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1 Notation

x Y

r%s

}x}

orthogonal vectors
orthonormal vectors
P |

P_Q

k™|

the empty set [1]

the set of all subsets of seU [1]
Cartesian product of setsU and V [1]
whole numbers [1]

rational numbers [2]

real numbers [2]

imaginary unit [2]

space of geometric scalars

a ne space (space of geometric vectors)
space of geometric vectors bound to poinb
space of free vectors

real a ne plane

three-dimensional real a ne space

real projective plane

three-dimensional real projective space
vector

matrix

ij element of A

transpose ofA

determinant of A

identity matrix

rotation matrix

Kronecker product of matrices

basis (an ordered triple of independent generator vects)

the dual basis to basis

column matrix of coordinates of % w.r.t. the basis
Euclidean scalar product ofx and ¥ (x ¥ %’ ¥ in an

orthonormal basis )

cross (vector) product of x and ¥y
the matrix such that rxs ¥ » x ¥
Euclidean norm of x (}x} % %)

mutually perpendicular and all of eaqial length

unit orthogonal vectors

point P is incident to line |
line(s) incident to points P and Q
point(s) incident to lines k and |



2 Linear algebra

We rely on linear algebra [3, 4, 5, 6, 7, 8]. We recommend exdeht text books [6, 3]
for acquiring basic as well as more advanced elements of thepic. Monograph [4]
provides a number of examples and applications and providea link to numerical
and computational aspects of linear algebra. We will next r@iew the most crucial
topics needed in this text.

2.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of gector in a linear space,
which is induced by passing from one basis to another. We shiatlerive the relation-

ship between the coordinates in a three-dimensional lineaspace over real numbers,
which is the most important when modeling the geometry arourd us. The formulas
for all other n-dimensional spaces are obtained by passingdm 3 to n.

x1 Coordinates Let us consider an ordered basis ™ B Ty of athree-

dimensional vector spaceV ® over scalarsR. A vector ¥ P V3 is uniquely expressed
as a linear combination of basic vectors oV by its coordinates x;y;z P R, i.e.
v xBy yb, z0s, and can be represented as an ordered triple of coordinates,
i.e. asv Xy z

We see that an ordered triple of scalars can be understood astaple of coor-
dinates of a vector in V3 w.r.t. a basis of V3. However, at the same time, the set
of ordered triples x y z ? is also a three-dimensionatoordinate linear spaceR®

. J J J
over R with x4 Vi 71 X2 VY2 22 X1 X2 Y1 Y2 Z1 2o and

S Xy z ) SX Sy sz ? for s P R. Moreover, the ordered triple of the

following three particular coordinate vectors

1 0 0
0 1 0 2.1)
0 0 1

forms an ordered basis oR3, the standard basis and therefore avectory x y z J

is represented byv Xy z 7 w.rt. the standard basis in R3. It is noticeable
that the vector v and the coordinate vectorv of its coordinates w.r.t. the standard
basis ofR3, are identical.

x2 Two bases Having two ordered bases ™ b B oand 1 bl B} Bl

leads to expressing one vectok in two ways asx XxB, yT, zh and x
xl  yl  zBl The vectors of the basis can also be expressed in the basis!
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using their coordinates. Let us introduce

B a bl axn®  a; by
o) a®l  apbl apbi (2.2)
o3 aisbl  axshy asgby

x3 Change of coordinates We will next use the above equations to relate the
coordinates ofx w.r.t. the basis to the coordinates of x w.r.t. the basis ?!

% Xt yh, zh;
Xpallbll azlbgl a31b31q ypalzbll azzbzl a32b31q Zpals'f-'ll1 azsbzl a33b§q
pai1x apy a13qu11 paxXx axny a23qu21 pazX azy a332qbsl
X'y 2y (2.3)

Since coordinates are unique, we get

Xl ag1 X apy a137Z (2.4)
y! a1 X apy axpz (2.5)
z? az1X azxy assz (2.6)

Coordinate vectorsx and x 1 are thus related by the following matrix multiplication

x1 dj; a1z ai3 X

1
y ap; axp axg Yy (2.7)
z! az1 az ass z

which we concisely write as
X 1 Ax (2.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors,
;b of in the basis 1

| | I
A B, », B, (2.9)
| | I

and the matrix multiplication can be interpreted as a linear combination of the
columns of A by coordinates ofx w.r.t.

x1 XxXby, ybb, z0bs, (2.10)

Matrix A plays such an important role here that it deserves its own nare. Matrix
Ais very often called the change of basis matrix from basis to !or the transition
matrix from basis to basis *[4, 9] since it can be used to pass from coordinates
w.rt. to coordinates w.r.t. by Equation 2.8.

However, literature [5, 10] callsA the change of basis matrix from basis *to
i.e. it (seemingly illogically) swaps the bases. This choie is motivated by the fact
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that Arelates vectors of and vectors of by Equation 2.2 as

b o, B an®l anb a;b apbl axnbl apb;
aisBi  axby asgby (2.11)

dj; a1z ai13

b B bl Bl Bl axn axn a (2.12)

dz; az2 ass

(2.13)
and therefore giving
o B, bll bzl b% A (2.14)
or equivalently
bl Bl bl m o Al (2.15)

where the multiplication of a row of column vectors by a matrix from the right in
Equation 2.14 has the meaning given by Equation 2.11 above. & another variation
of the naming appeared in [7, 8] whereA 1 was named thechange of basis matrix
from basis to 1

We have to conclude that the meaning associated with the&ehange of basis matrix
varies in the literature and hence we will avoid this confushg name and talk about
A as about the matrix transforming coordinates of a vector from basis to basis %

There is the following interesting variation of Equation 2.14

b By
B Al (2.16)
by (o

where the basic vectors of and !are understood as elements of column vectors.
For instance, vector’bl1 is obtained as

B oap® aph  a;ph (2.17)
wherera,;; a;,; a;35is the rst row of AJ .

x4 Example We demonstrate the relationship between vectors and basesnoa
concrete example. Consider two bases and represented by coordinate vectors,

which we write into matrices

B B B (2.18)

1
0
0
1
0 (2.19)
0

P ORF OpRpR
P RPPFP RO
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and a vector % with coordinates w.r.t. the basis
1

X 1 (2.20)
1

We see that basic vectors of can be obtained as the following linear combinations
of basic vectors of

& 1, OB, Obs (2.21)
B 1y 1 1yg (2.22)
g 1y O 1y (2.23)
(2.24)
or equivalently
1 1 1
B B m»» B 0 1 O m » B, A (2.25)
0 1 1
Coordinates ofx w.r.t. are hence obtained as
1 1 1
X Ax ; A 0O 1 O (2.26)
0 1 1
1 1 1 1 1
1 O 1 O 1 (2.27)
2 0 1 1 1
We see that
A (2.28)
1 1 0 1 1 1 1 1 1
01 1 0 01 0O 1 O (2.29)
0 0 1 011 0 1 1

The following questions arises: When are the coordinates @f vector x (Equation 2.8)
and the basic vectors themselves (Equation 2.16) transfored in the same way? In
other words, when A A’ . We shall give the answer to this question later in
paragraph 2.4.

2.2 Determinant

Determinat [3] of a matrix A denoted by|A|, is a very interesting and useful concept.
It can be, for instance, used to check the linear independercof a set of vectors or
to de ne an orientation of the space.

2.2.1 Permutation

A permutation [3] on the setrns t 1;:::;nu of integers is a one-to-one function
from rnsonto rns.  The identity permutation will be denoted by , i.e. pgqgq i for
alli Pms.
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x5 Composition of permutations Let and be two permutations onrns Then,
their composition, i.e. p g is also a permutation onrns since a composition of two
one-to-one onto functions is a one-to-one onto function.

x6 Sign of a permutation We will now introduce another important concept re-
lated to permutations. Sign, sgrp g of a permutation is de ned as

sgp g p 1d'Pd (2.30)
where N p gis equal to the number ofinversionsin , i.e. the number of pairsri;j s

such thati;j Pmsi | and pqj pg

2.2.2 Determinant

Let S, be the set of all permutations onrns and A be ann n matrix. Then,
determinant |A of Ais de ned by the formula

|A| ’ Sgm qu; plqAZ; p2q Ah; png (2-31)

PSn

Notice that for every P S, and for j P msthere is exactly onei P ms such that

] pg Hence
trl; plgsr2; p2gs:::;r; pgsu  r plglsr @g2s:iiir lmg ns(
(2.32)
and since the multiplication of elements ofAis commutative we get
|A| ’ sSgnp QA 1p1q;1A g2 A lmgn (233)

PSh

Let us next de ne a submatrix of Aand nd its determinant. Consider k & n and two

one-to-onemonotonic functions ; :rksNrnsi j A p@dq Ba AQg oo
We de ne k k submatrix A° of ann n matrix Aby

A Agg g for i;j Prks (2.34)
We get the determinant of A* as follows

AT TSI AL oA o A e (2.35)
PSy

SOP 0A g p plag® g p ag A kg p kg (2.36)
PS,

Let us next split the rows of the matrix Ainto two groups of k and m rows and
nd the relationship between |Al and the determinants of certaink kandm m
submatrices of A Take 1@ k;m @ n suchthatk m n and de ne a one-to-one
function :rmsNrk 1;ns tk 1;:::;nu by pqg k i. Next let , exprns
be the set of all subsets ofrns of sizek. Let ! P . Then, there is exactly one
one-to-one monotonic function' ; from rksonto ! sincerksand ! are nite sets
of integers of the same size. Let™ r nsZ . Then, there is exactly one one-to-one
monotonic function ' + from rk 1;nsonto . Let further there be | P Sk and
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m P Sm.  With the notation introduced above, we are getting a versim of the
generalized Laplace expansion of the determinant [11, 12]
1
A sgrg rAg ' pgg |A | AT TP (2.37)
P iPrksj Pk 1;ns

2.3 Vector product

Let us look at an interesting mapping fromR3 R3 to RS, the vector productin R® [6]
(which it also often called the cross product [4]). Vector poduct has interesting
geometrical properties but we shall motivate it by its connection to systems of linear
equations.

X7 Vector product Assume two linearly independent coordinate vectors
% X1 X2 Xs3 7 and ¥ Vi Y2 V3 7 in R3. The following system of linear
equations
X1 X2 X3
Y1 Y2 Y3
has a one-dimensional subspac¥ of solutions in R3. The solutions can be written
as multiples of one non-zero vectomw, the basis ofV, i.e.

Z W, PR (2.39)

(2.38)

Let us see how we can constructv in a convenient way from vectorsx, ¥.
Consider determinants of two matrices constructed from thematrix of the sys-
tem (2.38) by adjoining its rst, resp. second, row to the matrix of the system (2.38)

X1 X2 X3 X1 X2 X3
Y1 Y2 VY3 0 Y1 Y2 VY3 0 (2.40)
X1 X2 X3 Yi Y2 Y3

which gives

X1[X2y3 X3Y2Q XoX3Y1 X1Y3q XaXiY2 X2YiQ 0 (241
Yy1X2Y3 X3Y2d Y2[X3Y1 X1YsQ YsXiy2 X2Y1q 0 (242
and can be rewritten as

X2Y3 X3Y2
X1 X2 Xs X1Y3 X3Y1 0 (2.43)
Yi Y2 Y3 X1Y2  Xa¥1
We see that vector
X2Y3 XzY2
W X1Ys X3Y1 (2.44)
X1Y2 X2V

solves Equation 2.38.

Notice that elements of w are the three two by two minors of the matrix of the
system (2.38). The rank of the matrix is two, which means that at least one of the
minors is non-zero, and hencew is also non-zero. We see thatwv is a basic vector of
V. Formula 2.44 is known as thevector productin R® and w is also often denoted

by x ¥.



T. Pajdla. Elements of Geometry for Computer Vision 2016-59 (pajdla@cvut.cz )

x8 Vector product under the change of basis
the vector product under the change of basis irR3. Let us have two bases , !
R3 and two vectors x, ¥ with coordinates x

J
X1 X2 X3 ,¥

1,1
X2Y3

1
]
XiYs

andx 1 x! x} xi7.y yi y} y27 . We introduce
X2Y3 X3Y2
x 0y X1Y3 X3Yy1 X1 Y1
X1Y2 XoYy1
To nd the relationship between x y andx 1

For every three vectorsx
in R3 there holds

i‘JpX ¥q 21 Zp Z3

We can write

r100spx 1
r0105p<1
r00 1spx 1

xI A
y A
100

X1 ¥

3¢9
yJ

rl 0 Gs A’

r1 0 A’ px

ro 1 0sA’ px

ro 0 1sA’ px
AJ

mpx ¥ q

x9 Vector product as a linear mapping

J
X1 X2 X3 ,¥

X2Y3
X1Y3
X1Y2

¥ q
¥ q
¥ q
x) A
y A
010

AJ

yq
Y q
yq

Let us next study the behavior of

in

Yi Y2 VY3 ’
X3Y3

X3y (2.45)
X3yi

¥ 1, we will use the following fact.

J J
Yi Y2 Y3 ,Z Z1 Zp Z3
X3Y2 X1 X2 X3 x
X3Y1 Yi Y2 Y3 y'  (2.46)
X2Y1 Z1 2 Z3 Z
») 1 x) 1 * 1 J
¥, S ¥,
100 010 001
x) A J
y R
001
7 7 J
y ooy
r0 1A’ r0 0 1s AY
AJ
(2.47)

It is interesting to see that for all %;y PR3

there holds
X2Y3  X3Y2 0 x3 X2
x ¥ X1Y3 X3Y1 X3 0 X1
X1Y2 X2Yy1 X2 X1 0
and thus we can introduce matrix
0 X3 X2
xs X3 0 x1
X2 X1 0

and write
X ¥ r%xs ¥y

Y1
Y2 (2.48)
Y3
(2.49)
(2.50)
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Notice also that rxs’ r xs and therefore

px yod prxs yd ¥ rxs (2.51)

The result of x8 can also be written in the formalism of this paragraph. We ca
write for every x;y PR3

J AJ
rAx s Ay pAx g pAyY q mpx ¥ q mrxsy (2.52)
and hence we get for everyx PR3
J
rAx s A AT | rx s (2.53)

2.4 Dual space and dual basis

Let us start with a three-dimensional linear spacelL over scalarsS and consider
the set L of all linear functions f : L N S, i.e. the functions on L for which the
following holds true

fpax byg afpxqg bfpyg (2.54)
forall a;bPS and all x;yPL.
Let us next de ne the addition L L N L oflinear functions f;g PL

and the multiplication :S L N L of alinear function f PL by a scalaraP S
such that

o gamxq fpxa  gpxq (2.55)
pr famq afpxq (2.56)
holds true for all a P S and for all x P L. One can verify that pL ; ; qover

BS; ; qis itself a linear space [3, 6, 5]. It makes therefore a good 13&e to use arrows
above symbols for linear functions, e.gf” instead of f .

The linear spaceL is derived from, and naturally connected to, the linear spae
L and hence deserves a special name. Linear spdce is called [3] thedual (linear)
spaceto L.

Now, consider a basis r B;;B;;zs of L. We will construct a basis of L ,
in a certain natural and useful way. Let us take three linear tinctions B;;B,;B; PL

such that
b 1 Bpg 0 Bdsq O
Bng 0 ByEpq 1 ByEsg O (2.57)
Byng 0 Bydpq O Bydsg 1

where 0 and 1 are the zero and the unit element 08, respectively. First of all, one
has to verify [3] that such an assignment is possible with liear functions overL.
Secondly one can show [3] that function®,;B,; B; are determined by this assignment
uniquely on all vectors of L. Finally, one can observe [3] that the triple
ID;;B,; B;s forms an (ordered) basis oft. The basis is called the dual basisof L ,
i.e. it is the basis ofL , which is related in a special (dual) way to the basis of L.
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x10 Evaluating linear functions
X1;X2: X3S W.r.t. a basis

nates h

r hi;ho;hss w.r.t. the dual basis

is obtained from the coordinatesx andh as

Consider a vectorx P L with coordinates %
r Bi;p;Bzs and a linear function i PL  with coordi-
r B,;0,;B;s The value fipxq PS

hipxq it X2  X3Tsq (2.58)
phiB  heB, hebygpa® x2T  X3Tsq (2.59)
hiBgngx:s  hiBEhoxe,  hi b Esoxs
hoBnax:  haBEn0xe  hoB[Ek0xs (2.60)
hsBynax:  haByoxe  haB;Esoxs
bng Beg BiEkg  xg
hy hz hs  Bng BA%q Bksg X2 (2.61)
Bythg By Bydkg X3
1 00 X1
h1 hz hg 010 X2 (2.62)
0 01 X3
X1
hi;hoihs X2 (2.63)
X3
nox (2.64)

The value of i PL on x PL is obtained by multiplying % by the transpose offi
from the left.

Notice that the middle matrix on the right in Equation 2.61 ev aluates into the
identity. This is the consequence of using the pair of a basignd its dual basis.
The formula 2.64 can be generalized to the situation when bas are not dual by
evaluating the middle matrix accordingly. In general

fipxq M rb @y gsx (2.65)

where matrix rb @ gsis constructed from the respective bases, ofL andL .
x11 Changing the basis in a linear space and in its dual Let us now look at what
happens with coordinates of vectors ol when passing from the dual basis to
the dual basis ! induced by passing from a basis to a basis *in L. Consider
vector ¥ PL and a linear functionh PL and their coordinatesx* , ¥ randh ,h 1
w.r.t. the respective bases. Introduce further matrix A transforming coordinates of
vectors inL as

x 1 Ax (2.66)

when passing from to 1

Basis s the dual basis to and basis ! is the dual basis to *and therefore
n ox  hpxq M1 %1 (2.67)

forall x PL and all i PL . Hence
mox M. Ax (2.68)

10
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for all ¥ PL and therefore
J J

oA (2.69)

or equivalently
f Af (2.70)

Let us now see what is the meaning of the rows of matriXA It becomes clear from
Equation 2.69 that the columns of matrix A’ can be viewed as vectors of coordinates
of basic vectors of 1 r B! ;1) ;B! sin the basis  r B;;1,;B;sand therefore

A B 2 (2.71)

which means that the rows ofA are coordinates of the dual basis of the primed dual
space in the dual basis of the non-primed dual space.
Finally notice that we can also write

n: Alh (2.72)

which is formally identical with Equation 2.16.

x12 When do coordinates transform the same way in a basis and in its dual basis
It is natural to ask when it happens that the coordinates of linear functions in L
w.r.t. the dual basis  transform the same way as the coordinates of vectors df
w.r.t. the original basis , i.e.

X 1 Ax (2.73)
no Ah (2.74)

forall x PL and all i PL . Considering Equation 2.72, we get

A A’ (2.75)
AA | (2.76)

Notice that this is, for instance, satis ed when A is a rotation [4]. In such a case,
one often does not anymore distinguish between vectors daf and L because they
behave the same way and it is hence possible to represent limefunctions from L
by vectors of L.

x13 Coordinates of the basis dual to a general basis We denote the standard

basis inR3 by and its dual (standard) basis in R® by . Now, we can further
establish another basis & € € inR3andits dual basis €, €, €3
in R® . We would like to nd the coordinates €, € €3 of vectors
of W.I.t. as a function of coordinates € € € of vectors of
w.r.t.

Considering Equations 2.57 and 2.64, we are getting

9 Lifi ] A
€ 0ifi | fori;j 1,23 (2.77)

11
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which can be rewritten in a matrix form as

J

1 0 0 €1
010 e B & J (2.78)
001 g

and therefore
J (2.79)

x14 Remark on higher dimensions We have introduced the dual space and the
dual basis in a three-dimensional linear space. The de nitbon of the dual space is
exactly the same for any linear space. The de nition of the dwal basis is the same for
all nite-dimensional linear spaces [3]. For any n-dimensonal linear spaceL and its
basis , we get the corresponding n-dimensional dual spack with the dual basis

2.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. He we review a
few useful rules for matrix manipulation. The rules are often studied in multi-linear

algebra and tensor calculus. We shall not review the theory bmulti-linear algebra

but will look at the rules from a phenomenological point of view. They are useful
identities making an e ective manipulation and concise nofation possible.

x15 Kronecker product Let Abe ak | matrix and Bbe am n matrix

ail aip ay|
ap1 a2 a|
A T © PRK! and BPR™ " (2.80)
dg1 A2 Ay
then km |In matrix
a;1B a;pB ay B
ao1 B apo B ag| B
C AbB ) ) . ) (2.81)
a1 B axB ay B

is the matrix of the Kronecker product of matrices A B (in this order).
Notice that this product is associative, i.e. pAb Bgqb C AbpBb (g but it
is not commutative, i.e. Ab B Bb Ain general. There holds a useful identity

pAb BY Ab B.

x16 Matrix vectorization Let Abe anm n matrix

ai;  aiz ain
dg1 Az azn

A ] ] ) ] PR™ N (2.82)
dm1 adm2 dmn

12
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We de ne operator vg: R™ " N R™" which reshapes anm n matrix Ainto a
mn 1 matrix (i.e. into a vector) by stacking columns of A one above another

ail
agi

adm1
ai2
ago

vpAq : (2.83)

am2
ain
azn

amn

Let us study the relationship between vpAg and vpA g We see that vector vp&’ q
contains permuted elements ofvpAg and therefore we can construct permutation
matrices [4]Jm n andJ, m such that

vpA' g J m nVPAq
vpAg  J o mVPAq
We see that there holds
Jn mdm nVPAQ J 0 mVPA'Q  vpAq (2.84)
for everym n matrix A Hence
Jnm J nta (2.85)

Consider a permutation J . It has exactly one unit element in each row and in
each column. Consider thei-th row with 1 in the j-th column. This row sends the
j -th element of an input vector to the i-th element of the output vector. The i-the
column of the transpose ofJ has 1 in thej-th row. It is the only non-zero element
in that row and therefore the j-th row of J7 sends thei-th element of an input
vector to the j -th element of the output vector. We see thatJ” is the inverse ofJ,
i.e. permutation matrices are orthogonal. We see that

., 3, (2.86)

and hence conclude
Jom J 0, (2.87)

We also write vpAq J 3, , vpA g

x17 From matrix equations to linear systems Kronecker product of matrices
and matrix vectorization can be used to manipulate matrix equations in order to

13
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get systems of linear equations in the standard matrix formAx b. Consider, for
instance, matrix equation

AXB C (2.88)

with matrices APR™ kK XPRK | BPR! ", CPR™ ". It can be veri ed by direct
computation that

VPAXB  pB'b Aqvpqg (2.89)

This is useful when matricesA B and C are known and we use Equation 2.88 to
compute X Notice that matrix Equation 2.88 is actually equivalent to mn scalar
linear equations ink | unknown elements ofX Therefore, we should be able to write
it in the standard form, e.g., as

MpXg VPO (2.90)

with some MP RPM"aPkla e can use Equation 2.89 to geM B’ b Awhich yields
the linear system

VPA X B vpQg (2.91)
B’ b AgqvpXq vpy (2.92)

for unknown vpXg which is in the standard form.
Let us next consider two variations of Equation 2.88. First cnsider matrix
equation

AXB X (2.93)

Here unknowns X appear on both sides but we are still getting a linear system b
the form

b A lqupxg O (2.94)

wherel is the pnnqg pklqidentity matrix.
Next, we add yet another constraints: X X i.e. matrix Xis symmetric, to get

AXB X and X X (2.95)
which can be rewritten in the vectorized form as
b A Iqupxg 0 and pJm n lqupXg O (2.96)
and combined it into a single linear system

E;’]fg A : Vg 0 (2.97)

14



3 A ne space

Let us study the ane space, an important structure underlyi ng geometry and
its algebraic representation. The ane space is closely conected to the linear
space. The connection is so intimate that the two spaces areogetimes not even
distinguished. Consider, for instance, functionf : R N R with non-zero a;bPR

fxq ax b (3.1)

It is often called \linear" but it is not a linear function [5, 6, 4] since for every PR
there holds
fpxgq ax b px by f Xq (3.2)

In fact, f is an ane function , which becomes a linear function only forb 0.

