to a projective plane � using the camera center

C with the (camera) coordinate systempC; � q.
Let ~k �� , ~l �� be homogeneous coordinates of linesk, l w.r.t. �� . Then

~v� � ~k �� � ~l �� (11.35)

are homogeneous coordinates of the intersection of linesk, l in �.
Now, consider Equation 8.14 for planes � and �. Since � is orthonormal, we

have K1 � I and thus that there is a homoghraphy

H� K R (11.36)

which maps plane � to plane �. Matrices K and Rof the camera are here w.r.t. the
world coordinate systempC; � q.

We see that there is a real� such that there holds

�~v � � K R~w� (11.37)

true.

x63 Pairs of \orthogonal" vanishing points and camera with square pixels Let
us have two pairs of parallel lines in space, Figure 11.1(b),such that they are also
orthogonal, i.e. let K 1 be parallel with L 1 and K 2 be parallel with L 2 and at the same
time let K 1 be orthogonal to K 2 and L 1 be orthogonal to L 2. This, for instance,
happens when linesK 1; L 1; K 2; L 2 form a rectangle but they also may be arranged
in the three-dimensional space as non-intersecting.

Let lines k1; l1; k2; l2 be the projections of K 1; L 1; K 2; L 2, respectively, repre-
sented by the corresponding vectors~k1 �� ;~l1 �� ;~k2 �� ;~l2 �� in the camera coordinates sys-
tem with (in general non-orthogonal) basis � . Lines k1 and l1, resp. k2 and l2,
generate vanishing points

~v1� � ~k1 �� � ~l1 ��

~v2� � ~k2 �� � ~l2 ��

The perpendicularity of ~w1 to ~w2 is, in the camera orthogonal basis� , modeled
by

~wJ
1� ~w2� � 0 (11.38)

We therefore get from Equation 11.37

~vJ
1� K�J R�J R� 1K� 1~v2� � 0 (11.39)

~vJ
1� K�J K� 1~v2� � 0 (11.40)

~vJ
1� ! ~v 2� � 0 (11.41)
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which is a linear homogeneous equation in! . Assuming further square pixels, we
get, x61,

~vJ
1� ! ~v 2� � 0

~vJ
1� 
 ~v2� � 0

�
v11 v12 v13

�
�

�
1 0 o13

0 1 o23

o13 o23 o33

�

�

�

�
v21

v22

v23

�

� � 0

�
v23 v11 � v21 v13 v23 v12 � v22 v13 v23 v13

�
�

�
o13

o23

o33

�

� � �p v21 v11 � v22 v12q

Now, we need only 3 pairs of perpendicular vanishing points,e.g. to observe 3
rectangles not all in one plane to computeo13; o23; o33 and then

k13 � � o13

k23 � � o23

k11 �
b

o33 � k2
13 � k2

23

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X , which all lie in
a plane � and are measured in a coordinate systempO; ~d1; ~d2q in � , Figure 8.2. The
points X are projected by a perspective camera with the camera coordinate system
is pC; � q; � � p ~b1;~b2;~b3q and projection matrix P into image coordinates

�
u v

� J
,

w.r.t. an image coordinate systempo;~b1;~b2q, Equation 8.30. See paragraphx31 to
recall that the columns of P can be writen as

P �
�

K R| � K R~C�

�
�

�
~d1� ~d2� ~d3� � ~C�

�
(11.42)

and therefore we get the columns

h1 � p1 � ~d1� (11.43)

h2 � p2 � ~d2� (11.44)

h3 � p4 � � ~C� (11.45)

of the homography Hmapping � to � as de�ned in Equation 8.31.
Now imagine that we are observing a square with 4 corner points X 1, X 2, X 3

and X 4 in the plane � and we construct the coordinate system in� by assigning
coordinates to the corners as

~X 1� �
�
0 0 0

�
(11.46)

~d1� � ~X 2� �
�
1 0 0

�
(11.47)

~d2� � ~X 3� �
�
0 1 0

�
(11.48)

~X 4� �
�
1 1 0

�
(11.49)
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We see that we get two constraints on~d1� , ~d2�

~dJ
1�

~d2� � 0 (11.50)
~dJ

1�
~d1� � ~dJ

2�
~d2� � 0 (11.51)

which lead to

~dJ
1� K�J K� 1 ~d2� � 0 (11.52)

~dJ
1� K�J K� 1 ~d1� � ~dJ

2� K�J K� 1 ~d2� � 0 (11.53)

by using ~di� � K R~di� for i � 1; 2, and RJ R� I .
These are two linear equations on! and hence also, seex60, on 


~dJ
1� 
 ~d2� � 0 (11.54)

~dJ
1� 
 ~d1� � ~dJ

2� 
 ~d2� � 0 (11.55)

on ! in terms of estimated � H

hJ
1 
 h 2 � 0 (11.56)

hJ
1 
 h 1 � hJ

2 
 h 2 � 0 (11.57)

One square provides two equations and therefore three squares in two planes in
a general position su�ce to calibrate full K. Actually, such three squares provide one
more equations than necessary since 
 has only �ve parameters. Hence, it is enough
observe two squares and one rectangle to get �ve constraints. Similarly, one square
and one rectangle in a plane then su�ce to calibrate K when pixels are square.

Notice also that we have never used the special choice of coordinates of ~X � .
Indeed, point X 4 could be anywhere provided that we know how to assign it coor-
dinates in pO; ~d1; ~d2q.

To calibrate the camera, we �rst assign coordinates to the corners of the square
as above, then �nd the homographyH from the plane to the image

� i ~xi� � H ~X i� (11.58)

for � i � 1; : : : ; 4 and �nally use columns of H the �nd 
 .
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12 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two di�erent view points.
We will next investigate how to (re-)construct camera projection matrices and mean-
ingful coordinates of points in the space such that the reconstructed cameras and
the reconstructed points generate the images.