In geometry, we need to be very precise and we have to clearlyigtinguish a ne
from linear. Let us therefore rst review the very basics of inear spaces, and in
particular their relationship to geometry, and then move to the notion of ane
spaces.

3.1 Vectors

Let us start with geometric vectors and study the rules of thaér manipulation.
Figure 3.1(a) shows the space of point$, which we live in and intuitively un-
derstand. We know what is an oriented line segment, which we lao call a marked
ruler (or just a ruler). A marked ruler is oriented from its origin t owards its end,
which is actually a mark (represented by an arrow in Figure 31(b)) on a thought
in nite ruler, Figure 3.1(b). We assume that we are able to align the ruler with any

° \

(a) (b) (€)
Figure 3.1: (a) The space around us consists of points. Rulsr(marked oriented

line segments) can be aligned (b) and translated (c) and thusused to
transfer, but not measure, distances.

15
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a
arC— —— b
b —— . ——

[ T T T T

a b
a

= —— ———
b i T T ] T T ]

T p i [ T T T T T

a b ab

(a) (b)

Figure 3.2: Scalars are represented by oriented rulers. Tlyecan be added (a) and
multiplied (b) purely geometrically by translating and ali gning rulers.
Notice that we need to single out a unit scalar \1" to perform geometric
multiplication.

pair of points X, y, so that the ruler begins in x and a mark is made at the pointy.
We also know how to align a marked ruler with any pair of distinct points u, v such
that the ruler begins in u and aligns with the line connectingu and v in the direction
towards point v. The mark on so aligned ruler determines another point, callit z,
which is collinear with points u, v. We know how to translate, Figure 3.1(c), a ruler
in this space.

To de ne geometric vectors, we need to rst de ne geometric salars.

3.1.1 Geometric scalars

Geometric scalarsS are horizontal oriented rulers. The ruler, which has its orgin
identical with its end is called 0. Geometric scalars are eqgpped with two geometric
operations, addition a b and multiplication ab, de ned for every two elements
a,bPsS.

Figure 3.2(a) shows additiona b. We translate ruler b to align origin of b with
the end ofa and obtain ruler a b.

Figure 3.2(b) shows multiplication ab. To perform multiplication, we choose
a unit ruler \1" and construct its additive inverse 1 usingl p 1g 0. This
introduces orientation to scalars. Scalars aiming to the sme side as 1 areositive
and scalars aiming to the same side as 1 are negative Scalar 0 is neither positive,
nor negative. Next we de ne multiplication by 1 suchthat 1a a,i.e. 1times
a equals the additive inverse ofa. Finally, we de ne multiplication of non-negative
(i.e. positive and zero) rulersa, b as follows. We aligna with 1 such that origins of
1 and a coincide and such that the rulers contain an acute non-zeromrgle. We align
b with 1 and construct ruler ab by a translation, e.g. as shown in Figure 3.2(b}.

All constructions used were purely geometrical and were pdéormed with real
rulers. We can verify that so de ned addition and multiplica tion of geometric scalars

!Notice that abis well de ned since it is the same for all non-zero angles cortained by a and 1.

16
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z z
y
% & // %Z
/V)Q( 7 2 )
0" x % 0
(b) (c) (d) (e)

(@)

7 Z
y y 0
AR
Yy Yy
(9) (h) (i) )

(f)

Figure 3.3: Bound vectors are (ordered) pairs of pointgo; Xqg i.e. arrowsx p 0;xq
Addition of the bound vectors %, ¥ is realized by parallel transport (using
a ruler). We see that the result is the same whether we addk to ¥ or ¥
to %. Addition is commutative.

satisfy all rules of addition and multiplication of real numbers. Geometric scalars
form a eld [10, 13] w.r.t. to a bandah

3.1.2 Geometric vectors

Ordered pairs of_points, _such agx;yqin Figure 3.3(a), are calledgeometric vectors
and denoted as%/, i.e. %/ p X;yg Symbol %/ is often replaced by a simpler one,
e.g. by-a The set of all geometric vectors is denoted byA.

3.1.3 Bound vectors

Let us now choose one pointo and consider all pairspo; xqg where x can be any
point, Figure 3.3(a). We obtain a subsetA, of A, which we call geometric vectors
bound too, or just bound vectorswhen it is clear to which point they are bound. We
will write % p 0;xqg Figure 3.3(f) shows another bound vectory. The pair po; oqis
special. It will be called the zero bound vectorand denoted by0. We will introduce
two operations ~ ;d with bound vectors.

First we de ne addition of bound vectors™ : A, Ao N A,. Let us add vector x
to ¥ as shown on Figure 3.3(b). We take a ruler and align it with %, Figure 3.3(c).
Then we translate the ruler to align its begin with point y, Figure 3.3(d). The
end of the ruler determines pointz. We de ne a new bound vector, which we
denote x = ¥, as the pair po; zq Figure 3.3(e). Figures 3.3(f-)) demonstrate that
addition gives the same result when we exchangec¢mmute) vectors x and v, i.e.
x" ¥ ¥ % We notice that for every point x, there is exactly one pointx* such
that po;xq po;xlq po;og i.e. x %' 0. Bound vector x!is the inverseto % and
is denoted as x*. Bound vectors are invertible w.r.t. operation * . Finally, we see
that po;xq po;oq po;xqg i.e. % 0 % Vector 0 is the identity element of the
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operation ~ . Clearly, operation = behaves exactly as addition of scalars { it is a
commutative group [10, 13].

Secondly, we de ne themultiplication of a bound vector by a geometric scalar
d:S AoN Ao, whereS are geometric scalars and\, are bound vectors. Operation
d is a mapping which takes a geometric scalar (a ruler) and a baud vector and
delivers another bound vector.

Figure 3.4 shows that to multiply a bound vector x p 0;xqby a geometric scalar
a, we consider the rulerb whose origin can be aligned witho and end with x. We
multiply scalars a and b to obtain scalar aband align abwith % such that the origin
of ab coincides with o and a b extends along the line passing throughx. We obtain
end point y of so placedab and construct the resulting vectory ad % p o;yg

We notice that addition =~ and multiplication d of horizontal bound vectors
coincides exactly with addition and multiplication of scalars.

3.2 Linear space

We can verify that for every two geometric scalarsa;b P S and every three bound
vectors x; y; 2P A with their respective operations, there holds the followirg eight
rules

X py z0 px yq z (3.3)
Xy ¥ o% (3.4)

x 0 % (3.5)

X X 0 (3.6)
1d % % (3.7)
pabg d % adpbd xq (3.8)
adpx" ¥q pad xq pad yq (3.9)
pa bgdx p ad xq pbd xq (3.10)

These rules are known as axioms of #near space[5, 6, 3]. Bound vectors are one
particular model of the linear space. There are many other vey useful models, e.qg.
n-tuples of real or rational numbers for any natural n, polynomials, series of real
numbers and real functions. We will give some particularly smple examples useful
in geometry later.

¥y ad x% :_y

\

b
= I ——
abr T T T T T

Figure 3.4: Multiplication of the bound vector % by a geometric scalara is realized
by aligning rulers to vectors and multiplication of geometric scalars.
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Figure 3.5: Coordinates are the unique scalars that combinendependent basic vec-
tors B, By into .

The next concept we will introduce arecoordinates of bound vectors To illustrate
this concept, we will work in a plane. Figure 3.5 shows two norcollinear bound
vectorsBy, B, which we call basis and another bound vectorx. We see that there is
only one way how to choose scalarg; and x, such that vectorsx; d B; and xo d 1,
add to x, i.e.

x xX1dD xXodTy (3.12)

Scalarsx1, X are coordinates of % in (ordered) basisrty; s

3.3 Free vectors

We can choose any point fromA to construct bound vectors and all such choices
will lead to the same manipulation of bound vector and to the sme axioms of a
linear space. Figure 3.6 shows two such choices for pointsand o'

We take bound vectorst, po;bg B, po;bg % p o;xgat o and construct
bound vectorsB! p o} blg B p ot blg %' p o%xgat o by translating x to x%, by
to bi and b, to b} by the same translation. Coordinates ofx w.r.t. rty; s are equal
to coordinates of x! w.r.t. rsl;bls This interesting property allows us to construct
another model of a linear space, which plays an important ra in geometry.

Let us now consider the set of all geometric vectord\. Figure 3.7(a) shows an
example of a few points and a few geometric vectors. Let ygartition [1] the setA of

Figure 3.6: Two sets of bound vectorsA, and Ag.. Coordinates of x w.r.t. ;s
are equal to coordinates ofx*w.r.t. 1ol bls
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(@) (b)

Figure 3.7: The setA of all geometric vectors (a) can be partitioned into subsets
which are called free vectors. Two free vectorsA y.yq and Apyyq i-€.
subsets ofA, are shown in (b).

geometric vectors into disjoint subsetsA ., such that we choose one bound vector
po; xqand put to Ay.xq all geometric vectors that can be obtained by a translation
of po;xg Figure 3.7(b) shows two such partitions Ay, Ay It is clear that
ApxgX Apxig H  for x x!and that every geometric vector is in some (and in
exactly one) subsetA ..

Two geometric vectors po; xq and pot; x'g form two subsets Aoixg Apotxig Which
are equal if and only if po% x'gis related by a translation to po; xqg

\To be related by a translation” is an equivalence relation [1]. All geometric
vectors in Ap,.xq are equivalent to po; xg

There are as many sets in the partition as there are bound vectrs at a point.
We can de ne the partition by geometric vectors bound to any point o because if
we choose another poin?, then for every point x, there is exactly one pointx*such
that po; xqcan be translated to po%; x'g

We denote the set of subsetsApo;quy V. Let us see that we can eqliip sev
with a meaningful addition * : V'~V N V and multiplicaton d:S V N V by
geometric scalarsS such that it will become a model of the linear space. Elements
of V will be called free vectors

We de ne the sum of x  Ap,qandy  Apyg 6.2 % yis the set
Aixq poyg Multiplication of x  Ap.xq by geometrical scalara is de ned analogi-
cally, i.e. ad x equals the setA,qy0xq We see that the result of” and d does not
depend on the choice ob. We have constructed the linear space/ of free vectors.

x18 Why so many vectors? In the literature, e.g. in [3, 4, 7], linear spaces are
often treated purely axiomatically and their geometrical models based on geometrical
scalars and vectors are not studied in detail. This is a good @proach for a pure

mathematician but in engineering we use the geometrical moel to study the space

we live in. In particular, we wish to appreciate that good understanding of the

geometry of the space around us calls for using bound as welkdree vectors.

3.4 A ne space

We saw that bound vectors and free vectors were (models of) dnlear space. On the
other hand, we see that the set of geometric vector# is not (a model of) a linear

20



T. Pajdla. Elements of Geometry for Computer Vision 2016-59 (pajdla@cvut.cz )

L N - /2/

— Nt T/

Figure 3.8: Free vectorA,.q is added to free vectorA, 4 by translating po; xq to

po; X' and po; yqto pa; y'g adding bound vectorspg;zg pa;x'q” pa;ya
and setting Apsxqg Apyg  Apizg

y

Figure 3.9: Free vectorsy, ¥ and w de ned by three points x, y and z satisfy triangle
identity 4~ v w.

space because we do not know how to meaningfully add (by tratetion) geometric
vectors which are not bound to the same point. The set of geonidc vectors is an
ane space.

The a ne space connects points, geometric scalars, bound gemetric vectors and
free vectors in a natural way.

Two points x and vy, in this order, give one geometric vectorpx;yq which de-
termines exactly one free vectory A, o We dene function ' : A N V, which
assigns to two pointsx;y PP their corresponding free vector' px;yq  Apcyq

Consider a pointa PP and a free vectorx PV. There is exactly one geometric
vector pa; xg with a at the rst position, in the free vector x. Therefore, point a
and free vectorx uniquely de ne point x. We de ne function #: PV N P, which
takes a point and a free vector and delivers another point. Wewrite a# % x and
require x ' pa;xq

Consider three pointsx;y;z PP, Figure 3.9. We can produce three free vectors
4" pGYd Apyg ¥ P20 Apgg W T XZq Apzq Let us investigate
the sum ¢~ ~. Chose the representatives of the free vectors, such that #y are
all bound to x, i.e. bound vectorspx;yq PAxy, px;tq PAp..q and px;zq PApc; o
Notice that we could choose the pairs of original points to r@resent the rst and the
third free vector but we had to introduce a new pair of points, x;tq to represent
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Y=y A

pxy q

Wt ¥ Apagpoc

Figure 3.10: A ne space pP;L;"' g its geometric vectorspx;yq PA P P and free
vector spaceL and the canonical assignment of pairs of pointgx; yqto
the free VectorApy o Operations ™ , ° , combining vectors with vectors,
and #, combining points with vectors, are illustrated.

the second free vector. Clearly, there holdgx;yq  px;tq pXx;zg We now see,
Figure 3.9, that py; zqis related to px;tqby a translation and therefore

4 ¥ Apyg Aiza Apya Apita Amyapxta  Apzg W (3.12)

Figure 3.10 shows the operations explained above in Figure3but realized using
the vectors bound to another point o.

The above rules are known asaxioms of a ne space and can be used to de ne
even more general a ne spaces.

x19 Remark on notation We were carefully distinguishing operationsp ; qover
scalars, p” ;dq over bound vectors,p ;dq over free vectors, and function# com-
bining points and free vectors. This is very correct but rardy used. Often, only the
symbols introduced for geometric scalars are used for all @pations, i.e.

D # (3.13)
;d;d (3.14)

x20 Ane space Triple pP;L;' g with a set of points P, linear spacep.;  ;dq
(over some eld of scalars) and a function' : P P N L, is an a ne space when
Al 'x;zq ' pyq ' opy; zgfor every three pointsx;y;z PP

A2 for every o P P, the function ' o: P N L, dened by ' oqmxq ' po; xq for all
x PP is a bijection [1].

Axiom Al calls for an assignment of pairs of point to vectors. Axiom A2 then makes
this assignmet such that it is one-to-one when the rst argunent of * is xed.

We can de ne another function#: P L N P,dened by o#x ' ,lpxq which
means' po;o#xq % for all x PL. This function combines points and vectors in a
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Figure 3.11: Point x is represented in two a ne coordinate systems.

way that is very similar to addition and hence is sometimes daoted by instead
of more correct# .

In our geometrical model of A discussed above, functiorl assigned to a pair of
points X, y their corresponding free vectorA,,.,. Function #, on the other hand,
takes a point x and a free vectorv and gives another pointsy such that the bound
vector X;yqis a representative ofv, i.e. Ap.yq V.

3.5 Coordinate system in a ne space

We see that function' assigns the same vector fronL to many di erent pairs of
points from P. To represent uniquely points by vectors, we select a poinb, called
the origin of a ne coordinate system and represent pointx PP by its position vector
% ' po;xg In our geometric model of A discussed above, we thus represent point
X by bound vector po; xqor by point o0 and free vector A,y

To be able to compute with points, we now pass to the represemttion of points
in A by coordinate vectors. We choose a basis p t;;%;:::qin L. That allows us
to represent point x PP by a coordinate vector

X1
x X2 : suchthat % x1B x>ty (3.15)

The pair po; g whereo P P and is a basis ofL is called ana ne coordinate
system(often shortly called just coordinate system) of a ne space pP;L;" g

Let us now study what happens when we choose another poira* and another
basis ' p BBl :::qto representx PP by coordinate vectors, Figure 3.11. Pointx
is represented twice: by coordinate vectop "PO;Xq  Apxq and by coordinate
vector x*; ' poixq 1 Apixg t

To get the relationship between the coordinate vectorsx and %', we employ
the triangle equality

'poixq ' ;0q " pohxq (3.16)
X o> %! (3.17)
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Figure 3.12: A ne space pP;V;' qof solutions to a linear system is the set of vectors
representing points on linep. In coordinate systempe; to, vector x has
coordinate 1. The subspaceV of solutions to the associated homoge-
neous system is the associated linear space. Function assigns to two
points §, % the vectoru ¥y .

which we can write in basis as (notice that we replace” by to emphasize that
we are adding coordinate vectors)

x x1 o (3.18)

and use the matrix A transforming coordinates of vectors from basis 'to  to get
the desired relationship

* Axl, ol (3.19)

Columns of A correspond to coordinate vectorsd! ;B ;:::. When presented with a
situation in a real a ne space, we can measure those coordin@s by a ruler on a
particular representation of L by geometrical vectors bound to, e.g., pointo.

3.6 An example of a ne space

Let us now present an important example of a ne space.

3.6.1 A ne space of solutions of a system of linear equations

When looking at the following system of linear equations inR?

. L X 5 (3.20)

we immediately see that there is an in nite number of solutions. They can be written
as

X ; PR (3.21)
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or as a sum of a particular solutionr2; 0s’ and the set of solutionsv r 1;18 of
the accompanied homogeneous system

v (3.22)

Figure 3.12 shows that the ane space pP;V;' q of solutions to the linear sys-
tem (3.20) is the set of vectors representing points on lingp. The subspaceV of
solutions to the accompanied homogeneous system (3.22) ik linear space associ-
ated to A by function ' , which assigns to two pointsx; ¥ PA the vectord y % PV.
If we choose® r 2;08 as the origin in A and vector® ' pe;»y x w®©as the
basis ofV, vector % has coordinate 1.

We see that, in this example, points ofA are actually vectors of R2, which are
the solution to the system (3.20). The vectors ofV are the vectors ofR?, which are
solutions to the associated homogeneous linear system (2R

25



4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Eu-
clidean space. The important property of rigid motion is that it only relocates
objects without changing their shape. Distances between pots on rigidly moving
objects remain unchanged. For brevity, we will use \motion" for \rigid motion".

4.1 Change of position vector coordinates induced by
motion

Figure 4.1: Representation of motion.

x21 Alias representation of motion 1. Figure 4.1 illustrates a model of motion using
coordinate systems, points and their position vectors. A cordinate systempO; (
with origin O and basis is attached to a moving rigid body. As the body moves to a
new position, a new coordinate systenpO*  gis constructed. Assume a pointX in a
general position w.r.t. the body, which is represented in tke coordinate systempO; ¢
by its position vector x. The same point X is represented in the coordinate system
pOL Igby its position vector xL The motion induces a mappingxt, PNx . Such a
mapping also determines the motion itself and provides its onvenient mathematical
model.

1The terms alias and alibi were introduced in the classical monograph [13].
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Let us derive the formula for the mapping %1, PNx between the coordinates
x1, of vector x! and coordinates* of vector x. Consider the following equations:

x x! ot (4.1)
% xt el (4.2)
x ol B By xh el (4.3)

Rx!, ! (4.4)
x1 R x e (4.5)

Vector x is the sum of vectorsx! and ©%, Equation 4.1. We can express all vectors
in (the same) basis , Equation 4.2. To pass to the basis !we introduce matrix

R Bl B} B} , which transforms the coordinates of vectors from 'to
Equation 4.4. Columns of matrix R are coordinates®} ;B ;B of basic vectors
Bl bd of basis  tin basis

x22 Alibi representation of motion.  An alternative model of motion can be de-
veloped from the relationship between the pointsX and Y and their position vectors
in Figure 4.1. The point Y is obtained by moving point X altogether with the mov-
ing object. It means that the coordinates ¥, of the position vector ¥* of Y in the
coordinate systempO® ‘gequal the coordinatesx of the position vector % of X in
the coordinate systempO; q i.e.

yhoo x
Y1 ©1 x
Rlpy w®q %
¥ Rx o (4.6)
y Rx o' (4.7

Equation 4.6 describes how is the pointX moved to point Y w.r.t. the coordinate
systempO; ¢

4.2 Rotation matrix

Motion that leaves at least one point xed is called rotation. Choosing such a xed
point as the origin leads toO O'and hence toe ©. The motion is then fully
described by matrix R which is called rotation matrix .

x23 Two-dimensional rotation.  To understand the matrix R we shall start with
an experiment in two-dimensional plane. Imagine a right-amgled triangle ruler as
shown in Figure 4.2(a) with arms of equal length and let us dene a coordinate
system as in the gure. Next, rotate the triangle ruler around its tip, i.e. around the
origin O of the coordinate system. We know, and we can verify it by diret physical
measurement, that thanks to the symmetry of the situation, the parallelograms
through the tips of B} and B and along®y, and B, will be rotated by 90 degrees. We
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o7 [+
A 3 A
bz, --------------- a1
O — < 5 ~
') b1 a1 ') ai by
(a) (b)
Figure 4.2: Rotation in two-dimensional space.
see that
b ant  ant (4.8)
[ anty ant (4.9)

for some real numbersa;; and az1. By comparing it with Equation 4.3, we conclude
that

R . ax (4.10)
a1 a1
We immediately see that
R R djp ag aiy azq afl a%l 0 10 (4 11)
a1 a1 &1 ann 0 a3, a5 0 1"

sincepa?, a3,qis the squared length of the basic vector oby, which is one. We
derived an interesting result

R1 R (4.12)
R R’ (4.13)

Next important observation is that for coordinates x and x1., related by a rotation,
there holds

' py?d xMxh pRxdRx ¥ RRx ®x x2 y2 (4.14)

Now, if the basis was constructed as in Figure 4.2, in which case it is called an
orthonormal basis then the parallelogram used to measure coordinates;y of x is a
rectangle and hencex? y? is the squared length ofx by the Pythagoras theorem.
If lis related by rotation, then also x’&f p yf is the squared length ofx, again
thanks to the Pythagoras theorem.

We see thatx’ % is the squared length ofx when is orthonormal and that this
length is preserved by computing it in the same way from the ne/ coordinates of
in the new coordinate system after motion. The change of codlinates induced by
motion is modeled by rotation matrix R which has the desired propertyR R 1,
when the bases; !are both orthonormal.
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Figure 4.3: A three-dimensional coordinate system.

x24 Three-dimensional rotation.  Let us now consider three dimensions. It would
be possible to generalize Figure 4.2 to three dimensions, wstruct orthonormal bases

and use rectangular parallelograms to establish the relatinship between elements of
Rin three dimensions. However, the gure and the derivationswould become much

more complicated.

We shall follow a more intuitive path instead. Consider that we have found that
with two-dimensional orthonormal bases, the lengths of vetrs could be computed
by the Pythagoras theorem since the parallelograms deternmming the coordinates
were rectangular. To achieve this in three dimensions, we re@l (and can!) use bases
consisting from three orthogonal vectors. Then, again, theparallelograms will be
rectangular and hence the Pythagoras theorem for three dimesions can be used
analogically as in two dimensions, Figure 4.3.

Considering orthonormal bases; % we require the following to hold for all

vectors x with % x y z 7 andxl, xt yt zt’7
' py'd pzf  x* y* 7P
x3 %Ly x7 %
pRx o Rx x x
x RR x x %
x) Cx x % (4.15)

Equation 4.15 must hold true for all vectors x and hence also for special vectors such
as those with coordinates

1 0 0 1 1 0
o ;1 ,; 0 ;1 ;0;1 (4.16)
0 0 1 0 1 1

Let us see what that implies, e.g., for the rst vector

1

100C O 1 (4.17)
0
C11 1 (4.18)
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Taking the second and the third vector leads similarly tocz, ¢33 1. Now, let's
try the fourth vector

1
110cC 1 2 (4.19)
0
1 ¢ o1 1 2 (4.20)
Ci2 C21 0 (4.21)

Again, taking the fth and the sixth vector leads to ¢;3 €31 Cx3 cC32 0. This
brings us to the following form of C

1 ci2 Ci3
C C12 1 Co3 (4. 22)
Ciz C3 1

Moreover, we see thatCis symmetric since

d RR’ RR C (4.23)

which leadsto ¢ ¢c12, €3 ¢Czand cp3 C3,i..C2 €3 C3 0and
allows us to conclude that
RR C | (4.24)

Interestingly, not all matrices Rsatisfying Equation 4.24 represent motions in three-
dimensional space.
Consider, e.g., matrix

10 0
S 01 0 (4.25)
00 1

Matrix S does not correspond to any rotation of the space since it keepthe plane
Xy xed and re ects all other points w.r.t. this xy plane. We see that some matrices
satisfying Equation 4.24 are rotations but there are also sme such matrices that
are not rotations. Can we somehow distinguish them?

Notice that |§ 1 while [I| 1. It might be therefore interesting to study
the determinant of Cin general. Consider that

1111 RRy R IR |RIR plRe (4.26)

which gives that |R 1. We see that the sign of the determinant splits all

matrices satisfying Equation 4.24 into two groups { rotations, which have a positive
determinant, and re ections, which have a negative determnant. The product of
any two rotations will again be a rotation, the product of a rotation and a re ection

will be a re ection and the product of two re ections will be a rotation.

To summarize, rotation in three-dimensional space is repreented by a 3 3
matrix Rwith RR | and | 1. The set of all such matrices, and at the same
time also the corresponding rotations, will be calledSOp3q for special orthonormal
three-dimensional group Two-dimensional rotations will be analogically denoted &

SOpq
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4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates
and the basic vectors are transformed in the same way. This iparticularly useful

observation when

For a rotation matrix R Equation 2.16 becomes

B
1
B3

and hence

B}

and similarly for B} and Bi. We conclude that

This also corresponds to solving folRin Equation 2.14 with A

b BB

(oo

1
0 ;
0

i riz2 ras
21 Iz TI23
31 32 33

1

rigts rip O
0

M1
M2
ri3

[N o]
= O O

31

2]
[+
[

ra1
22
23

=

is formed by the standard basis, i.e.

riat
o1y
a1

rs

R

o B by R

riotp
rot
rs2 b

o o

R

(4.27)

rizts
ro3ts (4.28)
rasts

M
rio (4.29)

K]

(4.30)

(4.31)



5 Image coordinate system

Digital image Im is a matrix of pixels. We assume thatlm is obtained by measuring
intensity of light by sensors (pixels) arranged in a grid, Figure 5.1.

We will work with images in two ways. First, we will work with i ntensity values,
which are stored in the memory as a three-dimensional array fobytes indexed by
the row index i, the column index | , and the color indexk, Figure 5(a). Color index
attains three values 1,2; 3, with 1 corresponding to red, 2 corresponding to green
and 3 corresponding to blue colors.

In Matlab, image Im is accessed using the row indek, the column indexj and
the color index k as>>Im(i,j,k) . The most top left pixel has row as well as column
index equal to 1. The red channel of the pixel with row index2 and column index
3 is accessed as>Im(2,3,1) .

x25 Image coordinate system For geometrical computation, we introduce anim-
age coordinate systeras in Figure 5(b). The origin of the image coordinate systems
chosen to assign coordinates;1l to the center of the most top left pixel. Horizontal
axis b, goes from left to right. The vertical axis B, goes from top down. The pixel
that is accessed as>>Im(i,j,k) is in the image coordinate system represented by
the vector 4 r j;i s . A digital image with H rows and W columns will be in in-
dexed in Matlab as>>Im(1:H,1:W,1:3) and >>size(Im) will return [H W 3] The
center of the most bottom right pixel will have coordinates rw;Hs’ in the image
coordinate system.

The image coordinate system coincides with théVlatlab coordinate systemimage,
i.e. commands

>> axis image
>> plot(j,i,".b")

plot a blue dot on the pixel accessed asm(i,j,k) ;

The image coordinate system is non-standard in two dimensios since it is a
left-handed system. The reason for such a unnatural choicesithat this system will
be next augmented into a three-dimensional right-handed cordinate system in such
a way that the T3 vector will be pointing towards the scene.
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Figure 5.1: Image is digitized by a rectangular array of pixés

(@) Image Im is a matrix of pixels. (b) The image coordinate system is
In Matlab, it is accessed using the de ned with horizontal axis ©; and
row index i, the column indexj and vertical axis B,. The origin of the co-
color index k as >>Im(i,j,k) . The ordinate system is chosen to to assign
most top left pixel has row as well coordinates 11 to the most top left
as column index equal to 1. The red pixel. Notice that pixel, which is ac-
channel of the pixel with row index cessed as>Im(2,3,1) , is represented
2 and column index 3 is accessed as in the image coordinate system by the
>>Im(2,3,1) . vectord r 3;29.

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure 6.1, is an interesting ad advanced device.
We shall abstract from all physical and technical details ofimage formation and will

concentrate solely on its geometry. From the point of view ofgeometry, a perspective
camera projects point X from space into an image pointx by intersecting the line

connecting X with the projection center (red) and a planar image plane (green),
Figure 6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective caera. The model
will allow us to project space point X into image point x and to nd the ray pin
space along the which pointX has been projected.

x26 Camera coordinate system Figure 6.2 shows the geometry of the perspective
camera. Point X is projected along ray p from three-dimensional space to pointx
into two-dimensional image. Point X is obtained as the intersection of rayp with
planar image plane . Ray p is constructed by joining point X with the projection
center C. The plane through the projection center C, which is parallel to the image
plane is called theprincipal plane.

The image plane is equipped with an image coordinate systemx@5), po; ¢
where o is the origin and r bp; s is the basis of the image coordinate system.
Notice that the basis is shown as non-orthogonal. We want to develop a general
camera model, which will be applicable even in the situationwhen image coordinate
system is not rectangular. Pointx is represented by vectord in po; q

u

4 ub v e. d (6.1)

Vv

Three-dimensional space is equipped with avorld coordinate systempO; g where
O is the origin and r di; dy; dzsis a three-dimensional orthonormal basis. Point
X is represented by vectorX in pO; g The camera projection center is represented
by vector C in pO; g

Let us next de ne the camera coordinate system The system will be derived
from the image coordinate system to make the construction ofcoordinates of the
direction vector % of p extremely simple.

Camera coordinate systempC; g has the origin in the projection center C and
its basis r bp;ty;Mss is constructed by re-using the two basig, vectors of and
adding the third basic vector B3, which corresponds to vector%lo. We see that
vectors in  form a basis when pointC is not in , which is satis ed for every
meaningful perspective camera. Notice also that the cameraoordinate system is
three-dimensional.
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(a) (b)

Figure 6.1: Perspective camera (a) is geometrically a poinfred) and an image plane
(green) (b).

Image points o and x are in plane , which is in three-dimensional space, and
therefore we can consider them as points of that space too. Ra x is in pC; ¢
represented by vectorx, which is the direction vector of the projection ray p along
which point X has been projected intox. We see that vectorsd, %, Bz form a triangle
such that

X 4 B3 (6.2)
uty v 1t (6.3)
and therefore
u
H
X Xty by bas Y ' (6.4)
1

Notice that basis has been constructed in a very special way to facilitate con-
struction of % . We can useu, v directly since re-uses vectors of and the third
coordinate is always 1 by the construction offi;. Although we do not know exact
position of C w.r.t. the image plane, we know that it is not in the plane and hence
a meaningful camera coordinate system constructed this wagxists.

Notice next that the camera coordinate system is right-hanaed. This is because
when looking at a scene from a pointC through the image plane, the image is
constructed by intersecting image rays with the image plane which is in front and
hence the vectort; points towards the scene. We see that vectors of form a
right-handed system.

Let us mention that we have used deeper properties of linearral a ne spaces.
In particular, we were making use of the concept ofree vectorin the following way.
We look at vectorsB;, B, and 4 as on a free vectors. Therefore, coordinates of the
representative oftd beginning in o with respect to representatives ofty, B, beginning
in 0 equal the coordinates of the representative ofd beginning in C with respect
to representatives offy, B, beginning in C. Henceu, v reappear as the rst two
coordinates ofx.

For usual consumer cameras, vectdds is often much longer than vectorsh ; B, and
often not orthogonal to them. Therefore, basis is in general neither orthonormal
nor orthogonal! This has severe consequences since we camieasure angles and
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Ve

Figure 6.2: Coordinate systems of perspective camera.
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distances in the space using , unless we nd out what are the lengths of its vectors
and what are the angles between them.

x27 Perspective projection Point X has been projected along into x. Since %
is a direction vector of p, point X can be represented inpC; qby

% (6.5)

for some realnon-negativét . The value of corresponds to the scaled depth oKX ,
i.e. the distance of X from the plane passing throughC and generated by, 1, in
units equal to the distance ofC from . Value is not known since it \has been
lost" in the process of projectior? but will serve us to parametrize the projection
ray in order to get coordinates of all possible points in spae that could project into
X.

Let us now relate the coordinatest , which are measured in the image, to the
coordinates X , which are measured in the world coordinate system. First cosider
vectors X, C and %. They are coplanar and we see that there holds

X X C (6.6)

To pass to coordinates, we will use the camera coordinate sigm, in which we can
write

* X C (6.7)
H
1 C (6.8)

Next we shall pass to the coordinates w.r.t. basis on the right hand side of Equa-
tion 6.8 by introducing a matrix A which transforms coordinates of a general vector
¥ from basis to basis |, i.e.

y Ay (6.9)
We know from linear algebra (x3) that such a matrix exists. We write

; AX  Cq
1
H X
1 All C 1 (6.10)
| X
1 P 1 (6.11)
x p X (6.12)
1
with 3 4 image projection matrix
P A | AC (6.13)

"Here we choosex such that  is non-negative. Considering negative , as in [14], may be necessary
if it is not clear how has the image coordinate systems been de ned or how has x been chosen.
For instance, if % has been chosen to point along rayp away from X, would have to be negative.

2It can be recovered when a point X is observed by two cameras with di erent projection centers .
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x28 Projection equation Equation 6.11 describes the relationship between mea-
surementd in the image and measuremeniX' in space. It says thatX is projected
into ¢4 since there exists such that Equation 6.11 holds. Notice that multiple of
the vector on the left of Equation 6.11 is obtained by a linearmapping represented
by matrix P from vector X on the right.

When computing 4 from X , we actually eliminate using the last row of the
(matricidal) equation (6.11)

pi X
J X
H pj (6.14)
Pz X
p3 X
where we introduced rows ofpy, p2, p3 of Pand a4 1 vector X as follows
pi <
P p3 and X 1 (6.15)
p3

Notice that the projection equation is not linear. It is a rat ional function of the rst
order polynomials in elements ofX

x29 Projection ray Having an image pointd , we can construct its projection ray
p in space. The ray consists of all pointsY that can projectto o . In pC; g the
ray is emanating from the origin C. We parametrize it by real and express it in
pO; qby vector X

Y *

H
1
1

X A*x C (6.16)

Notice that X (6.16) can also be obtained for a given by solving the system of
linear equations (6.12) forX .

6.2 Computing image projection matrix from images of six
points

Let us now consider the task of nding the P from measurements. We shall consider
the situation when we can measure points in space as well aséfr projection in the
image. Consider a pair of such measurements;y;zs @' ru;vs’ . There holds

QX (6.17)

<
O
P N< X

for some real , 3 4 matrix Qand 4 1 coordinate vector X Notice that we intro-
duced new symbols and Qto emphasize that they are determined by Equation 6.17
up to a non-zero scale

Q P (6.18)
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We will see that this will have further consequences.
Introduce symbols for rows ofQ

qJ

1

Q a0 (6.19)
a3

and rewrite the above matrix equation as

u i X (6.20)
v o X (6.21)
o3 X (6.22)

Eliminate from the rst two equations using the third one

P93 Xqu qi X (6.23)
pO3 Xqv a3 X (6.24)

move all to the left hand side and reshape it usingc’y  yJ x

X q1 puX qas 0 (6.25)
X g2 pvX qos 0 (6.26)

Introduce vector of parameters (which are elements of)
J
g o o a (6.27)
and express the above two equations in matrix form

z 1 0O0O0O0 ux uy uz u
0 Oxy z 1 wvx vy vz Vv
M

o<

X
0 a 0
q 0 (6.28)
Every correspondencerx;y;zs @' ru;vs’ brings two rows into the matrix
M(6.28). We need therefore at least 6 correspondences in geakposition to obtain
11 linearly independent rows in Equation 6.28 to obtain a onedimensional space of
solutions.
If Qis a solution to Equation 6.28, then Qis also a solution and both determine
the same projection for any positive since

pQ@X WX px qgp Qgx (6.29)

Assuming P Qleads to { . We see that we can't recoverP but only
its non-zero multiple. Therefore, when solving Equation 628, we are looking for
one-dimensional subspace of 3 4 matrices ofrank 3. Such a subspace determines
one projection. Also note that the zero matrix does not represent any interesting
projection.
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Notice that when considering more correspondencedlbecomes

X1 Y1 71 1 O 0 0 O Ui1X1 uiya Ui1zp uq
X2 Y2 221 0 0 0 0 uxxp Uoyo UsZo us

Mq 0 0 0 0 X1 Y1 71 1 V1X1 ViY1 V121 V1 q 0
0 0 0 0 X2 Yo 22 1 VoX2 VYo VoZo Vo
(6.30)
Matrix Mcan be more concisely rewritten as
Xg_ 0‘] U1X‘}_
% 0wy
M (6.31)

o X wux

® X v

with 07 r 0;0;0;0s

x30 A more general procedure for computing Q We shall next develop and al-
ternative formulation for nding matrix Q Let us come back to Equation 6.17

4 QX (6.32)

Above, we have eliminated assumingts 1. Let us now present an alternative
procedure for eliminating , which works for any non-zerod r u;v;ws , i.e. even
whenw 0. The trick is to realize that

0 a4 p g o QXras QX (6.33)

This gives three equations for eacht @ X correspondence. However, only two of
them are linearly independet sincertds has rank two. Now, we are in the position
to employ Equation 2.92, which gives

ras QX 0 (6.34)
X Q rus 0’ (6.35)
vpl Q@ rus’ g v’ g (6.36)
pras b X qvpd g vpo’ g (6.37)

0O w v
w 0 ubX vpQq vpo? g (6.38)

% u 0

o0 wx vX

wX 00 uxX vpdq vpo g (6.39)

v X3 uXx 0’
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For more correspondences numbered by, we then get

OJ
OJ

W]_X‘j]_
W2>(%

V1 X‘i

V2X%

which if, for w
Equation 6.30.

W1X‘]]_ V1 X‘i

Wz)(% V2><%

0‘J U]_X‘j]_

0’ uzX  vpQq 0
uq X‘i 0‘]

sz% 0‘]

1, is equivalent to Equation 6.30. Notice that vpQ g
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7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and
image equipped with cartesian coordinate systems.

7.1 Camera pose

The projection formula 6.10 reveals that the perspective pojection depends on ma-
trix Aand vector C . The vector C represents the position of the camera projection
center w.r.t. the world coordinate system. Columns of matrix A are coordinates of
the basic vectors of in the basis

A & & o (7.1)

To recover the orientation of the camera, we will introduce the focal length f
as the distance of the camera projection centeC from its projection plane (in
the world units) and replace the product f Aby the product of two 3 3 matricesK
and R

fA KR (7.2)

We will see that this seemingly arti cial construction is in deed justi ed.

Rotation matrix R determines the orientation of the camera in space and alto-
gether with C de nes the camera pose The camera calibration matrix K does not
change when moving its camera in the space.

To obtain Kand R we de ne, Figure 7.1, the camera cartesian coordinate system
pC; q with center (again) in the camera projection center C and with basis
€ €; €S such that

€ K11y

© kKioB Kooty (7.3)

= kisthh kot 11
Parametersk; are determined to make the basis orthogonal. Notice that vector
€3 is orthogonal to  since it is orthogonal to €; €, which span , by construction.
Also notice that is (in general) not an orthonormal basis since the length ofts

vectors equals the distance ofC from , i.e. the focal lengthf in the world units.
Equations 7.3 de ne matrix K as

kit Kkiz Kis

K e & B 0 ka2 k23 (7.4)
0O O 1
By this construction, we have
% Ax  Kx (7.5)
% f}Rx (7.6)
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The world cartesian coordinate system has basic vectors ofrit length. The camera
cartesian coordinate systenpC; ghas basic vectors of length equal td . Therefore,

. ri{f
R ri{f (7.7)

dp dy ds ©
r3{f

for some 3 3 orthonormal matrix Rwith rows ri, r3, r3.
Consider that

1R (7.8)

A & @& o K d P

We can view the matricesflRand K as coordinate transformation matrices, which
transform a general vectory from the coordinates w.r.t. to andthento ,i.e.

1
y Ky KRy (7.9)

The basis is orthogonal and all basic vectors have the same length, whicis equal
to f. It follows from the orthogonality of the basis that & & f2, €& & O
ande & f?2and hence using Equation 7.3 leads, for a positivé, to

Kip oy} f 0
K2 koofn Tq ki2f? 0 (7.10)

ki1 k3, Yoo} p ki, kiqf 2 0
Let us solve Equations 7.10 fokky1, k12 and koo, The rst equation in (7.10) provides
ki1. Substituting the square of f from the rst equation into the second one and
dividing it by k2, gives the second equation of (7.11), which allows to computk;
from ky». To get koo, we construct the third equation of (7.11) as follows. We expess
ki1 from the rst equation of (7.10) and kj» from the second equation of (7.11)

and substitute them into the third equation of (7.10), which we then multiply by
|[o||%{f 2. Altogether, we get

ki Yoy} f 0
ki2}oi}? koo T 0 (7.11)
k2, pou}2 Ym}? p b tofq  f2)on)? 0

Looking at the third equation of (7.11) we see that

) f 2}-b1}2 f 2

K5, (7.12)
Jo}2ip}? py g Jp}2 ) D)2 cog= ;g
and since was constructed to makeks,, positive, we obtain
- f (7.13)

}B} sin= iy ; g
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Ve

Figure 7.1: Camera internal parameters are related to the gemetry of basis .
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The second equation of (7.10) now gives

BB | }Dp}cos= @it
22

k k 7.14
12 22 Yoy o) (7.14)
' cos= g (7.15)
Ybu} sin= ;10
Finally kij follows from (7.11)
kis f (7.16)

you}

Considering Figure 7.1 and Equation 7.3, we see that the codinates of the
vector tg, corresponding to theprincipal point, which is the perpendicular projection
of C onto , are in

K13 K
Ho kos : i.e.to k13 (7.17)
0 23

The horizontal pixel size corresponds to}t;}. Quantity ki1 can thus be under-
stood asf expressed in the horizontal image units. The angle betweenhe image
axesh; 1, is obtained from ky1{k12 tap = [@1; g The ratio of the lengths of the
image axes is determined by} 1} ki1 K11 kioa{koo.

Let us now return to Equation 6.11 and substitute there the above results to
arrive at the nal projection equation

X

x P 7 (7.18)
H
1 ApX  Cq (7.19)
H

f 1 f AKX Cq (7.20)
H

f 1 KRX Cq (7.21)
H
1 KRX Cq (7.22)
H X
1 KR1| C 1 (7.23)

We have introduced a new parameter f , which is the depth of X in the world
units. We conclude that
P KR #KRC (7.24)

Notice that the last row a} of Aprovidesf since

aj ki1 Ko Kiz ri 1 kiir]  Kkiord  Kkaard
A a% f* 0 k22 k23 r ‘% F k22|’ % k23r % (7.25)
a3 0O 0 1 rj rj
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and hence}al} #. Therefore}Pp3;1:3q} 7.
Equation 7.23 is very important in many practical situations when we do not
have access to physical dimensions of the camera but only toniages. Then, it is

possible to recover matrixKR | | C  but not image projection matrix P . This
is so important the we introduce the camera projection matrix

P KR KRC (7.26)
which is related to the image projection matrix as
P fP (7.27)

In this text, it would be more consistent to asociate subscmpt  with the camera
projection matrix but we will not do that since we want to use the nomenclature
of [14] here whenever possible.

Let us write K explicitely,

f f cos= iy ;hq u
Jor} Yoo} sin=pbribg 0
K f2 Vo (7.28)
0232} 12} cos’= i b2q
0 1
where g Up Vo 7 We see that we can neither recovef nor 101} from P.
Let us introduce image calibration matrix
1
K £ K (7.29)
to have
P K Rl K RC (7.30)
Writing image calibration matrix K explicitely,
1 cos= ;M q Ug
1 Yo} Ybu)sin =g f
K —K 0 f Vo (7.31)
f J02)2} )2 coP=phubeq
0 3
shows that it is possible to recover both
1 1
™} —andf —— 7.32
you} K1 K o (7.32)

from image calibration matrix.

There is an important di erence between K and Kregarding the representation
of internal camera calibration information. Image calibration matrix K , and also
image projevction matrix P , captures all calibration information about a perspective
image whereas camera calibration matrixK, and also camera projection matrix P,
captures only the calibration information that can be recovered by auto-calibration
from images as we will see later. When the focal length is knowin world units
or when pixel sizes are known in world units, it is more apropiate to use image
calibration K , or image projection matrix P , to represent full internal calibration
information.
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ds
o)
A a2
a
iR
Ve
(@) rbyttes  rdydhidis y Ay (b) re;eiesy iRy
y Ky
K3

(c) re;e®sy Ry,
rA;A,Mms y Ky

Figure 7.2: Coordinate systems gen%fr?ted by applyinglR KRRlandK 1.
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x31 Coordinate systems generated by applying KRto ¥ and R 'K 1 to ¥y We
have seen that the decomposition ofA to K and R introduced the camera cartesian
coordinate systempC; ¢ Figure 7.2(b)

¥ %Ry (7.33)

¥ Ky (7.34)

There are three more coordinate systems to consider when lamg at how ma-
trices R K, and their inversesR 1, K 1, apply to vectors ¥ and ¥ , Figure 7.2.