12.1 Epipolar geometry

Figure 12.1 shows two cameras with di�erent centersC1, C2 and image planes� 1,
� 2, observing a general pointX as u1, u2. Baselineb connecting image centersC1,
C2 intersects � 1, � 2 in epipolese1, e2. Points C1, C2 and X form epipolar plane
� , which intersects � 1 in epipolar line l1 and � 2 in epipolar line l2. Epipolar line
l1 passes through epipolee1 and through image point u1. Epipolar line l2 passes
through epipole e2 and through image point u2.

Let us next �nd the relationship between image points, epipoles, epipolar lines
as a function of camera parameters, Figure 12.2.

Assume a world coordinate systempO; � q and camerasC1, C2 with camera pro-
jection matrices

P1 �
�

K1R1 | � K1R1 ~C1�

�
and P2 �

�
K2R2 | � K2R2 ~C2�

�
(12.1)

Point X is projected to image planes� 1, � 2, with respective coordinate systems
po1; � 1q, po2; � 2q, as

� 1 ~x1� 1 � P1

�
~X �

1

�
and � 2 ~x2� 2 � P2

�
~X �

1

�
(12.2)

for some� 1 ¡ 0 and � 2 ¡ 0, which then leads to

� 1 ~x1� 1 � K1R1p~X � � ~C1� q and � 2 ~x2� 2 � K2R2p~X � � ~C2� q (12.3)

� 1 RJ
1 K� 1

1 ~x1� 1 � ~X � � ~C1� � 2 RJ
2 K� 1

2 ~x2� 2 � ~X � � ~C2� (12.4)

Consider now that vectors ~X � � ~C1� , ~X � � ~C2� and ~C2� � ~C1� form a triangle and
hence

~C2� � ~C1� � p ~X � � ~C1� q � p ~X � � ~C2� q (12.5)
~C2� � ~C1� � � 1 RJ

1 K� 1
1 ~x1� 1 � � 2 RJ

2 K� 1
2 ~x2� 2 (12.6)

with � 1 ¡ 0 and � 2 ¡ 0 for the standard choice of camera coordinate systems.
We shall next eliminate depths � 1, � 2 by exploiting the vector product identities,

see Paragraph 2.3,

~0 � ~x � ~x � r ~xs� ~x (12.7)

~0 � ~yJ p~x � ~yq � ~yJ r~xs� ~y (12.8)
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� 1 � 2

�

C1 C2b

u1 u2

l1 l2

e1 e2

X

Figure 12.1: Epipolar geometry of two cameras.

for all ~x; ~y P R3.
We �rst vector-multiply Equation 12.6 by ~C2� � ~C1� from the left to get

0 �
�

~C2� � ~C1�

�

�
� 1 RJ

1 K� 1
1 ~x1� 1 �

�
~C2� � ~C1�

�

�
� 2 RJ

2 K� 1
2 ~x2� 2 (12.9)

and then multiply Equation 12.9 by � 2 ~xJ
2� 2

K�J
2 R2 from the left to get

0 � � 2 ~xJ
2� 2

K�J
2 R2

�
~C2� � ~C1�

�

�
� 1 RJ

1 K� 1
1 ~x1� 1 (12.10)

which, since� 1 � 0 and � 2 � 0, is equivalent with

0 � ~xJ
2� 2

K�J
2 R2

�
~C2� � ~C1�

�

�
RJ

1 K� 1
1 ~x1� 1 (12.11)

0 � ~xJ
2� 2

K�J
2 E K� 1

1 ~x1� 1 (12.12)

0 � ~xJ
2� 2

F~x1� 1 (12.13)

where we introduced theessential matrix EPR3� 3 as

E � R2

�
~C2� � ~C1�

�

�
RJ

1 (12.14)

and the fundamental matrix F P R3� 3 as

F � K�J
2 R2

�
~C2� � ~C1�

�

�
RJ

1 K� 1
1 (12.15)

Let us next introduce epipoles to pass from vectors in� to vectors in � 1; � 2,
which are measurable in images.

The projection e1 of the the camera center ~C2 to the �rst image as well as the
projection e2 of the the camera center~C1 to the second image are obtained as

� 1 ~e1� 1 � P1

�
~C2�

1

�
� K1R1p~C2� � ~C1� q (12.16)

� 2 ~e2� 2 � P2

�
~C1�

1

�
� K2R2p~C1� � ~C2� q (12.17)
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� 1 � 2

C1 C2

~x1 ~x2

~l1 ~l2

~e1 ~e2

X

~C2 � ~C1

~X � ~C1
~X � ~C2

Figure 12.2: Vectors of the epipolar geometry.

for some� 1 ¡ 0 and � 2 ¡ 0.
We can now substitute Equation 12.16 into Equation 12.15 to get

F � K�J
2 R2

�
~C2� � ~C1�

�

�
RJ

1 K� 1
1 (12.18)

� K�J
2 R2

�
� 1 RJ

1 K� 1
1 ~e1� 1

�
� RJ

1 K� 1
1 (12.19)

� � 1K�J
2 R2

pRJ
1 K� 1

1 q�J
�
�pRJ

1 K� 1
1 q�J

�
� r~e1� 1 s� (12.20)

�
� 1

|K1|
K�J

2 R2RJ
1 KJ

1 r~e1� 1 s� (12.21)

We used the result fromx8, which shows how the vector product behaves under the
change of a basis.

Analogically, we substitute Equation 12.17 into Equation 12.15 to get

F � K�J
2 R2

�
~C2� � ~C1�

�

�
RJ

1 K� 1
1 (12.22)

� K�J
2 R2

�
� � 2 RJ

2 K� 1
2 ~e2� 2

�
� RJ

1 K� 1
1 (12.23)

�
� �

� 2 RJ
2 K� 1

2 ~e2� 2

�
� RJ

2 K� 1
2

	 J
RJ

1 K� 1
1 (12.24)

�
�

� 2

|K2|
RJ

2 KJ
2 r~e2� 2 s�


 J

RJ
1 K� 1

1 (12.25)

� �
� 2

|K2|
r~e2� 2 s� K2R2RJ

1 K� 1
1 (12.26)

We used additional properties of the linear representationof the vector product
from x9.

We see from Equations 12.21 and 12.26 that it is possible to recover homogeneous
coordinates of the epipoles fromF by solving equations

F~e1� 1 � 0 and FJ ~e2� 2 � 0 (12.27)
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for a non-zero multiples of~e1� 1 , ~e2� 2 . We also see that matrix F has rank smaller

than three since it has a non-zero null space~e1� 1 . Since, rank of
�

~C2� � ~C1�

�

�
is

two for non-zero ~C2� � ~C1� , F has rank two when camera centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the corresponding

points in images and the epipoles, i.e.l1 � x1 _ e1 and l2x � x2 _ e2. Consider that
there holds

~xJ
2� 2

F~e1� 1 � 0 and ~xJ
1� 1

FJ ~e2� 2 � 0 (12.28)

~xJ
2� 2

F~x1� 1 � 0 ~xJ
1� 1

FJ ~x2� 2 � 0 (12.29)

(12.30)

and therefore homogeneous coordinates~l1 �� 1
~l2 �� 2

of epipolar lines generated by~x2� 2

and ~x1� 1 , respectively, are obtained as

~l1 �� 1
� FJ ~x2� 2 and ~l2 �� 2

� F~x1� 1 (12.31)

for ~x2� 2 � ~e2� 2 and ~x1� 1 � ~e1� 1 .

12.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between images from im-
age matches. Our goal is to �nd matrix G � � F for some real non-zero� using
Equation 12.13. Let us introduce

G�

�

�
g11 g12 g13

g21 g22 g23

g31 g32 g33

�

� (12.32)

and write Equation 12.13 as

0 � ~xJ
2i� 2

G~x1i� 1 �
�

u2i v2i w2i
�

�

�
g11 g12 g13

g21 g22 g23

g31 g32 g33

�

�

�

�
u1i

v1i

w1i

�

� (12.33)

0 �
�

u2i u1i u2i v1i u2i w1i v2i u1i v2i v1i v2i w1i w2i u1i w2i v1i w2i w1i
�

�

�
�
�
�

g11

g12
...

g33

�

�
�
�
�

for the i -th pair of the corresponding points ~x1i� 1 , ~x2i� 2 in the two images. Notice
that we can work even with ideal points whenw1i � 0 or w2i � 0.

We can solve this way for a non-zero multiple ofF from eight correspondences in
a general position, i.e. not all on a plane or on some special quadrics passing through
camera centers [14]. If there is noise in image coordinates,we in general get a rank
three matrix.

To avoid this problem, we can use only seven point correspondences to compute
a two dimensional space of solutions

G� G1 � � G2 (12.34)
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generated form its basisG1, G2 by � . Then we use the constraint

0 � | G| � | G1 � � G2| �

�
�
�
�
�
�

�

�
g111 g112 g113
g121 g122 g123
g131 g132 g133

�

� � �

�

�
g211 g212 g213
g221 g222 g223
g231 g232 g233

�

�

�
�
�
�
�
�

(12.35)

to �nd � by solving a third order polynomial

0 � a3 � 3 � a2 � 2 � a1 � � a0 (12.36)

a3 � | G2|

a2 � g221 g232 g113 � g221 g212 g133 � g211 g222 g133 � g231 g112 g223

� g231 g212 g123 � g211 g223 g132 � g231 g122 g213 � g231 g222 g113

� g211 g123 g232 � g121 g232 g213 � g221 g132 g213 � g131 g212 g223

� g121 g212 g233 � g111 g223 g232 � g221 g112 g233 � g211 g122 g233

� g111 g222 g233 � g131 g222 g213

a1 � g111 g122 g233 � g111 g222 g133 � g231 g112 g123 � g121 g112 g233

� g211 g123 g132 � g221 g112 g133 � g231 g122 g113 � g211 g122 g133

� g121 g132 g213 � g121 g232 g113 � g131 g212 g123 � g121 g212 g133

� g131 g222 g113 � g221 g132 g113 � g111 g123 g232 � g131 g122 g213

� g131 g112 g223 � g111 g223 g132

a0 � | G1|

That will give us up to three rank two matrices G.
Notice that we assumed thatGwas constructed with a non-zero coe�cient at G1.

We therefore also need to checkG� G2 for a solution.

12.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to �nd camera projection
matrices P1, P2, and coordinates of points in the scene~X � such that the points ~X �

are projected by camerasP1, P2 to observed image points~x1� 1 , ~x2� 2

� 1 ~x1� 1 � P1

�
~X �

1

�
and � 2 ~x2� 2 � P2

�
~X �

1

�
(12.37)

for some positive real� 1, � 2.
Assume that there are some camerasP1, P2, and coordinates of points in the

scene ~X � such that Equation 12.43 holds true. Then, for every 4� 4 real regular
matrix Hwe can get new camera matricesP1

1, P1
2 and new point coordinates ~X 1

� as

P1
1 � P1 H� 1 P1

2 � P2 H� 1
�

~X 1
�

1

�
� H

�
~X �

1

�
(12.38)

which also project to the same image points

� 1 ~x1� 1 � P1

�
~X �

1

�
� P1 H� 1H

�
~X �

1

�
� P1

1

�
~X 1

�
1

�
(12.39)

� 2 ~x2� 2 � P2

�
~X �

1

�
� P2 H� 1H

�
~X �

1

�
� P1

2

�
~X 1

�
1

�
(12.40)
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We see that in general we can reconstruct the cameras and the scene points only
up to some unknown transformation of the space. We also see that the transforma-
tion is more general than just changing a basis inR3 where we represent a�ne points
~X � . Matrix H acts in the three-dimensional a�ne space exactly as homography on
two-dimensional a�ne space.

Let us next look at a somewhat simpler situation when camera calibration matri-
cesK1, K2 are known. In such a case we can make sure thatHhas a special form which
corresponds to a special change of a coordinate system in thethree-dimensional a�ne
space.