Let us rst consider coordinates of a vectory w.r.t. basis and apply successively
Rand K Coordinate vector Ry can be interpreted as coordinates ofy w.r.t. a new
basis r e;&;es Figure 7.2(c). Applying further Kto ¥ gives the coordinate vec-
tor Ky , which can be interpreted asy w.r.t. yet another new basis r A1;f2; R3S
We get from to by using { |

¥ Ry (7.35)
¥y Ky (7.36)
¥ f}I ¥ (7.37)

We have introduced two new coordinate systemgC; q r A;;A;Azsand pC; g
r e, &;&s
Next we consider coordinates of a vectosy w.r.t. basis and apply successively
K 1 and R 1. Coordinate vector K 1y givesy . Coordinate vector R 1y can be
interpreted as coordinates ofy w.r.t. a new basis r Ki;Kp;K3s Figure 7.2(d). To
get from ¥ to ¥ we need to employf |

y Ky (7.38)
y R1ly (7.39)
¥ fly (7.40)

We have thus introduced a new coordinate systenpO; ¢  r Ki;Kp;Kss

Figure 7.3 summarizes the relationship between coordinageof a vector and be-
tween bases associated with a perspective camera.

We can now see why we have chosen to denote the image projectimatrix as P
and the camera projection matrix asP. The image projection matrix provides the
ray direction vector x in basis while the camer aprojection matrix provides the
ray direction vector % in basis .

x32 Recovering camera pose from its projection matrix Let us next consider
that we have already computed the camera projection matrix

Q P KRI1| Cs (7.41)
consisting of a3 3 matrix Mand 3 1 vectorm

Qr Mns (7.42)
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Figure 7.3: Relationships between (a) coordinates in di eent bases. e.gy Ky
and (b) bases themselves, e.g. K 1, associated with a perspective
camera.

To recover camera pose fromQ we need to getC from mand to decomposeQinto
the product of Kin the form of (7.4) and Rsuch that R R | and|R 1. Consider
Min the form

m

M n (7.43)

m

Next we notice that the last row of K Rhas unit norm since it is equal to the last row of
rotation R Therefore, we need to divideMby the norm of its last row to get a matrix

decomposable into the product ofK R Moreover, it follows from the construction
of that k;1 § 0 andky, i 0. Thus, determinant [KR | K |R ki1 koo | O.
Therefore, we also need to multiplyMby the sign of its determinant to get a matrix

decomposable intoK R

: - n ki kiz kiz  ri
Sign |M M Sign |M nj 0 ko2 Kkos I’% (7.44)
3
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which provides the following set of equations

;%;}E koor3rs koarirs kos (7.45)
;3% r}rz Kis (7.46)
;%;g K2, K2, (7.47)
;i% r}z Kiokoz  Kizkes (7.48)
K K (7.49)

from which ki1, K12, K13, K22, ko3 can be easily computed considering that the most
of consumer digital cameras haveky; i 0, ko2 i 0,kizj 0, kezi O.
Having kj computed, we recoverR from Mas

sign [M
R K1 M (7.50)
e}
Camera projection center can be computed in two ways. Eithemwe get
c M tm (7.51)

or we obtain it by nding a basis c of the one-dimensional right null space of matrix
Q i.e. solving

Qc O (7.52)
and then computing
c 1
1 C—40 (7.53)

where c4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matricesP, R and K, and vector C which determine the pro-
jection from space to images. However, sinc& is introduced with Kzz 1, the
triplet ( K, R C ) does not contain all information about the camera, which can be
obtained by direct measurement of its physical componentsn a world coordinate
system equipped with a knownworld unit length 1. The missing element is the
scale ofP, which is equivalent to knowing the value of the focal lengthor the size of
pixels, i.e.f, }.} or }i3}, in 1w.

Knowing K and f allows to recover}ty} from Equations 7.3 as}ty}  f{kis.
Knowing Kand }t,}, on the other hand, givesf } T} ki;.

Therefore, full calibration of the camera is encoded in matix P, Equation 7.24,
or, e.g., in one of the following tuples: K, R C ), (KR C ,f), (K R C, Jin}) or
(KR C, 1}

We de ned the camera calibration matrix Kwith Kgz 1 because we often do not
have access to the world unit when working with images withot knowing anything
about the camera which was used to make them. Moreover, a nundy of important
tasks can be done without knowing the world unit.
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Figure 7.4: A calibrated camera pose can be computed from pjections of three
known points.

x33 Angle between projection rays Consider two image pointst; and 4, . The
direction vectors of the rays are in  given by

. 2

X1 1 ; nLY) 1

(7.54)
To obtain the angle between the direction vectors by evaluaing the scalar product
of the vectors, we need to pass to an orthogonal basis. The \okest" orthogonal
basis is . Hence

*] % x] K? K 1x,
Pa %} K 1x JK b}

Notice that we could use the orthogonal basis to measure angles instead of, e.g., the
closest orthonormal basis since the unknown scale factorf cancels in the following
formula

(7.55)

COS= pxy,; %X2q

%] % pFx? qix2 g X1 %2
Pallxe}  HxihBfxo}  }x Hxe )

We conclude that we do not need to knowf to measure angles between projection
rays.

(7.56)

COS= pXy; %2

7.3 Calibrated camera pose computation

We have seen how to nd (uncalibrated) perspective camera pge from projections
of known six points. In fact, we have recovered the calibratn of the camera. Next
we shall show that when the calibration is known, we are ablea@ nd the pose of
the camera from projections of three points. This is a very cssical problem which
has been known since [15].
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Figure 7.4 shows a camera with centeC, which projects three points X ;, X, and
X 3, represented by vectorsX'; , X, and X3 in pO; ¢ into image points represented
by %1 , % and %3 .

x34 Classical formulation of the calibrated camera pose computat ion We in-
troduce distances between pairs of points as

dio || X2 Xq|l; dos || X3 X} dsr || X1 X3 (7.57)

Since we see three di erent points, we know that all distance are positive.
Points X1, X, and X3 are in pC; qrepresented by vectors

_ x% ' K 1‘Xi .

il I B |

1,2;3 (7.58)

with ; representing the distance fromC to X;. Distances ; are positive since
otherwise we could not see the points.

x35 Computing distances to the camera center Calibrated perspective camera
measures angles between projection rays
x KJ K 1x

Cj  COS=pxi;%q IK 1% K 1x }; i 1,23 j pi 1lgmod3 1 (7.59)

Hence we have all quantities ;, cos= px;; ¥; gand d; , which we need to construct

a set of equations using the rule of cosineg? 77 2 jcos=pxi;xqie.
di, I 0§ 21 20 (7.60)
d%3 % % 2 2 30Cp3 (7.61)
d31 2 2 23 103 (7.62)

with cj  Ccos=pxi; % g

We have three quadratic equations in three variables. We sHasolve this system
by manipulating the three equations to generate one equatin in one variable, solving
it and then substituting back to get the remaining two variab les.

x36 A classical solution Let us rst get two equations in two variables. Let us
generate new equations by multiplying the left hand side of {.60) and (7.62) by the
right hand side of (7.61) and right hand side of (7.60) and (762) by the left hand
side of (7.61)

d%ng

d%lpg

2 2 3C3q d35p 2

2 2 3C3q d35p 3

2 1 2012q (7.63)
2 3 1C31q (7.64)

WN WN
PN NN

We could have made three di erent choices which equation to ge twice but since all
dj 0, and hence all sides of the equations are nonzero, all the aices are equally
valid.
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We have now two equations with three variables but since the guations are
homogeneous, we will be able to reduce the number of varialdeto two by dividing
equations by (e.g.) 2 (which is non-zero) to get

d; % T3 2 12 13023 ds 1 % 2 1o (7.65)

d & % 2 12 130 d5; 1 %3 2 13cm (7.66)
with 1o —i and 13 —i’ Notice that we have a simpler situation than before
with only two quadratic equations in two variables. Let us proceed further towards
one equation in one variable.

We rearrange the terms to get a polynomials in 13 on the left and the rest on
the right

d%z %3 p 2d§2 12 €230 13 d53 1 52 2 12C12 d%z %2
pd3;  d53q 23 p 2d53ca 205 12C23q 13 d3; d5; % (7.67)

to get two quadratic equations

mi %3 P1 13 t (7.68)
mp f3 P2 13 07}
in 13 with
m1 d2, (7.69)
P 202, 1203 (7.70)
Ch 3 1§ 2 pce dhp 5 (7.71)
P2 2 dg3 C31 2 d%l 12 C23 (7.73)
o)) d; d5 % (7.74)

We have \hidden" the variable 1, in the new coe cients. We can now look upon
Equations 7.68 as on a linear system

my pP1 %3 h (775)

mz P2 13 07}

The matrix of the system (7.75) either is or is not singular.

x37 Case A Ifitis not singular, we can solve the system by Cramer's rulg5, 6, 4]

2 M1 P h P12
7.76
B my p Gk P2 ( )

mi Pz m; Gu
7.77
13 mz p2 m; G ( )

giving

Zpmip, mMapiq wp2 P (7.78)
13PM1P2 M2 piq mie M2Qu (7.79)

53



T. Pajdla. Elements of Geometry for Computer Vision 2016-59 (pajdla@cvut.cz )

Eliminating 13 (by squaring the second equation, multiplying the rst one by
mqip2 M2 p1, Which is non-zero, and comparing the left hand sides) yield

Mipz M2piG@iPz PG PMiG M2 e (7.80)
Substituting Formulas 7.69-7.74 into Equation 7.80 yields
0 Ul @i @i a1 & (7.81)
with coe cients
a dds di,dl; djad3y 2di,d3;d3 2d3;d3;  2di,d3 (7.82)
4d, Gy gs
as 4d},d35031C3  4d2,d55c12 402,003 d55031  4d3zcindy, (7.83)

4d3sci; Adf,dizcarddicos BT, Chyd3adE cir 8331205
4df, 3 €12 d3;

az 8d5;ch,d5;  4d5;d3; 2dy;d3  2di,dy;  4didics (7.84)
4d33cf, 4di,cad3; 2d3; 8, casddzcacin
4df, Gadzdsy  4dyaCi,dy;  4di,d35c5; 80, d55Cand3; Cascin

ag 4 dg3 C12 d‘311 4 d%z dg3 cio 4 dg3 Cio 4 d%z Co3 dg3 C31 (7.85)
87,5y B cio 40T, d35ca1 03 s 40T, 351205,
4d7,d35c31C3 8dS5¢1205,

ag 2d9;d3, 2df,dy,d3;  did3;  diydiy  4df,dS5ch (7.86)
dls 2df,d3

We will use eigenvalue computation to nd a numerical solution to Equation 7.81.

Construct the following companion matrix

0 0O 24—?
100 &
C 010 gi (7.87)
0 01 24—5
as
and observe that
as a ai ao
| C 4 =3 =2 = = 7.88
| 12 | 2 o, 12 5, 12 g, 12 g (7.88)

Therefore, a numerical approximation of 1, can be obtained by computing, e.g.,
>>eig(C) in Matlab. Complex solutions are artifacts of the method and should
not be further considered. For every real solution, we can ten substitute back to
Equation 7.79 to obtain the corresponding

M1 M2G
_— 7.89
13 mip2 MmMzpP1 ( )
d2,pds; d3; 20 pds; diqmifspl %, 2 1pcioq di, £q
2d2,pd3;c31  d3 co3 120 2pd3;  d330d%,c03 12

To get 1, 2 and 3, we consider Equation 7.60, which can be rearranged as

di, fpl L 2 12010 (7.90)

54



T. Pajdla. Elements of Geometry for Computer Vision 2016-59 (pajdla@cvut.cz )

and hence yields positive

d
L a . 12 (7.91)
1 12 2 12C12
2 1 12 (7.92)
3 1 13 (7.93)

x38 Case B Letus now look at what happens when the matrix of the system (775)
is singular. Then, after substituting m, m», p1 and p, from Equations 7.69{7.74,
we have

Mipz M2 0 (7.94)
2d3,d3;p 12C23 C:q O (7.95)
12C23 Ca1 (7.96)

We used the fact that neitherd;» 0 nordy,s; O.

x39 Case B1 When cyz 0, then we get

o1

7.97
2 (7.97)
Substituting it to Equations 7.65 we get
C C
d, pcilqz 25 22 30 By 1 p 2 2%(&2 (7.98)
C23 C23 C23 C23
df, & G5 I3 2C31Ch3 13 d33 G5 G5 2Ca1CsCi  (7.99)

and after some more manipulation obtain a quadratic equatim

i, 50 23 P 2d,C53cmq 13 dfpch;  di3chs  d53ch;  2033C12C3Ca: O
(7.100)
in 13. We get ;, 2 and 3 from Equations 7.91, 7.92, 7.93.

x40 Case B2 When c3 0, then it follows from Equation 7.96 that c3; 0 as
well. Returning back to equations 7.65, 7.66 provides

& % I ds 1§ 2 120 (7.101)
& 5 ds 1 % (7.102)

Expressing 13 from Equation 7.102 gives
3 d39 73 dfy T dbs (7.103)
x41 Case B2.1 When d3; d3,;, then we can write

, W L d
3 2 @ (7.104)
23 31
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to substitute it into Equation 7.101

2 2 @ §, di 2
di, dys 1

12 d2 d2 %2 2 12 C12 (7. 105)
23 31

which we further manipulate to get a quadratic equation in 12
di, db; di; § 2copd; d5q 12 df df, diz O (7.106)

We get 1, 2 and 3 from Equations 7.91, 7.92, 7.93.

x42 Case B2.2 Finally, when d3; d3;, then we get from Equation 7.103

n 1 (7.107)
and from Equation 7.101
2 dZs
13 SR 2cq 1 (7.108)
di,
and hence the positive
d
o3
13 dT FQ 2 C12Q 1 (7109)
12

We get 1, 2 and 3 from Equations 7.91, 7.92, 7.93.

x43 Selecting solutions The above process of; computation often delivers several
solutions. It is important to notice that some of them may not satisfy the original
Equations 7.62{7.60. For instance, we always obtain solutins for the case A as well
as for some of the cases B but only one of the cases is actuallglid. Hence, we need
to select only the solutions that satisfy Equations 7.62{760 and are meaningful, i.e.
are real and positive.

x44 A modern (more elegant) solution  The classical solution is perfectly valid
but it was quite tedious to derive it. Let us now present another, somewhat more
elegant, solution, which exploits some of more recent restd of algebraic geome-
try [16, 17].

Let us consider Equations 7.60, 7.61, 7.62 and proceed to Egtions 7.65, 7.66,
but, this time, using all three pairs to get three equations n 12, 13

f1 d%z %2 fg 2 12 13C23 d%g 1 fz 2 12C12 0 (7.110)
fa d%l %2 %3 2 12 13C23 d%g 1 f3 2 13C31 0 (7.111)
fa d%z 1 fs 2 13C31 dgl 1 %2 2 12C12 0 (7.112)

It is known [16, 17] that solutions to a set ofk algebraic equations
fipke;iio;xpq O, 0 1k (7.113)

in n variables, which have a ninte number of solutions, can alwgs be obtained
by deriving a polynomial gax,q O in the last variable by the following procedure.
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If the system, does not have any solution, the procedure wilgenerate polynomial
O, 1, i.e. a non-zero constant, leading to the contradiction 1 0.

The procedure is as follows. First generate new equations bgnultiplying all f;
by all possible monomials up to degreem

xl;:::;xn;x%;xlxz;:::;xn;xl;xlxz;:::;x,T (7.114)

fi O::i:fn O xqf1 O::iisxnfn O x%fl 0; xax2f1  O;:iii;xp'fn O

(7.115)

The degreem needs to be chosen such that the next step yields the desiresult.

It is always possible to choose suchm but it may sometimes be found only by

using more and more monomials until the Gaussian eliminatia of the matrix of

coe cients, which combine monomials, does not produce a rowcorresponding to an

equation in x, only. Let us demonstrate this process by solving our problem

We use the following four monomials of maximal degree two

12, 13, 12 13; %2 (7.116)

Notice that we did not include the second degree monomial %, since it turns out that
equations generated by that monomial are not necessary. Webtain 15 3 4 3
equations

3
12
f2 §313
f3 272
12f1 12 13
12
12f2 13,
12f3 31313
l3fl lz 2
13fo Mo B 12 Mm 0 (7.117)
13 12
13f3 s
12 13f1 7
12 13f> 2
12 13f3 ¥
P11 12
2 f 12
1212
2 f 1
123
with
0 0 0 0 mi 0 0 mz 0 0 0 mg mg
0 0 0 0 ms 0 0 mg m 10 0 0 m3 0
0 0 0 0 mi 0 0 0 mi1 0 0 msa m 12
0 0 0 mi 0 0 mz 0 0 0 my mg ma
0 0 0 msg 0 0 mg m g 0 0 mgz 0 my
0 0 0 m 0 0 0 mig 0 0 mg3 m 2 meg
0 maq 0 my 0 0 mg mg mo 0 0 0 0
M 0 ms 0 mo mig 0 ms 0 mo 0 0 0 0
0 maq 0 0 mip 0 m3 mip meg 0 0 0 0
m 0 my 0 0 mgy mg mo 0 0 0 0 0
msg 0 mg m 1o 0 m3 0 mo 0 0 0 0 0
m 1 0 0 mip 0 m3 mio meg 0 0 0 0 0
0 0 m1 0 0 my 0 0 0 mg mg m2 0
0 0 ms 0 0 mg m 1o 0 0 m3 0 ma 0
0 0 m1 0 0 0 mip 0 0 m3 mi2 me 0
(7.118)
and
2 2 2 2 2
mi d12 Mg d12 d23 my 2 d12 Co3 M1o 2 d23 C31
2 2 2 2 2
mo d23 Mg d23 d31 Mg 2 d23 C12 maiq 2 d12 C31
2 2 2 2 2
(7.119)
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Matrix Mcontains coe cients and vector mcontains the monomials.

Notice in Equation 7.117 that the last ve monomials contain only on 1. We
have deliberately ordered monomials to achieve this. Nextwe do Gaussian elimi-
nation (with pivoting) of matrix Mand get a new matrix M.

One can verify that that the 10th row of M has the rst nine elements equal to
zero. Therefore

Mo.m 0 (7.120)

is a polynomial only in 1. In fact, it is exactly a non-zero multiple of polynomials
obtained in cases A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian eliminatiawth pivoting, which
avoids dividing by elements close to zero. The resulting pghomial may be of degree
four (case A) but will have lower degrees in other cases.

x45 Computing camera orientation and camera center Having quantities 1,
2, 3, we shall compute camera projection centeiC and camera rotation R from
Equation 7.24.
The three points X 1, X, and X 3 are represented in the world coordinate system
pO; qby vectors X; , X, and X3 . With known 1, 2, 3, we can represent them
also in the camera (orthonormal) coordinate systempC; qby vectors

X% in * .
i i i ;
[ || [1f i || 1% ||

Yi i ¥ i 1,23 (7.121)

Coordinate vectors X; are related to coordinate vectorsY; as follows

Y1 RpX; Cq (7.122)
Y2 RpX, Cq (7.123)
Ys RpX; Cq (7.124)

There are three vector equations inR3, which is nine scalar equations, and 12 un-
knowns in Rand C . Additional seven equations are provided by the fact thatRis
an orthonormal matrix, i.e. RR | and |R 1.

To compute R we shall next eliminate C from Equations 7.122{7.124

Y, W RpX, Xi1q (7.125)
Y3 Y1 RpX'3 X1Q (7.126)

and use the property (Equation 2.47 in Section 2.3)

J

R lpx Yq RpX  Yq (7.127)

of the vector product of any two vectors X, Y in R3 and an orthonormal matrix R
to write

pY2 Y19 pYs Yi(q RpX, X1 RpXz  X1q (7.128)

R pXo2 X149 pX3 Xi1q (7.129)

58



T. Pajdla. Elements of Geometry for Computer Vision 2016-59 (pajdla@cvut.cz )

which provides a triplet of independent vectors expressedni the two bases

Z> Y> Y1 ; 22 XZ X'1
Zz Y3 Y1, Zz X3 X
Z1 Zo Z3; Z]_ 22 Z‘3

Rotation Rcan then be recovered from
Z1 Zp Z3 R Z, Z, Z3

as
R Z1 Z, Z3 Z1 Z, Z3

With known Rwe getC as

cC X PRY; i 1,23
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8 Homography

We shall next investigate the relationship between projectons of 3D points by two
perspective cameras into two images. In general, the proj¢ions depend on the
shape of the scene and camera poses and this relationship mhag very di cult to
describe. However, there are several very important situagbns when the relationship
can be given in a form of a special image transform, théomography

Let us rst consider the situation when two (di erent) camer asshare a common
projection center. That means, the cameras may have di erent coordinate systms,
di erent orientations but must have the same projection center. This situation often
arises when photographing with a camera rotating around itsprojection center, e.g.,
when taking images for constructing a panorama capturing wile view angle. We
shall see that the corresponding projections will be relatd by a homography.

Next, we shall look at a di erent situation when the cameras ae unconstrained,
i.e. they can be anywhere in the space and with completely dierent poses and
coordinate systems, but 3D points are forced to lie in a sing plane not containing
the camera centers. This situation arises, e.g., when photgraphing a at screen, a
poster or a facade from di erent viewpoints. Again, the corresponding projections
of the points in the plane (but not the projections of the points out of the plane)
will be related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical pragction centersC ~ CY,
which project point X from space to their respective image planes and % Fig-
ure 8.1. We introduce image coordinate systemgmo; q with r oy, Bps in
and po% gwith 1 rBhblsin ! and use them to consfuct the correspond-
ing camera coorﬂ{rate systemgC; q with r ;0 élos and pC; g with
Lrohohknt Cols

Point X is projected to image points along the projection rays, whib are inter-
sected with and % The projection of X in is represented by vectors r u;vs’ .
The projection of X in 1lis represented by vectora!, r ufvis .

Vectors % and x*are two direction vectors of the same ray and hencare linearly
dependent Since they are both non-zero forX C, their linear dependence is
equivalent with

D PR: x! % (8.1)

To arrive at the relationship between the available coordirates of vectorsx and
%%, we shall now pass from vectors to their coordinates. There dlds

x 1 % (8.2)
x4 X 1 (8.3)
x 4 Hx (8.4)
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Figure 8.1: Cameras share a projections center. Image prajgons are related by a
homography.

true for some 3 3 real matrix Hwith rank H 3, which transforms coordinates of
a vector from basis to basis 1

Considering the choices of camera coordinate systems, weesthat

X "1 Hx (8.5)
ut u
vi H v (8.6)
1 1

We have obtained an interesting relationship. The above eqations tell us that
the image projections are related by a transformation, whit depends only on image

projections, and to nd it, we do not need to know actual posiitons of points X in
space. This is the consequence of having CX

x46 Relating homography matrix to camera projection matrix Matrix His re-

lated to camera projection matrices. Consider two camera pojections given by
Equation 6.12

x P X; KR| KRC X; KRpX Cq (8.7
1,1 1 X 1 X 1R
% P 1 KR KRC 1 K'R'pk Cq (8.8)
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o o
X

X

>

Figure 8.2: All 3D points are in a single plane. Coordinatesn the plane and in the
image are related by a homography.

for all X PRS2, which gives

R K ®x X C (8.9)
IR KL Dyl X C (8.10)
and therefore
IRY KL Dyl R K 1x (8.11)
—17( 1 KIRR K 1x (8.12)

for all corresponding pairs of vectorsx , %';. Let us now compare Equation 8.12
with Equation 8.5, i.e. with
x 1 Hx (8.13)

We see that
H KRRK?! when — (8.14)

This is particularly useful when K K! since then

H KRRK!? (8.15)
which implies that His similar [4] to a rotation, i.e.