12.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matricesK1, K2 are known. Hence we
can pass fromF to E using Equations 12.14, 12.15 as

E � KJ
2 F K1 (12.41)

then recover the relative pose of the cameras, set their coordinate systems and �nally
reconstruct points of the scene.

12.4.1 Camera computation

To simplify the setting, we will �rst pass from \uncalibrate d" image points ~x1� 1 ,
~x2� 2 using K1, K2 to \calibrated"

~x1
 1 � K� 1
1 ~x1� 1 and ~x2
 2 � K� 1

2 ~x2� 2 (12.42)

and then use camera projection matrices as follows

� 1 ~x1
 1 � P1
 1

�
~X �

1

�
and � 2 ~x2
 2 � P2
 2

�
~X �

1

�
(12.43)

Matrix H allows us to choose the global coordinate system of the sceneas pC1; � 1q.
Setting

H� 1 �
�

RJ
1

~C1�
~0J 1

�
(12.44)

we get from Equation 12.38

P1
 1 �
�
I |~0

�
(12.45)

P2
 2 �
�

R2 RJ
1 | � R2 p~C2� � ~C1� q

�
�

�
R2 RJ

1 | � R2RJ
1 p~C2� 1 � ~C1� 1 q

�
(12.46)

�
�

R| � R~C� 1

�
(12.47)

and the corresponding essential matrix

E � R
�

~C� 1

�

�
(12.48)

From image measurements,~x1
 1 , ~x2
 2 , we can compute, Section 12.2, matrix

G� � E � � R
�

~C� 1

�

�
(12.49)
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and hence we can getE only up to a non-zero multiple � . Therefore, we can recover
~C� 1 only up to � .

We will next �x � up to its sign s1. Consider that the Frobenius norm of a
matrix G

}G}F �

gf
f
e

3¸

i;j � 1

G2
ij �

b
tracepGJ Gq �

d

trace
�

� 2
�

~C� 1

� J

�
RJ R

�
~C� 1

�

�




�

d

� 2 trace
� �

~C� 1

� J

�

�
~C� 1

�

�



(12.50)

� | � |
b

2} ~C� 1 }2 � | � |
?

2} ~C� 1 } (12.51)

We have used the following identities

GJ G � � 2
�

~C� 1

� J

�
RJ R

�
~C� 1

�

�
� � 2

�
~C� 1

�

�

�
~C� 1

�

�
(12.52)

� � 2

�

�
0 z � y

� z 0 x
y � x 0

�

�

�

�
0 � z y
z 0 � x

� y x 0

�

� � � 2

�

�
y2 � z2 � x y � x z
� x y x 2 � z2 � y z
� x z � y z x2 � y2

�

�

We can now construct normalized matrix �Gas

�G�

?
2G

b ° 3
i;j � 1 G2

ij

�
�

|� |
R

�
~C� 1

} ~C� 1 }

�

�

� s1 R
�
~t � 1

�
� (12.53)

with new unknown s1 P t� 1; � 1u and ~t � 1 denoting the unit vector in the direction
of the second camera center in� 1 basis.

We can �nd vector ~v� 1 � s2 ~t � 1 with new unknown s2 P t� 1; � 1u by solving

�G~v� 1 � 0 subject to }~v� 1 } � 1 (12.54)

to get

�G � s1 R
�

1
s2

~v� 1

�

�
�

s1

s2
Rr~v� 1 s� (12.55)

s �G � R r~v� 1 s� (12.56)
�
sg1 sg2 sg3

�
� R

�
v1 v2 v3

�
(12.57)

with unknown s P t� 1; � 1u, unknown rotation Rand known matrices
�
g1 g2 g3

�
�

�Gand
�
v1 v2 v3

�
� r ~v� 1 s� .

This is a matricial equation. Matrices �G, r~v� 1 s� are of rank two and hence do
not determine R uniquely unless we useRJ R � I and |R| � 1. That leads to a set
of polynomial equations. They can be solved but we will use the property of vector
product, x8, to directly construct regular matrices that will determi ne R uniquely
for a �xed s.

Consider that for every regular APR3� 3, we have,x8,

pA~x� q � p A~y� q � ~x� 1 � ~y� 1 �
A�J

|A�J |
p~x� � ~y� q (12.58)
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which for Rgives

pR~x� q � p R~y� q � Rp~x� � ~y� q (12.59)

Using it for i; j � 1; 2; 3 to get

psgi q � p sgj q � p R vi q � p R vj q (12.60)

s2 pgi � gj q � Rpvi � vj q (12.61)

pgi � gj q � Rpvi � vj q (12.62)

i.e. three more vector equations. Notice hows disappeared in the vector product.
We see that we can write

�
sg1 sg2 sg3 g1 � g2 g2 � g3 g1 � g3

�
�

� Rs
�
v1 v2 v3 v1 � v2 v2 � v3 v1 � v3

�
(12.63)

There are two solutionsR� for s � � 1 and R� for s � � 1. We can next compute two
solutions ~t � � 1 � � ~v� 1 and ~t � � 1 � � ~v� 1 and combine them together to four possible
solutions

P2
 2 �� � R�
�
I | � ~t � � 1

�
(12.64)

P2
 2 �� � R�
�
I | � ~t � � 1

�
(12.65)

P2
 2 �� � R�
�
I | � ~t � � 1

�
(12.66)

P2
 2 �� � R�
�
I | � ~t � � 1

�
(12.67)

The above four camera projection matrices are compatible with �G. The one which
corresponds to the actual matrix can be selected by requiring that all reconstructed
points lie in front of the cameras, i.e. that the reconstructed points are all positive
multiples of vectors ~x1� 1 and ~x2� 2 for all image points.

12.4.2 Point computation

Let us assume having camera projection matricesP1, P2 and image points~x1� 1 , ~x2� 2

such that

� 1 ~x1� 1 � P1

�
~X �

1

�
and � 2 ~x2� 2 � P2

�
~X �

1

�
(12.68)

We can get ~X � , and � 1, � 2 by solving the following system of (inhomogeneous) linear
equations

�
~x1� 1

~0 � P1
~0 ~x2� 2 � P2

�
�

�
�
�

� 1

� 2
~X �

1

�

�
�
� � 0 (12.69)
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12.5 Calibrated relative camera pose computation

In the previous chapter, we had �rst computed a multiple of th e fundamental matrix
from seven point correspondences and only then used camera calibration matrices
to recover a multiple of the essential matrix. Here we will use the camera calibration
right from the beginning to obtain a multiple of the essential matrix directly from
only �ve image correspondences. Not only that �ve is smallerthan seven but using
the calibration right from the beginning permits all points of the scene generating
the correspondences to lie in a plane.

We start from Equation 12.42 to get ~x1
 1 and ~x2
 2 from Equation 12.43 which
are related by

~xJ
2� 2

K�J
2 E K� 1

1 ~x1� 1 � 0 (12.70)

~xJ
2
 2

E~x1
 1 � 0 (12.71)

The above equation holds true for all pairs of image pointsp~x1
 1 ; ~x2
 2 q that are in
correspondence, i.e. are projections of the same point of the scene.

12.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

|E| � 0 (12.72)

true.
We will now derive additional constraints on E. Let us consider that we can

write, Equation 12.48,

E � R
�

~C� 1

�

�
(12.73)

Let us introduce ~C� 1 �
�
x y z

� J
and evaluate

EJ E �
�

R
�

~C� 1

�

�


 J

R
�

~C� 1

�

�
�

�
~C� 1

� J

�
RJ R

�
~C� 1

�

�
�

�
~C� 1

� J

�

�
~C� 1

�

�
(12.74)

�

�

�
0 z � y

� z 0 x
y � x 0

�

�

�

�
0 � z y
z 0 � x

� y x 0

�

� �

�

�
z2 � y2 � x y � x z
� x y z2 � x2 � y z
� x z � y z y2 � x2

�

�

�

�

�
x2 � y2 � z2

x2 � y2 � z2

x2 � y2 � z2

�

� �

�

�
x x x y x z
x y y y y z
x z y z z z

�

�

� } ~C� 1 }2I � ~C� 1
~CJ

� 1
(12.75)

We can multiply the above expression byE from the left again to get an interesting
equation

E EJ E � E
�

} ~C� 1 }2I � ~C� 1
~CJ

� 1

	
� } ~C� 1 }2E�

1
2

tracepEJ EqE (12.76)

or equivalently
2E EJ E� tracepEJ EqE (12.77)
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which provides nine equations on elements ofE.
In fact, these equations also imply|E| � 0. Consider that Equation 12.77 implies

�
2E EJ � tracepEJ EqI

�
E � 0 (12.78)

For Equation 12.78 to hold true, either E can't have the full rank, i.e. |E| � 0, or
2E EJ � tracepEJ EqI � 0. The latter case gives

0 � tracep2E EJ � tracepEJ EqI q � 2 tracepE EJ q � 3 tracepEJ Eq (12.79)

Let us check the relationship between tracepEJ Eq and tracepE EJ q now. We write

tracepEJ Eq � p E2
11 � E2

21 � E2
31q � p E2

12 � E2
22 � E2

32q � p E2
13 � E2

23 � E2
33q

� p E2
11 � E2

12 � E2
13q � p E2

21 � E2
22 � E2

23q � p E2
31 � E2

32 � E2
33q

� tracepE EJ q (12.80)

Substituting the above into Equation 12.79 gets us

0 � 2 tracepE EJ q � 3 tracepEJ Eq � � tracepEJ Eq (12.81)

Equation 2 E EJ � tracepEJ EqI � 0 also implies

2E EJ � tracepEJ EqI (12.82)

|2E EJ | � | tracepEJ EqI | (12.83)

23|E|2 � p tracepEJ Eqq3 (12.84)

23|E|2 � 0 (12.85)

|E| � 0 (12.86)

Therefore, Equation 12.77 implies|E| � 0.
Let us now look at constraints on matrix G� � E, for some non-zero real� . We

can multiply Equation 12.78 by � 3 to get

� 3 �
2E EJ � tracepEJ EqI

�
E � 0 (12.87)

�
2p� Eq p� EJ q � tracepp� EJ q p� EqqI

�
p� Eq � 0 (12.88)

�
2G GJ � tracepGJ GqI

�
G � 0 (12.89)

Clearly, rank pGq � rank p� Eq � rank pEq � 2.
We conclude that constraints onE and Gare the same.

12.5.2 Geometrical interpretation of Equation 12.77

Let us provide a geometrical interpretation of Equation 12.77. We will mutiply both
sides of Equation 12.77 by a vector~y PR3 and write

2E EJ E~y � tracepEJ EqE~y (12.90)

2R
�

~C� 1

�

�

�
~C� 1

� J

�

�
~C� 1

�

�
~y � 2} ~C� 1 }2 R

�
~C� 1

�

�
~y (12.91)

� R
�

~C� 1

�

�

�
~C� 1

�

�

�
~C� 1

�

�
~y � R} ~C� 1 }2

�
~C� 1

�

�
~y (12.92)

�
~C� 1

�

�

�
~C� 1

�

�

�
~C� 1

�

�
~y � �} ~C� 1 }2

�
~C� 1

�

�
~y (12.93)
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~y

~C

~C � ~y

~C � p ~C � ~yq
~C � p ~C � p ~C � ~yqq

Figure 12.3: Identity ~C� 1 � p ~C� 1 � p ~C� 1 � ~yqq � �} ~C� 1 }2p~C� 1 � ~yq.

Now, we use that for every two vectors~x; ~y P R3 there holds r~xs� ~y � ~x � ~y true to
get

~C� 1 � p ~C� 1 � p ~C� 1 � ~yqq � �} ~C� 1 }2p~C� 1 � ~yq (12.94)

which is a familiar identity of the vector pruduct in R3, Figure 12.3.