KHK RF (8.16)

and hence has one eigenvalue equal to one, the other two eigatues are complex
conjugate with modulae [2] equal to one.
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x47 Homographies conjugated to rotations Let us study homographiesH con-
jugated to rotations SRR as in Equation 8.16. We shall rst check that such
homographies are characterized by the following condition

eigply p1;x iy;x iyqgfor some realx;y such that x> y? 1 (8.17)

Eigenvalues of a rotation S can be written aspl;x iy;x iyqfor some realx, y
such that x> y? 1. Consider

H 1] KYH 1K KMHK K IK |S 1] (8.18)

an therefore eigenvalues oHare equal to eigenvalues o8&.
Next, assume that eigenvalues oHare equal to eigenvalues of a rotatiors. Then
we can write
SU U and HV V (8.19)

for a matrix  with the eignvalues on the diagonal and matricedJ resp.V, of eigen-
vectors of S, resp. H Now, if y 0, the eigenvalues are pairwise distinct. Then it
is possible [3, 4] to construct matricedJ, V, from the respective eigenvectors of unit
length such that they are regular, and we can write

(8.20)

V HV U isu (8.21)
uviHvu? S (8.22)
Q'K 'HKQ s (8.23)
K THK Qsqo! (8.24)

We introduced an upper triangular matrix Kand a rotation Qsuch that VU?! KQ
which is always possible by the Gramm-Schmid orthogonaliztion process [4]. Matrix
Q S Q! is arotation and thus His similar to a rotation by an upper triangular matrix.

If y 0 then the eigenvalues are eitheml; 1;1qor pl; 1; 1g In the former
case,S | and henceK 'HK | impliesH I, and henceHis a rotation. In the
latter case, Sis a rotation by 180 and His thus similar to a rotation.

Let us now characterize the homographies conjugated to a rettion algebraicly.
The characteristic polynomial of His as follows

ppag | I Hp gp x yigp Xx yiq (8.25)
Sp2x 192 p2x 19 1 (8.26)
% traceH 2 pHu H2 Hsg | H (8.27)

sincex? y? 1. Symbols H; denote minors after removing rowi and columnj.

We are thus getting two algebraic constraints onH

traceH Hj; H» Hz; and |[H 1 (8.28)

which are polynomials of degre two and three in elements df| respectively, which
is a representative of the homography. Clearly, any-nonzer multiple of H satisfy-
ing Equation 8.28 also represents the same homography and ¢nefore rank three
matrices constrained by the rst equation in Equation 8.28 are permissible rep-
resentatives of homographies between images obtained by atating camera with
constant internal calibration.

Finally, when K K! |,then H S i.e. a rotation, is a representative of such
homograpy and hence all non-zero multiples of rotations ar@ermissible representa-
tives of homographies between images obtained by a rotatingalibrated camera.
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8.2 Homography between images of a plane

8.2.1 Image of a plane

Let study the relationship between the coordinates of 3D paits X, which all lie in
a plane , and their projections into an image, Figure 8.2. Coordinats of pointsX
are measured in a coordinate systenpO; qwith  r di;d; dzs Vectors dy; @2 span
plane and therefore
X
X y (8.29)
0

for some realx, v.

The points X are projected by a perspective camera with projection matrk Pinto
image coordinatess  r u;vs’, w.r.t. an image coordinate systempo; qwith
;s The corresponding camera coordinate system igC; qwith p By, ;q

To nd the relationship between the coordinates of X and d , we project points
X by Pinto projections x as

X
u X
X y
v X P Pr P2 P3 Pa PL P2 Pa Y Hy
1 0
1 1 1

(8.30)
where p1; p2; p3; pa are the columns ofP.

Notice that 3 1 matrix ¥ r x;y; 1S represents point X jg the coordinate
system pC; q with the basis p di;dy; 02 where the dy & is the vector
assigned to the pair of pointspC; Og If point C is not in , then vectors dz; db; 0y
are independent and hence form a basis. Therefore, matrix

H p1 p2 pa (8.31)

represents a change of coordinates and has rank 3.

When we think about pair pC; gas about a camera that shares its projection
center with camera pC; g and imagine that points X are all (accidentally) in the
projection plane , we see that we have recovered the relationship between canas
sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scae are in a single plane.
Then, as we shall see, the projections of the 3D points, whiclare in the plane, are
again related by a homography even when the camera centersatocated at di erent
points in the space.

Let us consider a plane and two perspective cameras with (in general di erent)
projection centersC and C% which do not lie in  and the corresponding projection
matrices P and P

P P1 P2 P3 Pa (8.32)
P! pi P} p3 pi (8.33)
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Figure 8.3: All 3D points are in a single plane. Two images oftie points are related
by a homography.

where p PR3 and pilPR3, i 1;::::4 stand for the columns ofP, PL
We establish coordinate systemg0; q pC; ¢ pC% 1gin the standard way, see
Figure 8.3 to get

X
X y (8.34)
0
for some realx, vy.
Point X P s projected to the cameras as
x X
X
x P 1 P1 P2 P3 P4 )é Pr P2 Pa Y Gy
1
1
X
X y X
b PC T phopropdopd oy piopipi y Gk
1
1
for some ; 1P RztOu and two new coordinate systemgiC; qwith . dy; O2; 640

where the d; &b and pCL Igwith 1 p dy;dy; &lg where thed} COL
We see that there are two di erent vectors, ¥ and ¥, which appear on the right
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hand side of the equations in di erent bases, i.e. ay and ¥,

* Gy (8.35)
%1, Gyh (8.36)

with G r pi;p2;pasand G r pi;ppis
Coordinate systemspC; gand pC% Igare so special that

y yh (8.37)
for all points in . Consider that
. X
y pX &q X As Xpﬁlidz;d4q d4p51;dz;d4q )]/_ (8.38)
Y X
1 1 1
¥ pX COq: X1 @;: prn;dz;djq d4pdl;dz;d}q ){ (8.39)
and therefore, whenC R and C!R , we get
%1, 3Gt x (8.40)
which we can write as
x 1 Hx (8.41)

for ZandH GGU Clearly, HPR?® 3 rankH 3.

We could also interpret this situation such that two images d a plane are related
by the homography, which is a combination of the homographis relating the plane
to its two images.

8.2.3 Homography between images of a plane by cameras with th e
same center

In the derivation of Equation 8.41, we have never asked for agers C, C1be di erent.
Indeed, Equation 8.40 is perfetly valid even whenC Cl At the same time,
however, there also holds Equation 8.14 true, and thus we hayv

H gt (8.42)
1
Pi P2 Pi Pr P2 Pa (8.43)
H KIRR' K 1 (8.44)
1
Pi P2 P35 P1 P2 P3 (8.45)
Let us see now purely algebraic argument why the above holdsrie. Since the
cameras have the same projection cente€ Ci C C3 J , we can write
ps  KRC and p; KRC (8.46)
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and hence
H GGt (8.47)
1
Pi P2 Pi P1 P2 Ps (8.48)
1

KIRM i C i c PRKk!? (8.49)
KRR K 1 (8.50)

with i 100" and | 0 1 0”. We see that there always holds
p} p} p} P P2 pa - pE PPl opLop2ops (8.51)

true for two cameras with the same projection center irrespetively of where actually
the points in space are since we would get the same images fooipts obtained by
intersecting the rays with the plane z 0 in the coordinate systempO; ¢

8.2.4 Homographies induced by a plane in the scene

Let us look at Equation 8.40 in more detail. We can write

1

—x1 GG 1x p! p} pl pr P2 pa % (8.52)
10 10 !
Al 01 ¢ct 01 C Alx (8.53)
0 0 00
10 xt 10 x '
At 01 y' 01 y Alx (8.54)
00 z2 00 =z

We have introduced new symbols to represent vectors

J

c Xy z and C! x!

yl 2zt (8.55)
and have written the homography as a product of four matrices Let us next compute

the product of the two middle matrices

1 1 0 ' xafz
—xh A 0 1 pt yafz A x (8.56)
00 24z

We see that the middle matrix on the right looks almost as the dentity plus some-
thing. Let's express it in that way

! xofz
ol oya{z A x (8.57)

1
—x% Al 0
0 1pzt zq{z

[l o]
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We can now further rearrange expressions as follows

1 xt  xafz
—x1, Al | ! yagz 0 0 1 Alx (8.58)
e zafz
Al | pct qu 0 01 A (8.59)
C m3q
AlAl | pcC clqi 001A' x (8.60)
C 3q

We denoted the third coordinate of C by C @3q
Vector %@q 0 0 1 A !hasageometrical interpretation. Consider the equa-

tion of plane in coordinate systempO; q

0010 X; 0 (8.61)

wherer0 0 1S’ is the normal vector of plane containing point X written w.r.t.
pO; g i.e.f’ r 00 1s where is the dual basis to basis , Chapter 2.

Next, consider the camera coordinate systenpC; qwith Y ApX C g We
see that

1
o010 A Yl ¢ 0 (8.62)
L Y
00 1A' Cpy 0 (8.63)

provides the unit normal «1 of plane in the dual basis to basis
A’ 00 1A!? (8.64)

We have obtained the following formula for the homography béween points x ,
%1, in the two images, which is generated by the plane

1
1
—x%, A'Al | pc! Cqg—n «x (8.65)
C 3

wheref is the normal vector of in , C p3qis the distance of from the camera
center C, and , !are the distances of points from the respective principal gines
in multiples of the respective focal lengths.

x48 One fully calibrated camera We will now consider Equation 8.65 for the
situation when the rst camera is fully calibrated, i.e.

PP I|] ¢ and P, Alal Al AlCt (8.66)

68



T. Pajdla. Elements of Geometry for Computer Vision 2016-59 (pajdla@cvut.cz )

Then, bases ; and become identical and Equation 8.65 can be written as

J
%L, Al | pct Cq% X At Dl
(8.67)
where t 1 are the coordinates of the vector fromC to C'in 1 Notice that we
have used the fact that is the standard basis and thereforen transforms by the
same matrix asX when chaning a basis. To stress that, we us& instead of A .
Symbol d stands for the (non-zero) distance of the plane from the center of the
rst camera, and a non-zero 1 Y .

x49 Two internally calibrated cameras Let us next have a look at the situation
whenK K! 1. Matrices A Al become rotations, which we stress by writing

PP R| RC and P, R! R!C! (8.68)

with orthonormal matrices R RL Equation 8.65 now becomes

t
A x RRY —'a) x  (8.69)

%, RR! | pct ¢
1 p qcpgq g

A question arises here. Does every rank three real 3 3 matrix represent a homog-
raphy between two calibrated images induced by a plane in thescene? We see from
the following that the answer is yes.

Let us consider a real 3 3 marix Hand its SVD decomposition [4, p. 411]

a
H U b V (8.70)
C

Now, if [H i O, then we may ask fora¥ b¥ c¥ Oand|U | M 1. Otherwise,
we replacecby ctohavea¥ bj 0j cand|U | V| 1. Next, when any two of
a;b;care equal, e.ga b, then we can write the decomposition as follows

a b
H U b voou b % (8.71)
C C
1 0
U b 1 0 100 V (8.72)
1 c b
0
buUV U 0 10 0V (8.73)
c b

Hence, we need to consider only the situation whem,; b; care pairwise distinct. We
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can write

H  busvy uuvV QR tp’

ac 2 0 P2 2 aZ P
bpa cq bpa cq
S ?70?7 1 0
PP 2 a2 P 0 ac P
, bm cq bpa cq
‘a? P
ac
u , 0
P2
2 ac 2
v a2 BP0 B &2

Notice that bis non-zero since it must be greater thanc else we would haveb c,
which we excluded. Moreover,a c j O since they are either both positive or
lal i | ¢|] and a is positive. Hence all the formulas above are meaningful. Itg easy
to verify that ’S | and|§ 1 and thereforeR USV is a rotation.

Consider a rank three real 3 3 matrix H We see that it must be possible to
write a non-zero multiple of HasS v 1f’ for some rotation S and vectorsv PR3
and unit 7 PR3. Hence, the following equations

H v’ > H vaiR® I H via' L1 a8 1 (874)

have to be satis ed for some real and some vectorsy 1 P R® and unit 7 P RS,
This is a set of eight algebraic equations in seven variablesClearly, the constraint
A A lcanbereplacedby O 0 1 A 1 to enforce that the plane normal
faces the rst camera. To get polynomial equations, we multply the left equation
by 2 1{ 2 and the middle equation in Equation 8.74 by 2 1{ 3 to get

2|

H o8 > H 4.8 COH R 300 1A  1(875)

with 41 ¥ 1. Interestingly, this system hast 12 solutions in general. Even more
interestingly, there are only four real solutions but with only two oposite values

1The following Maple [18] run demontrates the structure of so lutions to the system of equa-
tions 8.75.

Linear algebra shortcuts
>with(ListTools):with(LinearAlgebra):with(Groebner):
>E:=LinearAlgebra[ldentityMatrix](3):
>det:=LinearAlgebra[Determinant]:
>trn:=LinearAlgebra[Transpose]:
>M2L:=proc(M) convert(convert(M,Vector),list); end proc:
>X:=proc(u) <<0|-u[3]|u[2]>,<u[3]|0]-u[1]>,<-u[2]|u[1]|0>> end procC:
>c2R:=c->simplify((E-X  _(c)).MatrixInverse(E+X  _(c))):
All solutions to a triangular Groebner Basis
>TriangularGBSolve:=proc(Eq,So)
local s, so, Si;
if nops(Eq)>0 then
Si:=[J;
if nops(So0)=0 then
Si:=[solve([Eq[1]D];
else
for so in So do
s:=[solve(subs(so,[Eq[1]])];
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for . Taking into account that point scales ; have to be positive, we get only
two solutions with only one positive and two corresponding solutions. Hence, the
relative orientation of two calibrated cameras can be in a geeric situation obtained
from four coplanar points up to two solutions.

Si:=[op(Si),op(map(f->f union so,s))];

end do;

end if;
TriangularGBSolve(Eq[2..],Si);

else
So;

end if

end proc:

Simulate a calibrated homography

>R0:=c2R(RandomVector(3,generator=-10..10)):

>t0:=RandomVector(3,generator=-10..10):

>n0:=<-1,-2,-2>/3:

>s0:=3:

>H0:=s0*(R0O+t0.trn(n0));
25 30

: B B b

HO: ?’sli 31174
31 31 31

Formulas for H and R
>n:=<nl,n2,n3>:
>t:=<11,12,t3>:
>R:=HO-t.trn(n):
>H:=R+t.trn(n):
Equations
>eq:=convert(convert(expand([op(M2L(trn(R).R-s 2+g)),det(R)-s  ¥,n3+1]),set),list);
eq: r n3 1;3151{31 p 50{31q t1 n1 ni1® t1? p 600{31g n1 t2 ni1® t2? p 168{31q nl
t3 n1? t3% s%;9407%31 p 60{31g t1 n2 n2®> t1® p 107831q n2 t2 n2? t2% p 28{(31q n2
t3 n2? t32 s2:1081K31 p 25831q t1 n3 n3? t1%2 p 1120{31q n3 t2 n3? t2? p 140{31q
t3 n3 n3? t3? s?2;515431 p 25{(31q t1 n2 p 30{31q t1 n1 nl n2 t1% p 300{31q n2
t2 p 53931g nl1 t2 n2 nil t2%> p 84{31g n2 t3 p 1431g nl t3 n2 nl t3?;550531
@5{31q t1 n3p 12%31q t1 n1 nl n3 t1% p 300{31q n3 t2 p 560{31q n1 t2 n3 nl t2?
p84{31q t3 n3 p 70{31q n1 t3 n3 nil t3%;9830{31 p 30{31q t1 n3 p 12931q t1 n2 n2
n3 t1? p 53%31q n3 t2 p 560{31q n2 t2 n2 n3 t2? p 14{31q t3 n3 p 70{31q n2 t3 n2
n3 t3%; p 725{(31q t3 n3 p 840{31q t1 n2 p 126{31g nl t2 p 1470{31q t1 nl p 170%31q
nl t3 p 406(31q n2 t2 p 1700{31q n2 t3 p 70{31q n3 t2 p 159631q t1 n3 701431 s°s

The number of solutions
>G:=Groebner[Basis](eq,plex(op([t1,t2,t3,n1,n2,n3,s]))):
>|d:=Polynomialldeals[Polynomialldeal]([op(G)]):

>print("Hilbert dimension =",Polynomialldeals[HilbertDimension](Id));
>print("The number of solutions =",Polynomialldeals[NumberOfSolutions](Id));
"Hilbert dimension =", 0

"The number of solutions =", 12

Solve it

>S:=TriangularGBSolve(G,[]):

and substite the solutions to get s, R, n, t and select the real solutions only
>sRnt:=map(f->evalf(subs(f,[s,R/s,n,1/s])),S):
>select(f->foldl("and’,true,op(MTM][isreal]~(f))),sRnt);
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8.3 Spherical image

Consider a camera rotating around a centerC and collecting n images all around
such that every ray from C is captured in some image. We can choose one camera,
e.g. the rst one, and relate all other cameras to it as

P %, Hx,; i L::5;n (8.76)

Since all vectorsx were captured, there inevitably will appear a vector with coordi-
nates

%X, y (8.77)

Such vector does not represent any point in the a ne image plane ; of the rst
camera because it does not have the third coordinate equal tone. To be able to
represent rays in all directions, we have to introducespherical image which is the
set of all unit vectors in R® (also called omnidirectional image). We sometimes use
only a subset of the sphere, typically a cylinder, to capturepanoramic image In
such a case, we can remap pixels onto such cylinder and then warp the cylinder
into a plane. Notice however, that in such a representation straight lines in space
do not project to straight lines in images.

All equations we have developed so far work with minor modi ations also for
vectors with last zero coordinate. We will come back to it later when studying
projective planewhich is somewhere between the a ne image plane and full sphecal
image.

8.4 Homography { summary

Let us summarize the ndings related to homography to see whee it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let ru;vs’ and rutvs be co-
ordinates of the projections of 3D points into two images by tvo perspective
cameras with identical projection centers;

0:610  0:220 0761 0:545 0:626
3.0 0:152  0:910  0:385 0:867 5:640
0:778  0:350 0522 1:000 0:230
0:602  0:344 0720 0:500 0:667
3.0 0:559 0:462  0:688 1:000 5:330
0:570  0:817 0860 1:000 0:667
0:737 0421  0:529 0:545 0:858
3.0 0:517  0:153  0:842 0:867 6:860
0:435 0894 0105 1:000 0:858
0:636 0411  0:654 0:500 0:734
3.0 0:765 0:809  0:583 1:000 6:600
0:768 0421  0:483 1:000 0:270
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2. Image of a plane . Let ru;vs’ be coordinates of 3D points all in one plane
, W.r.t. a coordinate system in and ru% vls’ coordinates of their projections
by a perspective cameras with projection center not in the phne ;

3. Two images of a plane Let ru;vs’ and ru%v's’ be coordinates of the pro-
jections of 3D points all in one plane , into two images by two perspective
cameras with projection centers not in ;

then there holds

ut u
DHPR? 3 rankH 3; sothat @u;vs’ @' rutvs D PR: vi H v
wi w

(8.78)

true wherew w! 1 for perspective images and may be general for spherical
images.

In all three cases, coordinates of points are related by a hoography.

We have used linear algebra to derive the relationship betwen the coordinates
of image points in the above form. The homography can be alsoepresented in a
di erent way.

To see that, we shall eliminate as follows

ut u hir hiz his u
Vl H v h21 h22 h23 \' (879)
1 1 ha1 hs2 hss 1

hllu h12V h13 (880)
\% 1 h21 u h22V h23 (881)
1 h31U h32V h33 (882)
hisu  hipv h
1 11 12 13
u 8.83
hsiu  hzgav hss (8.83)
¥l hotu  haav  hgs (8.84)

hatu  hzgav  hss
We see that mappingh obtained as

1 hiau hipv hig
u h u hatu hs2v has
\Y; \Y hagu hypv hpg
ha1u hzpv hss

(8.85)

is a mapping from a subset ofR? to R? but it is not linear! It contains fractions of
ane functions.

Although we can understand the homography as a linear mappig in certain
sense, it is not a linear mapping in the standard sense.

Matrix H represents a linear mapping fromR® to R3. However, we are not
interested in the individual vectors in R® but in complete one-dimensional subspaces,
which correspond to the direction vectors representing prgection rays.
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Notice that can accommodate for any change of the length ofu v 1 J
(except for making it zero) since it can be split into ; 'and used as

u u
Loyt H v (8.86)
1 1
x* H x (8.87)

We can now think about x and x* as about one-dimensional subspaces &>
generated byx and %% The \equation" 2

x!  Hx (8.88)
then actually means
Dx Px and Dx*Px!such that x! Hx (8.89)

Thus the homography can be seen as a mapping between one-dingonal subspaces
of R3. While R3 itself is a linear space, the set of its one-dimensional supaces, in
the way we use them,is not a linear space and therefore the homography is not a
linear mapping although it is represented by a matrix H which is used to multiply
vectors.

It is also important to notice the true relationship between homographies and
3 3 real matrices. Any 3 3 real matrix of rank 3 represents a homography but
many di erent matrices represent the same homography. Let's see why.

Let us considerHPR?® 2 and GPR® 3suchthat H Gforsome 0. We can
write

Lyt Hx (8.90)
Lyt Hx (8.91)
Iyt Gx (8.92)
Iyt Gx (8.93)

We see thatHand Grepresent the same homography Indeed, two matrices related
by a non-zero multiple represent the same homography. Hengét suggests itself to
associate homographies with one-dimensional subspaces®f 3 matrices.

8.5 Constraint on the homographies of induced by two
planes

Let us now consider the situation when there are two planes ; and » in the scene,
Figure 8.4. Then, the planes induce two homographiedd, H between the two
images. We can write, Equation 8.65,

Lt A'Al | pcl! Cq ! A, % Hx
C.pBq
1

1,1 1p 1 1 J

SX 1 A*A Il pC- Cq f X H % (8.94)
C,mq °

2Monograph [14] very often uses \=" exactly in this sense of equal ity of one-dimensional subspaces.
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x,; O

Figure 8.4: There are two planes in the scene; and » inducing two homographies
H, H between the two images.

which means that thare are matricesH;, H such that for every point x in image
one and the corresponding pointx!; in image two there are real i, 2 such that
Equaitons 8.94 hold true.