12.5.3 Characterization of E

Let us next see that a non-zero 3� 3 real matrix satisfying Equation 12.77 has rank
two and can be written in the form of Equation 12.73 for some rotation Rand some
vector C� 1 .

Consider a real 3� 3 matrix E such that Equation 12.77 holds true. We will
make here use of the SVD decomposition [4, p. 411] of real matrices. We can write

E � U

�

�
a

b
c

�

� VJ (12.95)

for some real non-negativea; b; cand some orthogonal real 3� 3 matrices U, V, such
that UJ U � I , and VJ V � I [4, p. 411]. One can see thatUJ U � I , and VJ V � I
implies |U| � � 1; |V| � � 1.

Using Equation 12.95 we get

E EJ � U

�

�
a2

b2

c2

�

� UJ ; EJ E� V

�

�
a2

b2

c2

�

� VJ (12.96)

and tracepEJ Eq � tracepV D2VJ q � tracepV D2V� 1q � tracepD2qsince matricesD2 and
E EJ are similar and hence their traces, which are the sums of their eigenvalues, are
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equal. Now, we can rewrite Equation 12.77 as
�

� 2U

�

�
a2

b2

c2

�

� UJ � p a2 � b2 � c2qI

�


 U

�

�
a

b
c

�

� VJ � 0 (12.97)

2U

�

�
a3

b3

c3

�

� VJ � p a2 � b2 � c2q U

�

�
a

b
c

�

� VJ � 0 (12.98)

Matrices U, V are regular and thus we get

2

�

�
a3

b3

c3

�

� � p a2 � b2 � c2q

�

�
a

b
c

�

� � 0 (12.99)

which �nally leads to the following three equations

a3 � a b2 � a c2 � a pa2 � b2 � c2q � 0 (12.100)

b3 � b a2 � b c2 � bpb2 � c2 � a2q � 0 (12.101)

c3 � c a2 � c b2 � cpc2 � a2 � b2q � 0 (12.102)

We see that there are the following two exclusive cases:

1. If any two of a; b; c are zero, then the third one is zero too. For instance,
if a � b � 0, then Equation 12.102 givesc3 � 0. This can't happen for a
non-zeroE.

2. If any two of a; b; care non-zero, then the two non-zero are equal and the third
is zero. For instance, ifa � 0 and b � 0, then Equations 12.100, 12.101 imply
c2 � 0 and thus a2 � b2, which gives a � b since a; b are non-negative, i.e.
rank pEq � 2.

We thus conclude that E can be written as

E � U

�

�
a

a
0

�

� VJ � U

�

�
0 1 0

� 1 0 0
0 0 1

�

�

�

�
0 � a 0
a 0 0
0 0 0

�

� VJ (12.103)

� W

�

�

�

�
0
0
a

�

�

�

�

�

VJ � W

�

� VJ V

�

�
0
0
a

�

�

�

�

�

VJ � W
pVJ q�J

|pVJ q�J |

�

� V

�

�
0
0
a

�

�

�

�

�

(12.104)

� p signp|W|qq2 W VJ signp
�
�VJ

�
�q ra v3s� (12.105)

� signp|W|qW VJ signp
�
�VJ

�
�q rsignp|W|qa v3s� (12.106)

� Rrsignp|U|qa v3s� (12.107)

for some non-negativea and the third column v3 of V. Parameter a is zero for
E � 0 and positive for rank two matrices E. We introduced a new matrix Win
Equation 12.104, which is the product ofUand a rotation round the z axis. We also
usedVJ V� I , and �nally Equation 2.53. In Equation 12.105 we usedpsignp|W|qq2 �
1, V�J � V for VJ V � I . Matrix R � signp|pWq|qW VJ signp

�
�VJ

�
�q in Equation 12.107

is a rotation since signp|pWq|qWas well asVJ signp
�
�VJ

�
�q are both rotations. Finally,

we see that signp|W|q � signp|U|q.
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12.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from image
matches.

12.5.4.1 Selecting equations

Every pair of image matchesp~x1
 1 ; ~x2
 2 qprovides a linear constratint on elements of
E in the form of Equation 12.71 and matricial Equation 12.77 gives nine polynomial
constraints for elements ofE.

We have already seen in Paragraph 12.2 that a non-zero multiple of E can be
obtained from seven absolutely accurate point correspondences using the constraint
|E| � 0. The solution was obtained by solving a set of polynomial equations out of
which seven were linear and the eighth one was a third order polynomial.

Let us now see how to exploit Equation 12.77 in order to compute a non-zero
multiple of E from as few image matches as possible.

An idea might be to use Equations 12.77 instead of|E| � 0. It would be motivated
by the fact that Equations 12.77 imply equation |E| � 0 for real 3 � 3 matrices E.
Unfortunately, this implication does not hold true when we allow complex numbers
in E1, which we have to do if we want to obtain E as a solution to a polynomial
system without using any additional constraints. We have to therefore use|E| � 0
as well.

The next question is whether we have to use all nine Equations12.77. It can be
shown similarly as above that indeed none of the equations 12.77 is in the ideal [16]
generated by the others2. Therefore, we have to use all Equations 12.77 as well as

1Equation |E| � 0 can't be generated from Equations 12.77 as their algebraic combination, i.e.
|E| � 0 is not in the ideal [16] generated by Equations 12.77. It means that there might be
some matrices E satisfying Equations 12.77 which do not satisfy |E| � 0. We know that such
matrices can't be real. The proof of the above claim can be obtained by the following program
in Maple [18]

>with(LinearAlgebra):
>with(Groebner):
>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>v:=indets(eq):
>mo:=tdeg(op(v)):
>G:=Basis(eq,mo):
>Reduce(Determinant(E),G,mo);
e11 e22 e33 - e11 e23 e32 + e21 e32 e13 - e21 e12 e33 + e31 e12 e23 - e31 e22 e13
which computes the Groebner basisGof the ideal generated by Equations 12.77 and veri�es that
the remainder on division of |E| by Gis non-zero [16].

2To show that none of the equations 12.77 is in the ideal generated by the others, we run the
following test in Maple.

>with(LinearAlgebra):
>with(Groebner):
>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>
>ReduceEqByEqn:=proc(eq,eqn)

local mo,G;
mo:=tdeg(op(indets(eqn)));
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|E| � 0. Hence we have altogether ten polynomial equations of order higher than
one.

We have more equations than unknowns but they still do not fully determine
E. We have to add some more equations from image matches. To seehow many
equations we have to add, we evaluate the Hilbert dimension [16] of the ideal gen-
erated by Equations 12.77 and|E| � 0. We know [16] that a system of polynomial
equations has a �nite number of solutions if and only if the Hilbert dimension of the
ideal generated by the system is zero.

The Hilbert dimension of the ideal generated by Equations 12.77 and |E| � 0 is
equal to six3. An extra linear equation reduces the Hilbert dimension by one [16].
Hence, �ve additional (independent) linear equations fromimage matches will reduce
the Hilbert dimension of the system to one.

Since all equations 12.71, 12.77 and|E| � 0 are homogeneous, we can't reduce the
Hibert dimension below one by adding more equations 12.77 from image matches.
This re
ects the fact that E is �xed by image measurements only up to a non-zero
scale.

To conclude, �ve independent linear equations 12.71 plus Equations 12.77 and
|E| � 0 �x E up to a non-zero scale.

The scale ofE has to be �xed in a di�erent way. For instance, one often knows
that some of the elements ofE can be set to one. By doing so, an extra independent
linear equation is obtained and the Hilbert dimension is reduced to zero. Alterna-

G:=Basis(eqn,mo);
Reduce(eq,G,mo);

end proc:
>
>for i from 1 to 9 do

ReduceEqByEqn(eq[i],eq[[op( f $1..9 g minus f i g)]]);
end;

e113 � e11 e122 � e11 e132 � e11 e212 � 2 e21 e12 e22 � 2 e21 e13 e23 � e11 e312 � 2 e31 e12 e32 � 2 e31 e13 e33 � e11 e222 �
e11 e322 � e11 e232 � e11 e332

e112 e21 � 2 e11 e12 e22 � 2 e11 e13 e23 � e213 � e21 e222 � e21 e232 � e21 e312 � 2 e31 e22 e32 � 2 e31 e23 e33 � e21 e122 �
e21 e322 � e21 e132 � e21 e332

e112 e31 � 2 e11 e12 e32 � 2 e11 e13 e33 � e212 e31 � 2 e21 e22 e32 � 2 e21 e23 e33 � e313 � e31 e322 � e31 e332 � e31 e122 �
e31 e222 � e31 e132 � e31 e232

e12 e112 � e123 � e12 e132 � 2 e22 e11 e21 � e12 e222 � 2 e22 e13 e23 � 2 e32 e11 e31 � e12 e322 � 2 e32 e13 e33 � e12 e212 �
e12 e312 � e12 e232 � e12 e332

2 e12 e11 e21 � e122 e22 � 2 e12 e13 e23 � e22 e212 � e223 � e22 e232 � 2 e32 e21 e31 � e22 e322 � 2 e32 e23 e33 � e22 e112 �
e22 e312 � e22 e132 � e22 e332

2 e12 e11 e31 � e122 e32 � 2 e12 e13 e33 � 2 e22 e21 e31 � e222 e32 � 2 e22 e23 e33 � e32 e312 � e323 � e32 e332 � e32 e112 �
e32 e212 � e32 e132 � e32 e232

e13 e112 � e13 e122 � e133 � 2 e23 e11 e21 � 2 e23 e12 e22 � e13 e232 � 2 e33 e11 e31 � 2 e33 e12 e32 � e13 e332 � e13 e212 �
e13 e312 � e13 e222 � e13 e322

2 e13 e11 e21 � 2 e13 e12 e22 � e132 e23 � e23 e212 � e23 e222 � e233 � 2 e33 e21 e31 � 2 e33 e22 e32 � e23 e332 � e23 e112 �
e23 e312 � e23 e122 � e23 e322

2 e13 e11 e31 � 2 e13 e12 e32 � e132 e33 � 2 e23 e21 e31 � 2 e23 e22 e32 � e232 e33 � e33 e312 � e33 e322 � e333 � e33 e112 �

e33 e212 � e33 e122 � e33 e222

3The Hilber Dimension of the ideal is computed in Maple as foll ows
>with(LinearAlgebra):
>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>with(PolynomialIdeals):
>HilbertDimension(<op(eq),Determinant(E)>);

6
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tively, one can ask for }E}2 � 1, which adds a second order equation. That also
reduces the Hilbert dimension to zero but doubles the numberof solutions for E.

12.5.4.2 Solving the equations

We will next describe one way how to solve equations

~xJ
i; 2
 2

E~xi; 1
 1 � 0;
�
2E EJ � tracepEJ EqI

�
E � 0; |E| � 0; i � 1; : : : ; 5

(12.108)
We will present a solution based on [19], which is somewhat less e�cient than [20, 21]
but requires only eigenvalue computation.

First, using Equation 2.92 from Paragraph 2.5, we can write
�

�
�
�
�
�
�
�

~xJ
1;1
 1

b ~xJ
1;2
 2

~xJ
2;1
 1

b ~xJ
2;2
 2

~xJ
3;1
 1

b ~xJ
3;2
 2

~xJ
4;1
 1

b ~xJ
4;2
 2

~xJ
5;1
 1

b ~xJ
5;2
 2

~aJ

�

�
�
�
�
�
�
�

vpEq �

�

�
�
�
�
�
�
�

0
0
0
0
0
1

�

�
�
�
�
�
�
�

(12.109)

to obtain a 6 � 9 matrix of a system of linear equations onvpEq. Row ~aJ can be
chosen randomly to �x the scale of vpEq. There is only a negligible chance that it
will be chosen in the orthogonal complement of the span of thesolutions to force
the solutions be trivial. If so, it can be detected and a new~aJ generated.