We are interested in nding the constraints on arbitrary rep resentatives of the
two homographies, i.e. matricesG 1H and G o H for some real 1; ,. We
see that there follows from Equations 8.94 that

1G AIAL | pct cC quFBqﬁ‘i Ap t ¥ q
»G A'AL | pct cC qcleBqﬂ% Ap twq (8.95)
and thus
G'G fld tv)glp t+q (8.96)
which can be rewritten using
1 r Vg
I | W (8.97)
as
6la 2 | 1:;r o v g (8.98)
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Now, we see that there is a two-dimensional space of eigentecs of G,'G for
¥, ¥, since we are getting

1 _2 - _2
Glgw 1| T pv, ¥ qw oW (8.99)

foreveryw suchthatpw, v dw O,
Vectors w represent projections of the intersection linel of planes 1, 2 into
the rstimage. Line | is in both planes and therefore maps identically byH; and H.

8.6 Computing homography from image matches

Let us turn to the computational aspect of the homography rektionship between
images. Our goal is to nd the homography mapping from a few pas of corre-
sponding image points. We shall see that this problem leadsat solving a system of
linear equations.

8.6.1 General perspective cameras

Our goal is to nd matrix Hin Equation 8.78 without assuming any knowledge about
cameras. Let us introduce symbols for rows of homographiA

h{ y
H nh and for the vector x v (8.100)

1

h
and rewrite the above matrix Equation 8.78 as

utl hi x (8.101)
vt hJ x (8.102)
h3 x (8.103)

Eliminate from the rst two equations using the third one

ph3 xqu? hi x (8.104)
ph3 xqvt hJ x (8.105)
(8.106)

move all to the left hand side and reshape it usingc’y — yJ x

x> hy p ulx?ghs 0 (8.107)
x> hy p v ghs 0 (8.108)
(8.109)
Introduce notation
h h o h n (8.110)
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and express the above two equations in a matrix form

uv 11000 uu uv
0 0O0uv1 viu v v1ho (8.111)

Every correspondenceu;vs 9’ ruk vl brings two rows to a matrix

0 00 ulu uv
uv 1 viu v vt 0 (8.112)

M h 0 (8.113)

If G H 0 then both G Hrepresent the same homography. We are therefore
looking for one-dimensional subspaces of 33 matrices of rank 3. Each such subspace
determines one homography. Also note that the zero matrix,0, does not represent
an interesting mapping.

We need therefore at least 4 correspondences in a general fims to obtain rank
8 matrix M By a general position we mean that the matrix Mmust have rank 8 to
provide a single one-dimensional subspace of its solutiong his happens when no 3
out of the 4 points are on the same line.

Notice that Mcan be written in the form

up vi 1 0 0 0 wuluy ulvy ui
Uz v2 1 0 0 0 wudupy udvy u}
M : 8.114
0 0 Ou vi 1 wviug vivyz v} ( )
1 viup  viv, v

0 0 O ux v

with indices naming di erent points, which can be rewritten more concisely as
J ol 1yd
X3 O ui Xy
J ol 1yd
X5 O us X5
3y 1, (8.115)
0" xi Vi Xy

Joyd 1yJ
0" x5 V5 X5

with 07 r 0;0;0s

x50 A more general procedure for computing H Let us next give a more general
procedure for computing H which will be analogical to the general procedure for
computing Qin x30.

We start from Equation 8.78

xt Hx (8.116)
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with x r u;v;ws’ and x! r utviwl and follow the derivation in x30 to get

x1 Hx (8.117)
x! Hx 0 (8.118)
XH xt? o’ (8.119)
vl H x7q  vlq (8.120)
pxt b x)qup g vl g (8.121)
0 w! vt
wt 0 ul bx! vpq vl g (8.122)
vi o ul o0
o0 wix! v
wx? 00 uXx! vpq vpo? g (8.123)
vix? uix’ o’

For more correspondences numbered bi, we then get

0’ wixi  vix{
0’ WaX3  VaX3
1,9 J 1.
WXy 0 ujxy
wix3 0’ uixd vpq 0 (8.124)
vix]  uix] 0’
VX3 uixd 0’

which is, for w 1, equivalent to Equation 6.30. Notice that voH'q  h from
Equation 8.113.

8.6.2 Calibrated cameras

Let us now look at some situations when cameras have constaittternal calibration
or are fully calibrated.

x51 Homography induced by rotating a calibrated camera  This is a simple situ-
ation. Let us construct a rotation matrix representing a homography from one and
half matching image points. Consider two distinct image ponts x, y in the rstim-
age that are mapped on pointsx’, y'in the second image as x¥[|x3| y¥||y]|

R x{lIx|l v{llyll by a rotation R We can decomposeRinto a composition of two
simple rotations R R R, such that

0 0 00
x{IxA yHliyill R 0 11 ;0 Re x{lIxIl y{llyll  (8.125)
1 1
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with : suchthat 2 2 2 P 1 Write
R fi riz rig’ and R raz1 rao ros (8.126)
to see that
ri sep{IlxI - ydllylla{lliedlIxIl y{llyllall (8.127)
riz px{lIxll  roafllpdllxl]  raall (8.128)
rs ri ri (8.129)
1 sopAHIDAL  y Xy Hladlieclx4 y Xy Hlall (8.130)
r22 pxHIIxYl raa{llx¥lIxYl raaqll (8.131)
I3 ro1 a2 (8.132)
where the signss;;s; Pt 1; 1uare chosen to make, e.g., i 0, i 0. Notice

that this procedure setsReven when vectors x{||x|| ¥{||y|| can't be exactly trans-
formed to vectors x¥||xY| y¥|lyY| by a rotation, which is often the case when
they are estimated form noisy measurements. Nevertheles#,the error a ecting the

vectors is small,Rso obtained is still close to the true rotation between the caneras.

x52 Homography induced by rotating a camera with constant internal calib ration
Consider a point x xy 1 7 in the rst image that is mapped on a point

x!  x! y! 17 in the second image by x! K RKxwith rotaton Rand a
camera calibration matrix K
We have seen, Equation 8.28, that the following two equatios have to be satis ed

0 traceH p Hi1  Ho2 Hssq
hi1  hze  hzz hizhze hizhsz hizhzr highsy haohszs hazhso

1 | H (8.133)
hithaohss  hizhazhss  hioharhss hiohozhar hizharhsz hizhoohag

with hj,i;j  1;2;3 denoting the elements oH It is easy to check in the Maple [18]
computer algebra systend that the Hilbert dimension [16] of the system 8.133 is equal

3Maple [18] script analyzing the computation of a homography i nduced by a rotating camera with

constant internal parameters. We note that some of the funct ions used here have been de ned
in previous Maple examples.

Setup the equations

>H:=<<h11]h12]h13>,<h21|h22|h23>,<h31]|h32]|h33>>:

>Heq:=[det(H)-1,simplify(det(H-E),[det(H)=1])];

>HilbertDimension(Heq);

7

Simulate projections

>K:=<<10]1|5>,<0]|12|6>,<0|0]|1>>:

>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:
>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:
>X:=<<0|1|1]|0>,<0|0|1|1>,<0]0|0]|0>,<1|1|1]|1>>:
>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):
>H0:=P2][..,[1,2,4]].inv(P1][..,[1,2,4]]):

Check eigenvalues of HO
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to seven. Therefore, we will need seven independent lineajeations to reduce the
Hilbert dimension to zero and thus obtain a nite number of solutions ??. We
see that we can use four points to add eight independent lingaequations and so
obtain a single solution. However, if point measurements inimages were a ected
by measurement noise, using all eight equations would alméssurely produce an

e:=Eigenvalues(HO0),abs~(trn(e));
ooy -1 01 1
H B
85
Add two independent linear equations per a corresponding pair of image points
eq:=[op(Heq), op(Flatten(map(i->M2L((X  _(x2[..,i]).H.x1][..,iD[1..2]),[1,2,3,4])))];
hll h22 h33 hll h22 hll h33 h12 h21 h13 h31 h22 h33 h23 h32
hll h22 h33 hll h23 I"|32 h12 h21 h33 h12 h23 h31 h13 h21 h32 h13 h22 hSl 1

22 54252 74 182484 2466
Zha *%E5ha T he Fe-ha hs T3 hs

22 24068 74 80956 1094
% hu har £ ho hs2  hiz 33 has

565 565 113
eq: 22 hyy %f; ha 18hz 2% hzp  hy 28 hag
: 52 8

7 hll 7 h3]_ 18 h12 288h32 h13 16h33
Zhy HZhy 2hy 2 hy hp B0 hg
23 16261 126 89082 707
Shu Se-ha S h S5=hx his 5 hss
53 130698 666 1642356 2466
s N2 s Na G5 he e N2 has S5 has
53 31853 666 400266 601
M e N 55 he 265 Na2 Nz S5 has

Solve it

>Basis(eq,plex(op(indets(H))));

r3825hy;  3319450h;,  43;3825hiz  7337,85hy;  36;5hy;  4;85hy; 522 3825h3;
38; 450h32 11; 3825h33 43765

We are getting one solution but we have used eight linear equations although seven
linear equations should be sufficient to get a finite number of solutions. Let us

use seven linear equations only.

>Basis(eq[1..nops(eq)-1],plex(op(indets(H)))):

We see that we are getting a degree six polynomial in hss

>B[1];

13849055217197262075245188304003906%5 48893326067440027991845410251400000¢9
3004780464450070944458597429463562509 629633105359848825739716206658893760139
10987167373056885738478050325645632(39 2317602484909868472484830506943970099120
176966810281848547933751731455841501184

and six solutions for H
>S:=TriangularGBSolve(B,[]):

>dg:=Digits: eDigits:=10:

>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);

>Digits:=dg:
3319 43 7337 27989 11116 46056 51941 174177 213038
3825 450 3825 113075 68877 11543 3866 144175 5423
36 4{5 522 55317 29162 62207 40431 36210 710577
85 85 ’ 33688 29109 6739 ! 1690 11627 12973
38 11 4376 4819 3479 9932 57914 6959 43100
3825 450 3825 93927 158824 7517 70849 87760 19401
40441 20953 69409 91103 63957 ; 19612 16799 ; 137213 23642 |
1236 8193 809 21006 17956 29061 28267 6863 1355
132430 26276 1327299 178138 43433 | 114375 27263 | 78611 135829 |
2457 4897 11857 ! 16263 4596 43187 11331 2342 4558
72875 5270 94659 15541 5675 ; 3263 4388 i 24252 122693 i
39356 22337 37021 42367 17974 533530 462787 8569 46803
91103 63957 ; 19612 16799 ; 137213 23642
21006 17956 29061 28267 6863 1355
178138 43433 | 114375 27263 | 78611 135829 |
16263 4596 43187 11331 2342 4558
15541 5675 3263 4388 24252 122693
42367 17974 533530 462787 8569 46803
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inconsistent system. Therefore, it make sense to use only &n linear equations,
which give six solutions and produce six homographies congated to a rotation
for any four (or more precisely, 3 %) points in two images. If the error in the
measuerement is small, one of the so obtained is close to the actual homography
between the images.

x53 Homography induced by a plane observed by a moving calibrated camera
Let us rst consider a point x x vy 1 ’in the rst image that is mapped on a
point xX  x* y! 1 7 in the second image by x* p R un’gx with rotation R
unit real vector n and a vector u.

Paragraph x49 shows how to decompose a homoghraphy, represented by be-
tween two calibrated images induced by a plane in the sceneto R t {C andn .
Let us now show how to estimate a decomposablel directly from image data. We
will parameterize rotations using the Cayley parameterizdion []

¢ ¢35 2 1  2pycy c3q 2pcics Coq
¢ ¢ &1 3 31 ¢ ¢ ¢ 1
. 2pc1 G2 C3q c% c% c% 1 2pc2 C3 clq
RRcy; C2; G5 ¢ ¢ ¢ 1 51 ci 02 c3 1 (8.134)
2pcic3 C2q 2pco c3 c1q c1 02 03 1
¢ g g1 & 331 ¢ ¢ &1

for c1;cp;c3 P R, which excludes rotations by 180, since two perspective cameras
can't look the opposite directions when seeing a non-degerae piece of a plane in
space. Similarly, we will assume thatR 3 1 since the rst (as well as the second)
camera has to look at the plane. We are free to orient the plan@ormal towards the
rst camera to remove unnecessary ambiguity and to reduce tle number of solutions
to one half.

When the data is exact, we see that we are getting 11 solutionsnigeneral, out
of which three are reaf. The ideal generated by the equations from four co-planar
points is radical but it is not prime [16]. We see that the corresponding variety is

Notice that the first solution is equal to the simulated homography, while
the othter solutions (shown only up to 10 digits precision to avoid too long
expressions) are " artifacts" of the formulation.

4Maple [18] script analyzing the computation of a homography b etween two cali-
brated images induced by a plane in a scene observed by the camras. We note
that some of the functions used here have been dened in previous Maple exam-
ples.

Constraints on a homography induced by a plane between calibrated images
>n:=<nl,n2,n3>:

>t:=<t1,t2,t3>:

>R:=c2R(<c1,c2,c3>):

>H:=R+t.trn(n);

c1? ¢22 ¢32 1 clc2 c3 clc3 c2
c12 ¢22 ¢32 1 tinl 2c12 c22 ¢32 1 tin2 2 cl2 ¢22 ¢32 1 tin3

. clc2 c3 c1? ¢22 ¢3? 1 c2c3 cl
H: 2 grprar 1 12nl T 7T z1  t2n2 Zj—z—ﬁz 22 @27 1 t2n3
clc3 c2 c2c3 cl cl® c2° c¢3° 1
Zj—mﬁ t3nl Zﬁ—mﬁ t3n2 c12 ¢c2?7 ¢32 1 t3n3

Simulate projections

>R1:=c2R(<1,2,3>): Cl:=<<2,1,3>>: P1:=<R1]-R1.C1>:
>R2:=c2R(<3,4,5>): C2:=<<2,3,1>>: P2:=<R2|-R2.C2>:
>H0:=P2][..,[1,2,4]].inv(P1[..,[1,2,4]]);
>X:=<<0|10|10]|0>,<0]|0]|10]10>,<0|0|0|0 >,<1|1|1|1>>:
>x1:=a2h(h2a(P1.X)):
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a union of three irreducible variaties, each consisting of aingle real point, and a
component consisting of eight non-real points.

When the data are a ected by measurement noise, however, theame formulation
produces 12 solutions, out of which, now, four are real. Thedeal generated by
corrupted measurements is now prime, primary and maximal [6].

>x2:=a2h(h2a(P2.X)):
Setup equations
>eq:=[n3+1,op(humer(normal(Flatten(
map(i->M2L((X _(x2[..,i]).H.x1[..,iH[1..2]),[1,2,3,4])
M):
Solve them
>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):
and analyze the ideal
>Bi:=Polynomialldeals[Polynomialldeal]([op(B)]):
print("Hilbert dimension =",Polynomialldeals[HilbertDimension](Bi));
print("The number of solutions =",Polynomialldeals[NumberOfSolutions](Bi));
print("ls radical =",Polynomialldeals[IsRadical](Bi));
print("ls prime =",Polynomialldeals[IsPrime](Bi));
print("Is primary =",Polynomialldeals[IsPrimary](Bi));
print("ls maximal =",Polynomialldeals[IsMaximal](Bi));
"Hilbert dimension =", 0
"The number of solutions =", 11
"Is radical =", true
"Is prime =", false
"Is primary =", false
"Is maximal =", false
We see that the ideal can be obtained as an intersection of four prime ideals
>Bd:=Polynomialldeals[PrimeDecomposition](Bi):
BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):
map(b->[HilbertDimension(b),
Polynomialldeals[NumberOfSolutions](Polynomialldeals[Polynomialldeal](b))] ,
BB);
([0, 1], [0, 1], [0, 1], [0, 8]]

which consists of single and eight points, respectively. There are 11 solutions
for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));
rt3tt:1310:13%:13%;137;13%; 13°; 134;13%;13%;13; 1s

Let us get solutions to all variables

>S:=TriangularGBSolve(B,[]): nops(S);

11

We see that we are also getting 11 solutions. Let's select the real ones and
substitute back to H, R, n, t
>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,1)]),S):
>sH:=select(f->MTM][isreal](f[1]),sH): nops(sH);

3

to see that we are left with only three solutions. Let's compare it to the

simulation.
>[HO,R0,-n0/n0[3],-t0*nO[3]];
247 104 4

104 145 40 28 2 8
I R 1 Vo o gt
765 765 153 765 765 153 153

>convert(sH,rational);

247 104 4 145 40 28 2 8
e 3 4 Vi B G o) gl
P o® A R v 1 2
765 765 153 765 765 153 153
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We also see that for small noise, one of the four solutions issasonably close to
the true simulated solution.

247 104 4 37 48 16 28 20
,om ¥ SR ) B
2 ® O A« ] =] &
765 765 153 9 153 153 153

27 104 4 2249 3068 16 28 52
255 255 17 3825 3825 153 25 153
316 113 2 596 403 52 29 50

765 765 153 765 765 153 25 153
32 16 167 832 1076 143 1 8
765 765 153 3825 3825 153 51

We see that the first solution equals the sumulation. Let's next add noise of
about 0.1% of the measurement range.
>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:
>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:
>eq:=[n3+1,0p(numer(normal(Flatten(map(i->M2L((X  _(x2[..,i]).H.x1[..,iD[1..2]),[1,2,3,.4]))))]:
and analyze the ideal
>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):
Bi:=Polynomialldeals[Polynomialldeal]([op(B)]):
print("Hilbert dimension =",Polynomialldeals[HilbertDimension](Bi));
print("The number of solutions =",Polynomialldeals|[NumberOfSolutions](Bi));
print("ls radical =",Polynomialldeals[IsRadical](Bi));
print("ls prime =",Polynomialldeals[IsPrime](Bi));
print("ls primary =",Polynomialldeals[IsPrimary](Bi));
print("ls maximal =",Polynomialldeals[IsMaximal](Bi));
"Hilbert dimension =", 0
"The number of solutions =", 12
"Is radical =", true
"Is prime =", true
"Is primary =", true
"Is maximal =", true
We see that the ideal is prime and consists of a single component of 12 points
>Bd:=Polynomialldeals[PrimeDecomposition](Bi):
BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):
map(b->[HilbertDimension(b),
Polynomialldeals[NumberOfSolutions](Polynomialldeals[Polynomialldeal](b))],
BB);
([0, 12]]
There are 12 solutions for t3
>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));
rt3%2: 131 13%0:13%:t3%:137:13%: 3% 13%:13%:13%:t3: 1s
>S:=TriangularGBSolve(B,[]): nops(S); map(f->simplify(eval(B,f)),S);
12
out of which four are real
>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,1)]),S):
>sH:=select(f->MTM][isreal](f[1]),sH): nops(sH);
4
Let's compare them to the simulation.
>[evalf[3](HO0),evalf[3](R0),evalf[3](-n0/n0[3]),evalf[3](-t0*nO[3])];

0:969 (0408 0235 0:948 0261 0183 0:400 0:052
0:413 0148 0:013 0:303 0916 0261 2:800 0:274
0:042 0099 1090 0:099 0:303 (948 1:000 0:144

>map(f->print(evalf[3](f)),sH):
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0:969 0410 0:237 0:833 (0543 0105 0:398 0:342
0:413  0:147 0014 0:543 0767 0342 2:790 0:328
0:042  0:099  1:090 0:105 0342 0:934 1:000 0:158
0:969 0:410 0:237 0:820 0:563  0:104 1:120 0:133
0:413  0:147 0014 0:358 0646  0:674 1:150 0:688
0:042  0:099  1:090 0:446 0516  0:731 1:000 0:361
0:969 0410 0237 0:948 0261 0183 0:398 0:053
0:413 0147 0:014 0:303 0916 0262 2:790 0:276
0:042 0099 1090 0:099 0:304 (0948 1:000 0:145
0:969 0410 0237 0:568 0803  0:105 1:120 0:341
0:413 0147 0:014 0:780 0525  0:342 1:150 0:328
0:042 0099 1090 0:219  0:282 0934 1:000 0:158

We see that the third solution corresponds to the simulation.
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9 Projective plane

9.1 Motivation { perspective projection in a ne space

x54 Geometric model of perspective projection in a ne space  The perspective
projection of a point X by a camera with projection center C can be obtained
geometrically in 3D a ne space by taking all lines passing through the points C and
X and nding the intersections with the (a ne) image plane

Three di erent situations may arise, Figure 9.1.

1. If X C, then there is an in nite number of lines passing throughC X,
which intersect in all its points, and therefore the projection of X contains
the whole plane .

2. If point Y C lies in the plane , which is parallel to and passing through
C, then the line passing troughC and Y (which there is exactly one)does not
intersect the projection plane , and therefore, the projection of X is empty.

3. If X does not lie in the plane , then there is exactly one line passing through
points C and X and this line intersects the projection plane in exactly one
point x. Hence the projection of X contains exactly one pointx.

Let us compare this a ne geometrical model of the perspective projection with the
algebraic model of the perspective projection, which we hay developed before.

x55 Algebraic model of perspective projection in ane space  The projection
x of X by a perspective camera with image projection matrix

P Al AC (9.1)

% Al AC X; (9.2)
for some PR.
We shall analyze the three situations, which arise with the @ometrical model of

a ne projection.

1. If X C,then
X Al AC Cl 0 (9.3)
i.e. we obtain the zero vector. What does it say aboutx ? Clearly, x can be
completely arbitrary (even the zero vector) when we set 0. Alternatively,
we can choose 0 and thus enforcex 0. Both choices are possible. We
shall use the latter one since we will see that it better ts the other cases. We

willuse x 0 to (somewhat strangely) represent all non-zero vectors irR3.
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/DX

Figure 9.1: Geometric model of perspective projection in a ne space. PointC has
in nite (i.e. not unique) projection, point X has exactly one projection
x. Point Y has no projection.

2. If point Y C lies in the plane , then

x Al AC Yi ApY  Cq 9.4)

which, taking into account rank A 3, implies
Alx vy cC (9.5)

Matrix A 1 transforms x into x and therefore its columns

Al B b B (9.6)
are the basic vectors of the camera coordinate system in the avld basis
Hence

W t By x Y C (9.7)

which means that vectorY C can be written as a linear combination of the
camera coordinate system basic vectors

pr gqbB, rb Y C (9.8)

with p;q;r PR. Now, sinceY lies in a plane parallel to , vectorY C can
be written as a linear combination of the rst two basic vectors of the camera
coordinate system, and thereforer 0, i.e.

p
X q (9.9)
0

We also see that 0 since otherwise we would get the zero vector on the
left but that would correspond to Y  C, which we have excluded.
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Table 9.1: Comparison of the geometrical and algebraic pra@ction models in a ne

space.
Point position Projection
Geometrical model in a. space\ Algebraic model in a. space
u
X R one point of 0, % v ,(x 0
1
u
C XP no point 0, % AV 0
0
X C all points of 0,x 0

3. If X does not lie in the plane , then the coecient r P R in the linear

combination
A lx X C (9.10)
P g  r B X C (9.11)
is non-zero. In that case we can write
p
q Apk  Cq (9.12)
r
p
r
prq (rj ApX  Cq (9.13)
1
u
Y ApX  Cq (9.14)
1
As in the case two, 0 since otherwise we would get the zero vector on the

left and that would correspond to X  C, which we have excluded.
The comparison of the two models of perspective projectionTable 9.1 shows that
1. We can always assume 0.

2. The \projection" of C is represented by the zero vector while the projections
of all other points are represented by non-zero vectors.

3. The algebraic projection model can represent projectios of all points in the
ane space.

4. The geometrical projection model is less capable than thalgebraic projection
model since it can't model the projection of points in di erent from C.
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A3 A3 A3 A3
A2 A2 A2 / P A2
.. / T

(@ (b) (c) (d) (e)

Figure 9.2: (a) Two dimensional a ne plane A? can be (b) embedded in the three
dimensional a ne space A3. There is a point O PA3, O RA2. (c) For
each pointX in A?, there is exactly one line throughX and O in A3. (d)
There is exactly one pencil of lines throughO, which do not correspond
to any point in A2, in A3. (e) Each line in the pencil corresponds to a
set of parallel lines with the same direction inA2.

The previous analysis clearly shows that the a ne geometrial model of the per-
spective projection is somewhat de cient. It can't model projections of some points
in the space. This de ciency leads to inventing a generalizeé model of the geometry
around us in order to model the perspective projection comtely by intersections
of geometrical entities. This generalization of the a ne space is called theprojective
space

Let us look at the most important projective space, which is the projective plane
We shall rst develop a concrete projective plane by improving the ane plane
exactly as much as necessary to achieve what we want, i.e. toebable to distinguish
projections of all points in the space. In fact, this will be extremely easy since we
have already done all the work, and we only need to \upgrade" he notion of point,
line, intersection and join (i.e. making the line from two distinct points). Later, we
shall observe that such an \upgrade” will also lead to an inteesting simpli cation
and generalization of the principles of geometry.

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

Areal a ne plane AZ?can be imagined as a subset of a real a ne spacé?, Figure 9.2.
There is a point O in A3, which is not in A2. For each pointX in A?, there is exactly
one line in A3, which passes throughX and O. Now, there is a set of lines inA3,
which pass through O but do not pass through any point of A2. This is the set of
lines parallel to A2 that pass through O. These lines Il the plane of A3, which is
parallel to A2 and which contains the point O.

The set of all lines in A3 passing through O will be called the real projective
plane and denoted asP?. The lines of A2 passing throughO will be called the points
of the real projective plane!

1The previous de nition can be given without referring to any a ne plane. We can take a point
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A3 A?

et

Figure 9.3: Algebraic model of the real projective plane.

The lines in A3 passing through O, which intersect A2, are in one-to-one cor-
respondence with points in the a ne plane A? and hence will be called thea ne
points of the projective plané of the projective plane. The set of lines inA3 passing
through O, which do not intersect A2, are the \additional" points of the projective
plane and will be called theideal points of the projective plané.*

To each ideal point P (i.e. a line | of A3 through O parallel to A?), there corre-
sponds exactly one set of parallel lines ilA? which are parallel to | in A3. Di erent
sets of parallel lines inA? are distinguished by their direction. In this sense, ideal
points correspond to directions inA? and can also be understood as points where
parallel lines of A2 intersect. Notice that the parallel lines of A2 do not intersect in
AZ2, becauseP is not in A2, but they intersect in the real projective plane obtained
as the extension ofAZ.

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model inA® to an algebraic model inR3
which allows us to do computations.

Let us choose a coordinate systemO;By;t; gin A2 with the origin in O, with
basic vectorsb, ; B, from the coordinate systempo; b tqin A2and with s ' pO; 0g,
Figure 9.3.

Lines in A3, which pass throughO, correspond to one-dimensional subspaces of

O in A® and the set of all lines in A® passing through O and call it a projective plane. In the
above example, however, we have obtained the projective plare as an extension of a given a ne
plane A2. In such a case, we can distinguish two sets of points { a ne po ints and ideal points
{'in the projective plane.

2Vlastn body in Czech. Finite points in [14].

3Nevlastn body in Czech. Points at in nity in [14].

“Notice that words \point" and \line" actually need to be acco mpanied by adjectives for the above
to make sense beacause lines oA® become points of A2. Also notice that this division of the
points of the projective plane makes sense only when we startwith a given a ne plane or when
we start with a projective plane and select one plane of lines in A® as the set of ideal points.
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B3

R3

Figure 9.4: Points of the real projective plane are represeéed by one-dimensional
subspaces ofR3. One selected two-dimensional a ne subspace deter-
mines the ideal points.

R3 and therefore, in R3, points of the real projective plane will be represented by
one-dimensional subspaces.

The real projective planeis the set of all one-dimensional subspaces &°.

The ane plane is a subset of the set of all one-dimensional shspaces ofR3,
which we obtain after removing all one-dimensional subspags that lie in a two-
dimensional subspace oR®.

There are (in nitely) many possible choices of sets of one-thensional subspaces
which can model the a ne plane within the real projective plane. The choice of a
particular subset, which will model a concretel a ne plane, can be realized by a
choice of a basis inR3.

Let us select a basis p by;Tp;1sqof R3. Then, all the one-dimensional sub-
spaces generated by vectors

X
* y XxyPR (9.15)
1

will represent a ne points, point X in Figure 9.4, and all the one-dimensional sub-
spaces generated by vectors

X
X y X;y PR; x Oory O (9.16)
0
will represent the ideal points, e.g. pointY in Figure 9.4.
It is clear that the a ne points are in one-to-one correspondence with all points

in a two-dimensional a ne space (plane) and the ideal points are exactly what we
need to add to the a ne points to get all one-dimensional subgaces ofR3.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.gl in Figure 9.5, in the a ne plane contain points
represented by one-dimensional subspaces generated, elgy % and ¥. This set of
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AZ

A3

Figure 9.5: Lines of the real projective plane correspond tdwo-dimensional sub-
spaces ofR? but can be also represented by one-dimensional subspaces
of RS,

one-dimensional subspaces of points oh lls almost a complete two-dimensional
subspace oR3 with the exception of one one-dimensional subspace, gendea by =,
which represents an ideal point. After adding the subspace gnerated by z to the set
of all one-dimensional subspaces representing points dnwe completely Il a two-
dimensional subspace oR3, which hence corresponds to theprojective completion
of the a ne line |, which we will further call line, too.

Hence, in the real projective planeines correspond to two-dimensional subspaces
of R3.

We would like to do calculations with lines as we do calculatbns with points.
Let us develop a convenient representation of lines now. A sdightforward way how
to represent a two-dimensional subspace ifR? is to select a basis (i.e. two linearly
independent vectors) of the subspace, e.g¢ and ¥y for the line |. There are many
ways how to choose a basis and therefore the representatios far from unique.
Moreover, having two bases, it is not apparent whether they epresent the same
subspace.

For instance, two pairs of linearly independent vectorspx;, ¥1gand px,, ¥»qrep-
resent the same line if and only if they generate the same twdimensional subspace.
To verify that, we, for instance, may check whether

rank %, ¥ % ¥ 2 (9.17)

where we write all the four vectorsx, ¥i; %2, ¥ W.r.t. a basis of R3.

Yet, there is another quite convenient way how to represent awo dimensional
subspace inR3. Since 3 2 1, we can nd for each two-dimensional subspace, spec-
i ed by a basis px; yq exactly one one-dimensional subspace of the three-dimensal
dual linear space. Call the basis of this new one-dimensiohaubspacel. Then there
holds

J

™ x ¥ 0 (9.18)
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A3 A2

Figure 9.6: The ideal line is the set of all projective points(i.e. all lines of A through
C, which have no intersection with A2. It is a plane . There is exactly
one, which is perpendicular to sigma, which is generated byactor Ig .

where is the dual basis to . Therefore, we can represent lines in the real projective
plane by one-dimensional subspaces in this way.

We have developed an interesting representation of pointsrad lines where both
points and lines are represented by one-dimensional subspas of R3. Points are
represented by one-dimensional subspaces ¥  R3, which is connected by' to
the three-dimensional spaceA 3 of the geometrical model of the real projective plane.
The lines are represented by one-dimensional subspaces bktspaceV, which is the
space dual toV. Using the basis in V, which is dual to basis in V, the coordinates
T as well as coordinates of become vectors inR® which satisfy Equation 9.18.

The line of A2 generated byt in Figure 9.5 is shown as perpendiculatto the plane
generated by x, y. Indeed, in the geometrical model of the real projective plae,
we can use the notion of perpendicularity to uniquely constuct the (perpendicular)
line to the plane corresponding tol in A2,

9.2.4 Ideal line

The set of all one-dimensional subspaces &3, which do not correspond to points
in the ane plane, i.e. the set of all ideal points, forms itself a two-dimensional
subspace ofR® an hence a line in the projective plane, which is not in the ane
plane. It is the ideal line® of the projective plane associated with the selected a ne
plane in that projective plane. It is represented by vectorTg in Figure 9.6.

For each ane plane, there is exactly one ideal line (a two-dimensional sub-
space ofR3). Conversely, by selecting one line in a projective plane (g. one two-

5In A3, line and plane are perpendicular when they contain the right angle. The right angle is one
quarter of a circle.
SNevlastn pmka in Czech, line at in nity in [14].
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dimensional subspace oR?®) the associated a ne plane is determined as the set of
all points (one-dimensional subspaces d®®) which are not contained in the selected
ideal line (two-dimensional subspace).

9.2.5 Homogeneous coordinates

Once a coordinate system is xed in an a ne plane, every point of the a ne plane
has unique coordinates, which are the coordinates of its vector in the bsis of the
coordinate system.

A point in a real projective plane is represented by a one-dirensional subspace
of R®. One-dimensional subspaces are represented by their basesnsisting of a
single non-zero vector. There are in nitely many bases repesenting the same one-
dimensional subspace. Two basic vectors of the same one-démsional subspace are
related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projetive space, we
actually talk about coordinates of a particular basic vecta of the one-dimensional
subspace that represents the point.

For instance, vectors

1 2
0 and O (9.19)
1 2

are basic vectors of the same one-dimensional subspace @rntey are related by a
non-zero multiple. These are two di erent \coordinates" of the same point in the
real projective plane.

Hence, the \coordinates" of a point in the real projective plane are not unique.
This is so radically departing from the fundamental property of coordinates, their
unigueness, that it deserves a new name. To distinguish theaordinates of a point in
the a ne plane, which are unique, from the \coordinates" of a point in the projective
plane, which are not unique, we shall introduce new naméomogeneous coordinates

Homogeneous coordinates of a poinin the real projective plane are the coordi-
nates of a basic vector of the one-dimensional subspace, whirepresents the point.

Homogeneous coordinates of a line the real projective plane are the coordinates
of a basic vector of the one-dimensional subspace, which regsents the line.

A point in an a ne plane can be represented by a ne as well as by homogeneous
coordinates. Let us see the relationship between the two.

Let us have a point X in a two-dimensional real a ne plane, which is represented
by coordinates

X
y

By extending the real a ne plane to the real projective plane with the ideal line
identi ed with the two-dimensional subspace z 0, we can represent pointX by a
one-dimensional subspace dR3 generated by its basic vector

(9.20)

X
y (9.21)
1

Thus, X has a ne coordinates x y J and homogeneous coordinatesu v w J,
whereu x,v y,andw 1 for some PR, 0.
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AZ

A3

Figure 9.7: A point x is incident with a line | if and only if it can generate the line
with another point y. Lines in A% representing the point and the line
are perpendicular to each other.

Ideal points do not have a ne coordinates. Their homogeneows coordinates are
Xy 0° (9.22)

wherex;y PR and eitherx OQOory O.
The zero vector0 is not a basis of any one-dimensional space and thus reprege
neither a point nor a line.

9.2.6 Incidence of points and lines

We say that a point x is incident with line | if and only if it can generate the line
with another point y, Figure 9.7. In the representation of subspaces dR3, it means
that

'x 0 (9.23)

This means that the one-dimensional subspace d&° representing the line is orthogo-
nal to the one-dimensional subspace dR® representing the point w.r.t. the standard
(Euclidean) scalar product. In the geometrical model of thereal projective plane it
means that the line of A3 representingx is perpendicular to line of A2 representingl.

Let us write explicitly the coordinates of the bases generadhg the one-dimensional
subspaces as

X a
% y T b
z c

then we get
ax by cz O

and for a ne points represented with z 1 this formula reduces to
ax by ¢ O

which is the familiar equation of a line in the two dimensiond real a ne plane.
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AZ

A3

Figure 9.8: The join of two distinct points is the unique line passing through them.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with
exactly one linel. The join of two distinct points is the unique line passing through
them.

In the real projective plane, two distinct points are represented by two di erent
one-dimensional subspaces with basesand .

The homogeneous coordinates of this line, i.e. the coordites of the basic vectors
of the one-dimensional subspace representing the line, cdme obtained by solving
the following system of homogeneous equations for coordites of the vectorT

T x 0 (9.24)
Ty 0 (9.25)

w.r.t. and in R3. The set of solutions forms the one-dimensional subspace i
represents the linel.

We have seen in Section 2.3 that vectoi” can be conveniently constructed by
the vector product as

T X ¥ (9.26)

Notice, that in the real projective plane as well as in the real a ne plane, there is
exactly one line incident with two distinct points.

9.2.8 Meet of lines

Every two distinct lines k and | in a projective plane are incident exactly to one
point x. The meetof two distinct lines is the unique point incident with them.

In the real projective plane, two distinct lines are represated by two di erent
one-dimensional subspaces with basdsand T.

The homogeneous coordinates of this point, i.e. the coordates of the vectors in
the one-dimensional subspace representing the point, canebobtained by solving the
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Figure 9.9: The meet of two distinct lines is the unique pointincident with them.

following system of homogeneous equations for coordinatexf the vector x w.r.t.
in R®

R x 0

T x 0

The set of solutions forms the one-dimensional subspace thaepresents pointx. To
get one basic vector in the subspace, we may again employ theetor product in R3
and compute

* kK T

Notice, that in the real projective plane there is exactly one point inciént to two
distinct lines.

This is not true in an a ne plane because there are (parallel) lines that have no
point in common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordites of lines in projective
plane mapped by a homography.

Let us have two points represented by vectorsx , ¥ . We now map the points,
represented by vectorsx , ¥ , by a homography, represented by matrixH, to points
represented by vectorsx?!,, yll such that there are 1; ,PR; 1 » O

1%xh Hx (9.27)
2yh Hy (9.28)

Homogeneous coordinate of the line passing through points represented byx |,
y and homogeneous coordinate?, of the line passing through points represented
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by %1, ¥, are obtained by solving the linear systems

gx 0 and pYxh 0 (9.29)

gy 0 phiyh O (9.30)
for a non-trivial solutions. Writing down the incidence of points and lines, we get

1PHIxL 006 PHIxL 0

P HIyL, 006 FHIyL 0
We see thatpl, and H) p are solutions of the same set of homogeneous equations.
When % , ¥ are independent, then there is PR such that

plL H p (9.31)

since the solution space is one-dimensional. Equation 9.3dives the relationship
between homogeneous coordinates of a line and its image undeomography H
9.3.1 Join under homography

Let us go one step further and establish formulas connectindine coordinates con-
structed by vector products. Construct joins as

p x vy and pL x4 yh (9.32)
and use Equation 2.47 to get
HJ
1 1 H
P1%x10 P 2¥7q W va (9.34)
1 1 H
HJ
L _— 9.36

9.3.2 Meet under homography

Let us next look at the meet. Let point x be the meet of linesp and g with line
cordinates p , § , which are related by a homographyHto line coordinates !, and

g% by
1ph H p (9.37)
24 H g (9.38)
for some non-zero 1, ». Construct meets as

x p g and x% plL gL (9.39)

and, similarly as above, use Equation 2.47 to get

J od H

x 1 Tlﬂﬂ @17 1:2H"

(9.40)
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9.3.3 Meet of join under homography

We can put the above together to get meet of join under homogrphy. We consider
two pairs of points represented by their homogeneous coordates x , ¥ , and 2z ,
w and the corresponding pairs of points with their homogeneos coordinatesx?,,
y1, and 21, w'; related by homography Has

1xh Hx ; oyh Hy ;o s2zh Hz ;o awh Hw (9.41)

Let us now consider point

vh o pxt yhg pzlhi wlig (9.42)
HJ HJ
_ _— W 9.43
1 2 |H lpx v 3 4 |H’ Ipz a (9.43)
H
ipx yqpz w( (9.44)
1 2 3 4
_HH (9.45)
1 2 3 4

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and line constructed as com-
binations of joins and meets indeed behave under a homograghas homogeneous
coordinates constructed from a ne coordinates of points.

Secondly, when the homography is a rotation and homogeneouordinates are
unit vecors, all 's become equal to one, the determinant oHis one and H H
Therefore, all homogeneous coordinates in the previous falas become related just
by H

9.4 Vanishing points

When modeling perspective projection in the ane space with a ne projection
planes, we meet somewhat unpleasant situations. For instate, imagine a projection
of two parallel lines K; L , which are in a plane in the space into the projection
plane through the center C, Figure 9.10.

The linesK; L project to image linesk;|. As we go with two points X;Y along
the lines k; | away from the projection plane, their imagesx;y get closer and closer
to the point v in the image but they do not reach point v. We shall call this point
of convergence of lines< , L the vanishing point’.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in , each set with a di erent direction, then all
the points of convergence in the image will Il a complete line h.
The line h is called thevanishing line or the horizon® when is the ground plane.

“"Ukenk in Czech.
8Horizont in Czech
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Figure 9.10: Vanishing point v is the point towards projections x an y tend as X
and Y move away from but which they never reach.

Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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Now, imagine that we project all points from to using the a ne geometrical
projection model. Then, no point from will projectto h. Similarly, when projecting
in the opposite direction, i.e. to , line h has no image, i.e. it does not project
anywhere to

When using the a ne geometrical projection model with the re al projective plane
to model the perspective projection (which is equivalent tothe algebraic model in
R3), all points of the projective plane (obtained as the projective completion of
the a ne plane ) will have exactly one image in the projective plane (obtained as
the projective completion of the a ne plane ) and vice versa. This total symmetry
is useful and beautiful.
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10 Projective space

10.1 Motivation { the union of ideal points of all a ne
planes

Figure 10.1(a) shows a perspective image of three sets of f@lel lines generated by
sides of a cube in the three-dimensional real a ne space. Themages of the three
sets of parallel lines converge to vanishing pointd/;, Vo and V3. The cube has six
faces. Each face generates two pairs of parallel lines and i@ two vanishing points.
Each face generates an a ne plane which can be extended into projective plane by
adding the line of ideal points of that plane. The projection of the three ideal lines
are vanishing linesli, Vi _ Vo, 123 Vo Vzandlz; Vs _ Vi. Imagine now all
possible a ne planes of the three-dimensional a ne space ard their corresponding
ideal points. Let us take the unionV of the sets of ideal points of all such planes.
There is exactly one ideal point for every set of parallel lires inV, i.e. there is a
one-to-one correspondence between elements ¥Yf (ideal points) and directions in
the three-dimensional a ne space. Notice also that every pahne generates one
ideal line Ig of its ideal points and that all other planes parallel with  generate the
samelg , Figure 10.1.

It suggests itself to extend the three-dimensional a ne space by adding the set
V to it, analogically to how we have extended the a ne plane. In this new space,
all parallel lines will intersect. We will call this space the three-dimensional real
projective spaceand denote it P2. Let us develop an algebraic model oP3. It is
practical to require this model to encompass the model of theeal projective plane.
The real projective plane is modeled algebraically by subsgces ofR3. Let us observe
that subspaces ofR* will be a convenient algebraic model ofP3.

We start with the three-dimensional real a ne space A2 and x a coordinate
system pO; q with p 0p;0>;d30 An ane plane is a set of points of A3
represented inpO; qby the set of vectors

tr x;y;zs |lax by cz d O ab;c;dPR;a> ¥ ¢ 0u (10.1)

We see that the point of represented by vectorrx;y;zs’ can also be represented
by one-dimensional subspacé rx;y;z;1s’| P Ruof R* and hence can be seen
as the set

tt  rxy;z;1s'| PRu|ra;b;c;kx;y;z;1s 0;a;b;c;dPR;a?> ¥ & 0u
(10.2)
of one-dimensional subspaces d®*.

Notice that we did not require 0 in the above de nition. This is because
we establish the correspondence between a vectok;y;zs and the corresponding
complete one-dimensional subspace rx;y;z;1s’; P Ru of R* and since every
linear space contains zero vector, we admit zero.
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A3

(b)

Figure 10.1: (a) A perspective image of a cube generates theevanishing points Vi,
V, and V3 and hence also three vanishing linek;», >3 and I31. (b) Every
plane adds one line of ideal points to the three-dimensiona ne space.
Every ideal point corresponds to one direction, i.e. to a sebf parallel
lines. Each ideal line corresponds to a set of parallel plarse

Every rx;y;zs’ PR3 represents inpO; qa point of A% and hence the subset
A3 tt  rxy;z;18| PRu|x;y;z PRu (10.3)

of one-dimensional subspaces d®* representsAS.
We observe that we have not used all one-dimensional subspes ofR* to repre-
sent A3, The subset

g tt rxy;z;08| PRulxy;zPR;x?> y?> z2 0u (10.4)

of one-dimensional subspaces dR* is in one-to-one correspondence with all non-
zero vectors ofR3, i.e. in one-to-one correspondence with the set of directits in AS.
This is the set of ideal points which we add toA® to get the three-dimensional real
projective space

PP tt  rxy;z;ws'| PRulxy;zZ;wPR;x?> y?> Zz2 w? Ou (10.5)

which is the set of all one-dimensional subspaces &*. Notice that P2 A3Y g.

x56 Points Every non-zero vector ofR* generates a one-dimensional subspace and
thus represents a point of P2. The zero vector r0;0;0;0s’ does not represent any
point.

x57 Planes A ne planes 43, Equation 10.2, are in one-to-one correspondence to
the subset
as tt rajb;c;d| PRulajb;c;dPR;a? B ¢ Ou (10.6)

of the set of one-dimensional subspaces Bf*. There is only one one-dimensional sub-
space ofR*, t r0;0;0;18'| PRumissing in ,s. It is exactly the one-dimensional
subspace corresponding to the setg of ideal points of P2
g tt  ry;z;ws| PRulxy;z;wPR; x? y?2 z2 0;10;0;0;1six;y;z;ws  Ou
(20.7)
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We can take another view upon planes and observe that a ne plaes are in one-
to-one correspondence with the three-dimensional subspas ofR*. The set g also
corresponds to a three-dimensional subspace &*. Hence g can be considered
another plane, the ideal planeof P3.

The set of planes ofP?® can be hence represented by the set of one-dimensional
subspaces oR*

ps tt rajb;c;| PRulajb;c;dPR;a? b ¢ d? Ou (10.8)

but can also be viewed as the set of three-dimensional subspes ofR*.