Assuming that the rows of the matrix of the system are linearly independent,
we obtain a 3-dimensional a�ne space of solutions. After rearranging the particu-
lar solution, resp. the basis of the solution of the associated homogeneous system,
back to 3 � 3 matrices G0, resp. G1; G2; G3, we will get all solutions compatible with
Equation 12.109 in the form

G� G0 � x G1 � y G2 � z G3 (12.110)

for x; y; z P R.
Now, we can substitute Gfor E into the two remaining equations in 12.108. We

get ten trird-order polynomial equations in three unknowns and with 20 monomials.
We can write it as

M m� 0 (12.111)

where Mis a constant 10� 20 matrix4 and

mJ � r x3; y x2; y2x; y3; z x2; z y x; z y2; z2x; z2y; z3; x2; y x; y2; z x; z y; z2; x; y; z; 1s
(12.112)

4Matrix Mcan be obtained by the following Maple [18] program
>with(LinearAlgebra):
>G0:=<<g011|g012|g013>,<g021|g022|g023>,<g031|g032|g033>>:
>G1:=<<g111|g112|g113>,<g121|g122|g123>,<g131|g132|g133>>:
>G2:=<<g211|g212|g213>,<g221|g222|g223>,<g231|g232|g233>>:
>G3:=<<g311|g312|g313>,<g321|g322|g323>,<g331|g332|g333>>:
>trc:=E->simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert(trc(G),listlist)),Determinant(G)]:
>mo:=tdeg(x,y,z);
>m:=PolyVarMonomials(eq,mo);

m :� r x 3 ; y x 2 ; y 2 x; y 3 ; z x 2 ; z y x; z y 2 ; z 2 x; z 2 y; z 3 ; x 2 ; y x; y 2 ; z x; z y; z 2 ; x; y; z; 1s

>M:=PolyCoeffMatrix(eq,m,mo):
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is a vector of 20 monomials.
Next, we rewrite the system 12.112 as

pz3C3 � z2C2 � z C1 � C0qc � 0 (12.113)

with

C � z3C3 � z2C2 � z C1 � C0 (12.114)

containing 10 monomials. MatricesC0; : : : ; C4 are constant 10� 10 matrices

C0 �
�
m1 m2 m3 m4 m11 m12 m13 m17 m18 m20

�
(12.115)

C1 �
�
0 0 0 0 m5 m6 m7 m14 m15 m19

�
(12.116)

C2 �
�
0 0 0 0 0 0 0 m8 m9 m16

�
(12.117)

C3 �
�
0 0 0 0 0 0 0 0 0 m10

�
(12.118)

where mi are columns ofM.
Sincemcontains all monomials inx; y; z up to degree three, we could have written

similar equations as Equation 12.113 withx and y.
Equation 12.113 is known as a Polynomial Eigenvealue Problem (PEP) [22] of de-

gree three. The strandard solution to such a problem is to relax it into a generelized
eigenvalue problem of a larger size as follows.

We can write z2c � z pzcq and zc � z pcq altogether with Equation 12.113 in a
matrix form as

�

�
0 I 0
0 0 I

� C0 � C1 � C2

�

�

�

�
c

zc
z2c

�

� � z

�

�
I 0 0
0 I 0
0 0 C3

�

�

�

�
c

zc
z2c

�

� (12.119)

A v � z B v (12.120)

This is a Generelized Eigenvalue Problem (GEP) [22] of size 30 � 30, which can
be solved forz and v. Values of x; y can be recovered fromv as x � c8{c10 and
x � c9{c10. It provides 30 solutions in general.

When C0 is regular, we can pass to a standard eigenvalue problem for anon-zero
z by inverting A and using w � 1{z

�

�
� C� 1

0 C1 � C� 1
0 C2 � C� 1

0 C3

I O 0
0 I 0

�

�

�

�
w2c
wc

c

�

� � w

�

�
w2c
wc

c

�

� (12.121)

>M[1,1];
2 g122 g112 g121 � 2 g133 g113 g131 � g123 2 g111 � g122 2 g111 � 2 g132 g112 g131 � g132 2 g111 � g131 2 g111 � g112 2 g111 �

g111 3 � 2 g123 g113 g121 � g133 2 g111 � g121 2 g111 � g113 2 g111
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rns, 5
determinat, 5
sign, 6
determinant, 6
inversion, 6
monotonic, 6
permutation, 5

a�ne coordinate system, 23
a�ne function, 15
a�ne space, 21
axioms of linear space, 18
axioms of a�ne space, 22

basis, 19
bound vector, 17

camera pose, 42
camera calibration matrix, 42
camera cartesian coordinate system, 42
camera calibration, 42
camera coordinate system, 34
camera projection matrix, 46
coordinate linear space, 2
coordinates, 19
cross product, 7

dual basis, 9
dual space, 9

epipolar plane, 113
epipolar geometry, 113
epipolar line, 113
epipole, 113
essential matrix, 114

focal length, 42
free vector, 20
Frobenius norm, 119
fundamental matrix, 114

geometric scalars, 16
geometric vector, 17

homogeneous coordinates, 93

homogeneous coordinates of a line, 93
homogeneous coordinates of a point,

93
homography, 60
horizon, 98

ideal line, 92
ideal plane, 103
image calibration matrix, 46
image plane, 34
image projection matrix, 37

join, 95

Kronecker product, 12

line at in�nity, 92
linear function, 15
linear space, 18

marked ruler, 15
meet, 95

omnidirectional image, 72
origin of a�ne coordinate system, 23

panoramic image, 72
partition, 19
perspective camera, 34
point at in�nity, 89
position vector, 23
principal plane, 34
principal point, 45
projection center, 34
projective space, 88

real projective plane
a�ne point, 89, 90
algebraic model, 90
geometrical model, 88
ideal point, 89, 90
line, 91
point, 88

spherical image, 72
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standard basis, 2

three-dimensional real projective space,
101

vanishing point, 98
vanishing line, 98
vector product, 7
vector product, 7

world coordinate system, 34
world unit length, 50

zero bound vector, 17
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