We see that there is a duality between points and planes oP3. They both
are represented by one-dimensional subspaces Bff and we see that pointX rep-
resented by vectorX r x;y;x;ws’ is incident to plane represented by vector
~ rab;c;d,i.e. X ,when

X
9% abcd 32’ ax by cz dw 0 (10.9)
W

x58 Lines Lines in P? are represented by two-dimensional subspaces 8f*. Unlike
in P2, lines are not dual to points.
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11 Camera auto-calibration

Camera auto-calibration is a process when the parameters dfmage formation are
determined from properties of the observed scene or knowlge of camera motions.
We will study camera auto-calibration methods and tasks rehted to metrology in
images. We have seen in Chapter 7 that to measure the angle beten projection
rays we needed only matrixK. Actually, it is enough to know matrix *

K K1

to measure the angle between the rays corresponding to imagmints %; , %, as

% KI K lx, *] 1% 2 (11.1)
COS= pX1; %2q b :
IK %y K 1o ) X 1% % %o
Knowing ! is however (almost) equivalent to knowing K since K can be recovered

from ! up to two signs as follows.

x59 Recovering K from ! Let us give a procedure for recoveringk from ! . As-

suming
Kir Kki2 Kis
K 0 koo ko (11.2)
0O O 1
we get
1 k kio kos kisk
ki1 kiz ki3 ! ki1 kllkljz . |<2131|<2123 # mi1 M2 Mi3
K1 0 koo ka3 0 é % 0 myp mo3
0O O 1 0 0 1 0 0 1
(11.3)
for some realmii; mi2; m13; Moo and mo3z. Equivalently, we get
21 mip Mip Mp3 Mj3 Mpp
mia mai1Mma2 Ma11 M22 M23
1 m
K0 & e (11.4)
0 0 1
Introducing the following notation
P11 Y12 'z
I K K!? Lo oo 103 (11.5)
P13 123 !s33

YIn [14], ! is called the image of the absolute conic.
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yields
P11 Y12 'az m3, M1 M1p My11M13
2 2
P12 122 o3 M11 M12 mi, m35, Mi2M13 M2z Mp3
P13 123 !33 M11 M3 Mi2M13 M2 Mp3 mi; m3; 1

(11.6)
which can be solved folK * up to the sign of the rows ofK ! as follows. Equation 11.6
provides equations

)
, .
'sp. mip A myp s Tp 5
P12 mugmiz A myp ! 12{p51,)! 119 Sp! 12{,)! 11
1z mygmyz A myz ! 1%{p31 119 sp! 63{ M
2 2 =
Loy M, mMS A My S lap m2, s o 12{lg
b
o3 MipMiz Mapemaz i Moz SpPaz 'azlas{'ma{ '22 !'%{'n
b

SoP 11tz la2lasa{ '3l il

which can be solved formj; with s; 1 ands; 1. Hence

? ? 2 .
s1 T a31! f T s1!13{ !}
K 0 2 'z '5{111 sopPaz 'aplas{lual T2 '5{11
0 1
1.7

Signs s;, s are determined by the choice of the image coordinate system.The
standard choice) iss1 s 1, which corresponds toky; j 0 andkyo j O.
Notice that ~ T 17 is never zero for a real camera sincei11 é 0. There also
holds true
d__
b b
1 k2 1
Lo 12{In mi; mi, v 2
ki Kkiik,

b

kK ki 0

k11 ko2
(11.8)
since |ki2| is much smaller than |ky,| for all real cameras.

11.1 Constraints on !

Matrix ! isa3 3 symmetric matrix and by this it has only six independent elements
P11;V12; 1 13; 1 22; 1 o3 and ! 33. Let us next investigate additional constratints on !,
which follow from di erent choices of K

Xx60 Constraints on ! for a general K Even a generalK yields a constraint on! .
Equation 11.6 relates the six parameters of to only ve parameters miy; mi2; M13; Moo
and my3 and hence the six parameters of can't be independent. Indeed, let us see
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that the following identity holds true

2 121 % 14 5 1512 ' I 5
P23 S22 plyy gpp 2 lad 4—=5Ep, Eqps o 1
11 - 11 - 11 11 - 11 - 11
m m
MiMis  MasMosd pmas 13q2£3'n11 120
my,
2
Mmoo Q pM11Mi3Qf
pmi, mj ————qmi; mjp 1 —— —— Iq
miy my;
[m11FT113C12F1”7111F1112C]2 anmlzq2 pnllm13q2
4 m? pmi, m3, miqumis m3; 1 TTmd 1q
11 11 11
2
pmi2mis mzzmzsq2 p mlzmlaq2 p mzzmzzq2 4pn12m13q2|cm22m23q2
P 2pM12M13qPn2Mo3aqd  4pmipMisfPMasMosdf
0 (11.9)

Since! ;11 0, we get the following equivalent identity
P05 '5lh plaulae '50pulss '3 !uad
41202% 010 2 '5qpulas 'Z% 'ug O (11.10)

which is a polynomial equation of degree eight in elements of .
We shall see next that it makes sense to introduce a new matrix

12

=
N

1 2
1 o012 013 11 11

! ! !
012 Op2 0Op3 e TR (11.11)
013 023 033 P13 las  lag

Y12 'aa o

which contains only ve unknowns, and use Equation 11.10 to gt the positive ! 13
from by solving the following quadratic equation

a!'? alyy a O (11.12)
with

2.2 2 4 2 2. 2
a 4023°013°012° 023" 20237022033 201370127022 033  (11.13)
2 2 4. 2 2 2 2. 2
2025°033013° 012°033° 20237022013 20230127033

2 4 2. 2 2 2
022 013" 022°033° 2022033012

ag 2013%012° 0pp  20p3%0p2  20p2%°033 2012 033 (11.14)
4057 033012°  2023%012°  20p2°013°
ao 200015 0% 012" (11.15)

x61 Constraints on ! for Kfrom square pixels Cameras have often square pixels,
ie. iy} | ™} land=gy;q {2, which implies, Equations 7.13, 7.15, 7.16, a

simpli ed

kizt 0 Kis
K 0 ki ko (11.16)
0 0 1
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Kz

(b)

Figure 11.1: (a) Parallel linesK, L are projected to linesk, | with vanishing point
represented byv. Vector v is parallel to k, I. (b) Vectors 1, % contain
the same angle as pairs of line& 1, K, or L1, L.

This gives also simpler

1 1 0 K13
2 0 1 koa (11.17)
1 K} k23 k%l k%3 k%s

We see that we get the following three identities

I 10 0 (11.18)
P2 'm 0 (11.19)
1%, 13 tuls 'n 0 (11.20)
We also get simpler
1 0 o3 1 0 ki3
0 1 o3 k! 0 1 k23 (11.21)
013 023 Os3 kiz kos ki; kiz ki
and use Equation 11.21 to get
k2, 033 023 033 (11.22)
K13 013 (11.23)
K23 023 (11.24)

11.2 Camera calibration from angles between projection
rays

We will now show how to calibrate a camera by nding the matrix ! K K1,

In general, matrix ! is constrained by knowing angles contained between pairs
of projection rays. Consider two projection rays with diredion vectors %1, ¥». Then
the angle between them is related to! and by

J
X %o X
L p b (11.25)

COS=px1;%2q b
X 1%y %) 1%, X X1 X %
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Figure 11.2: Images of three points with known angles betwegtheir rays can be used
to calibrate cameras with square pixels. The position of imge center
C 1 can be computed in the ortogonal coordinate systenpo; 'q using
the absolute pose problem from Chapter 7.3. MatrixK is composed
from coordinates ofC .

Squaring the above and clearing the denominators gives

PCOS= pxy; %0dpx] %1 qpg %2 4 PX % (11.26)

which is a second order equation in elements of. To nd , which has ve inde-
pendent parameters for a generak, we need to be able to establish ve pairs of rays
with known angles and solve a system of ve quadratic equatios 11.26 above.

x62 Camera with square pixels A simpler situation arises when the camera has
square pixels. Then, we can use constraints from61 to recover! and K from three
pairs of rays containing known angles. That amounts to solung three second order
equations 11.26 in0y3; 023; 033.

However, this is actually exactly the same problem as we havalready solved in
Section 7.3. Figure 11.2 shows an image plane with a coordinate systempo;
with 1 p By;1y; Bigderived from the image coordinate systenpo; ¢ Having square
pixels, vectorsty, B can be complemented withb: to form an orthogonal coordinates
systempO 0; g Next, we choose the global orthonormal coordinate system,
pO o0; g p @;dy; dzq such that

By o B (11.27)
[e] [s] [s]

o[
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and hence
IMBaf] O 0
% 0O |®m|l O X 1 (11.28)
0 0 [l
We know angles= px;; %20, = px2; ¥3qand = px3; ¥1g We also know image points
1 X114 th X5 1, H3 X3 1 and thus we can compute distanced;»

[[X2 1 Xqpa], dog || X312 Xy 4| andds; || X3: X3 4|. Having that, we
can nd the pose C 1 r ¢1;Cp; ¢3S’ of the camera centerC in pO; 'qby solving the
absolute pose problem from Chapter 7.3. We will select a sotion with ¢3 0 and,
if necessary, use a fourth point in to choose the right solution among them. To
nd K we can form the following equation

0
0 - KR KRC

f (11.29)
1

= O OO

since point o is represented byr0;0;18’ in  and by r0;0;0s’ in . Coordinate
systempO; qis chosen such thatR | and C || B|| C 1 and thus we get

K1 m%”c 1 (11.30)

= O O

Now, let us consider matrix K as in Equation 11.16 and use the intepretation of
elements ofK from Chapter 7, Equations 7.16, 7.17. We can write

L. You} You}
You) ? Kis . ¥ 0 Kz
K 0 oy ko3 an thus K 0 }‘ifhi} }Efl—}kzg (11.31)
0 0 1 0 0 1

and use it in Equation 11.30 to get

ki3 C1
kf23 Co (11.32)
Yo} cs
and thus
C3 0 C1
K 0 ¢ © (11.33)
0 0O 1

11.3 Camera calibration from vanishing points

Let us rst make an interesting observation about parallel lines in space an its
corresponding vanishing point in an image. Let us consider gair of parallel lines
K, L in space as shown in Figure 11.1(a). There is an a ne plane containing the
lines. The linesK, L are projected to image plane into lines Kk, |, respectively.
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Now, rst extend a ne plane  to a projective plane using the camera center
C. Then, de ne a coordinate systempC; qwith orthonormal basis p @i; dy; 39
such that vectors @;; d> span a ne plane

Let K , C be homogeneous coordinates of linds, L w.r.t. . Then

w K T (11.34)

are homogeneous coordinates of the intersection of lind§, L in .

Next, extend the a ne plane to a projective plane using the camera center
C with the (camera) coordinate systempC; ¢

Let R , T be homogeneous coordinates of linds, | w.r.t. . Then

v kK T (11.35)

are homogeneous coordinates of the intersection of linds | in .
Now, consider Equation 8.14 for planes and . Since s orthonormal, we
have K! | and thus that there is a homoghraphy

H KR (11.36)

which maps plane to plane . Matrices Kand Rof the camera are here w.r.t. the
world coordinate systempC; g
We see that there is a real such that there holds

¥  KRw (11.37)

true.

x63 Pairs of \orthogonal" vanishing points and camera with square pixels  Let

us have two pairs of parallel lines in space, Figure 11.1(b)such that they are also
orthogonal, i.e. letK 1 be parallel with L1 and K » be parallel with L, and at the same
time let K1 be orthogonal to K, and L; be orthogonal to L,. This, for instance,

happens when linesK 1;L1;K2;L> form a rectangle but they also may be arranged
in the three-dimensional space as non-intersecting.

Let lines ky;l1;ko;12 be the projections of K1;L1;K2; L2, respectively, repre-
sented by the corresponding vectorXk, ;T; ;K, ;T, in the camera coordinates sys-
tem with (in general non-orthogonal) basis . Lines k; and |1, resp. ko and Iz,
generate vanishing points

The perpendicularity of w; to w» is, in the camera orthogonal basis , modeled
by

W, w, O (11.38)
We therefore get from Equation 11.37
v KI R RIK 1y, 0 (11.39)
¥ K K v 0 (11.40)
N v, 0 (11.41)
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which is a linear homogeneous equation i . Assuming further square pixels, we
get, x61,

v v, 0
Vf 2
1 0 013 V21

Vi1 Vi Vi3 0 1 o3 V22 0
013 023 033 V23
013

Vo3Vi1  V21Viz Vo3Viz  V22Viz V23 Vi3 023 p Va1Vvii  V22Vi2(

033

Now, we need only 3 pairs of perpendicular vanishing pointse.g. to observe 3
rectangles not all in one plane to computeo;s; 023; 033 and then

K1z 013
k23 b 023
K11 033 k;%g k%g

11.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of pints X, which all lie in
a plane and are measured in a coordinate systerpO; @; d>gin , Figure 8.2. The
points X are projected by a perspective camera with the camera coordate system

ispC; g p By;p;B3g and projection matrix P into image coordinates u v J,

w.r.t. an image coordinate systempo; ;g Equation 8.30. See paragraphk31 to
recall that the columns of P can be writen as

P KR KRC ap dr a3 C (11.42)

and therefore we get the columns

hi  p1 a1 (11.43)
hy, p2 d> (11.44)
hs ps C (11.45)

of the homography Hmapping to as de ned in Equation 8.31.

Now imagine that we are observing a square with 4 corner poirg X1, X2, X3
and X4 in the plane and we construct the coordinate system in by assigning
coordinates to the corners as

X1 000 (11.46)
@ X 10 0 (11.47)
@ X3 010 (11.48)
X4 110 (11.49)
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We see that we get two constraints ond; ,

al d 0 (11.50)
al & a@ o 0 (11.51)
which lead to
a K Klap 0 (11.52)
a K Klap @ K Klam 0 (11.53)

by using &; KRE fori 1;2,andR R |I.
These are two linear equations orl and hence also, se&60, on

al o 0 (11.54)
¢ & A& @ 0 (11.55)
on! interms of estimated H
hi h» 0 (11.56)
hi hy h) h, 0 (11.57)

One square provides two equations and therefore three sques in two planes in
a general position su ce to calibrate full K Actually, such three squares provide one
more equations than necessary since has only ve parametes. Hence, it is enough
observe two squares and one rectangle to get ve constraintsSimilarly, one square
and one rectangle in a plane then su ce to calibrate Kwhen pixels are square.

Notice also that we have never used the special choice of catinates of X .
Indeed, point X4 could be anywhere provided that we know how to assign it coor-
dinates in pO; dy; d>q

To calibrate the camera, we rst assign coordinates to the coners of the square
as above, then nd the homographyH from the plane to the image

% HX (11.58)

for  1;:::;4 and nally use columns of Hthe nd
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12 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two dirent view points.
We will next investigate how to (re-)construct camera projection matrices and mean-
ingful coordinates of points in the space such that the recostructed cameras and
the reconstructed points generate the images.

12.1 Epipolar geometry

Figure 12.1 shows two cameras with di erent centersCy, C, and image planes 1,
2, oObserving a general pointX asuj, us. Baselineb connecting image centersCy,
C, intersects 1, 2 in epipolese;, e. Points C1, C, and X form epipolar plane
, Which intersects 1 in epipolar line | and » in epipolar line I,. Epipolar line
I, passes through epipolee; and through image point u;. Epipolar line |1, passes

through epipole e; and through image point us.

Let us next nd the relationship between image points, epipdes, epipolar lines
as a function of camera parameters, Figure 12.2.

Assume a world coordinate systenpO; gand camerasCy, C, with camera pro-
jection matrices

P KiR | KiRC1 and P, KR | KoRC» (12.1)

Point X is projected to image planes 1, », with respective coordinate systems
Po1; 1G po2; 20 as

1%1 1 Pl X]-. and 2 X2 2 P2 X]- (12.2)

forsome 1j Oand 2 O, which then leads to
1%, KRpX Ciqg and 2%, KRpKX Cxq (12.3)
1RKM, X C RK %, X G (12.4)

Consider now that vectorsX C;,X C, andC, C; form a triangle and
hence

C. C; pX CiqpX Caq (12.5)
Cz Cl 1 R_]l Kl l’Xl 1 2 F% K2 1’)(2 2 (12.6)

with ;i Oand »j O for the standard choice of camera coordinate systems.
We shall next eliminate depths 3, » by exploiting the vector product identities,
see Paragraph 2.3,

0 X X I XS X% (22.7)
0 ¥px y¥q Yrxsy (12.8)
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X

usq u2

Figure 12.1: Epipolar geometry of two cameras.

for all ;¥ PRS.
We rst vector-multiply Equation 12.6 by C, C; from the left to get
0 C, C 1RK™, C C  2RK%, (129

and then multiply Equation 12.9 by ;%) 2KzJ R, from the left to get

0 2% K R C, Ci 1RK%, (12.10)

which, since 1 0and > 0, is equivalent with

0 x ,K R C Ci RK™, (12.11)
0 %) K EK 1%, (12.12)
0 %) Fxi (12.13)

where we introduced theessential matrix EPR?3 3 as

E RC, C R (12.14)
and the fundamental matrix FPR3 3 as
F K RC C RK' (12.15)

Let us next introduce epipoles to pass from vectors in to vectors in 1; »,
which are measurable in images.

The projection e; of the the camera centerC, to the rst image as well as the
projection e, of the the camera centerC; to the second image are obtained as

C

1€, Py 12 KiRpC2,  Ciq (12.16)
Cy

28, P 1 KeRpC1  Coq (12.17)
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X
1 X G X G 2
T 2
%1 X2
N
C1 <! C: C © Cz

Figure 12.2: Vectors of the epipolar geometry.

forsome 1j Oand 2 O.
We can now substitute Equation 12.16 into Equation 12.15 to gt

F K RC C RK! (12.18)
K R 1RK'e, RK® (12.19)
14J
K Rzgzlgjrel s (12.20)
ﬁKzJ RRI K re ;s (12.21)

We used the result fromx8, which shows how the vector product behaves under the
change of a basis.
Analogically, we substitute Equation 12.17 into Equation 12.15 to get

F K RC C RK? (12.22)
KR R, RK? (12.23)
JRKYe, RKRK!? (12.24)
J
_2 Rl 1
il Kre,s RK (12.25)
_2 1
o] &2 2 KRR Ky (12.26)

We used additional properties of the linear representationof the vector product
from x9.

We see from Equations 12.21 and 12.26 that it is possible to oever homogeneous
coordinates of the epipoles fromF by solving equations

Feg, 0 and P&, 0 (12.27)
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for a non-zero multiples of€; ,, & ,. We also see that matrix F has rank smaller
than three since it has a non-zero null spaces; ,. Since, rank of C, C; is

two for non-zeroC, C; , F has rank two when camera centers do not coincide.

Let us look at the epipolar lines. Epipolar lines pass throu@ the corresponding
points in images and the epipoles, i.el; X3 _ e andl,x X»_ e,. Consider that
there holds

x) ,Fe, 0 and %] Fe, 0 (12.28)
% ,Fx, O x Fx, 0 (12.29)
(12.30)

and therefore homogeneous coordinately | T, , of epipolar lines generated byx; ,
and %; ,, respectively, are obtained as

h, Px, and T, Fx, (12.31)

1

forx,, ®,andx%, € ,.

12.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between imges from im-
age matches. Our goal is to nd matrix G F for some real non-zero using
Equation 12.13. Let us introduce

O11 O12 O13
G G O22 U (12.32)
O31 O32 Os3

and write Equation 12.13 as

; Oz 12 O3 Uzi
0 % ,GX1i, Uz Vi Woi  Gp1 G2 O23 Vi (12.33)
O31 032 Us3 Wi
O11
O12
0 Upj Ugi Ui Vi Ui W1 Vo Ugj  Voi Vij  Voi Wy Wpj U1y Wi Vij  Woj Wi
O33

for the i-th pair of the corresponding points %1; ,, % , in the two images. Notice
that we can work even with ideal points whenwy; 0 orwy 0.

We can solve this way for a non-zero multiple ofF from eight correspondences in
a general position, i.e. not all on a plane or on some speciabigdrics passing through
camera centers [14]. If there is noise in image coordinatesje in general get a rank
three matrix.

To avoid this problem, we can use only seven point corresporahces to compute
a two dimensional space of solutions

G G G (12.34)
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generated form its basisG, G by

. Then we use the constraint

O111 G112 G113 9211 G212 Q213
01dg G| O121 G122 U123 O221 G222 Q223 (12.35)
O131 G132 Gi33 U231 Q232 Oe2s3
to nd by solving a third order polynomial
0 a3 2 a ? a @ (12.36)
as | Gl
a 022102320113 022102120133  O211 2220133 0231 0112 9223
02310212 123 021192230132 02310122 Q213 0231 Q222 Q113
021101230232 0121 9232 Q13 Q221 G132 Q213 0131 G212 9223
012192129233 0111 %23 9232 G221 01120233 G211 0122 0233
01110222 3233 0131 Go22 G213
a 011101220233 0111 02220133 023101120123 0121 0112 9233
021101230132 922101120133 023101220113 9211 0122 0133
012101320213 0121 92320113 013102120123  J121 G212 0133
013192220113 G221 01320113 011101230232 0131 0122 0213
013101120223 0111 9223 0132
a |Gl

That will give us up to three rank two matrices G
Notice that we assumed thatGwas constructed with a non-zero coe cient at G.
We therefore also need to checkc G for a solution.

12.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to nd @mera projection
matrices P1, P, and coordinates of points in the sceneX such that the points X
are projected by camerasP;, P, to observed image pointsx; ,, %2 ,

1%, Po

X X; (12.37)

and 2%2 , P,
1
for some positive real 1, ».
Assume that there are some camera®;, P>, and coordinates of points in the

sceneX such that Equation 12.43 holds true. Then, for every 4 4 real regular
matrix Hwe can get new camera matrice®}, P+ and new point coordinatesX ! as

PL PLH! P} PH! X;l Y (12.38)

which also project to the same image points
1%, Py X; P H H 73 P x;l (12.39)
2% , P, x_fl P,H H X; P2 x;l (12.40)
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We see that in general we can reconstruct the cameras and the&sne points only
up to some unknown transformation of the space. We also see & the transforma-
tion is more general than just changing a basis irR® where we represent a ne points
X . Matrix Hacts in the three-dimensional a ne space exactly as homograhy on
two-dimensional a ne space.

Let us next look at a somewhat simpler situation when camera alibration matri-
cesK;, Ky are known. In such a case we can make sure th&thas a special form which
corresponds to a special change of a coordinate system in tieree-dimensional a ne
space.

12.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matricesk;, K> are known. Hence we
can pass fromF to E using Equations 12.14, 12.15 as

E KFK (12.41)
then recover the relative pose of the cameras, set their codinate systems and nally
reconstruct points of the scene.

12.4.1 Camera computation

To simplify the setting, we will rst pass from \uncalibrate d" image points %; .,
%2 , using K, K to \calibrated"

x1, K, and %, Klx, (12.42)
and then use camera projection matrices as follows

X X
1%1 4 P]_ 1 and 2%2 , P2 2 1

) (12.43)

Matrix H allows us to choose the global coordinate system of the sceas pC1; 10
Setting

H?! g Cll (12.44)
we get from Equation 12.38
P, | o (12.45)
P2, RRII R Ciq RR| RRC:, Ci,q (1246)
R| RC, (12.47)

and the corresponding essential matrix

E RC, (12.48)
From image measurementsx; ,, %2 ,, we can compute, Section 12.2, matrix

G E RC, (12.49)
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and hence we can geE only up to a non-zero multiple . Therefore, we can recover

C, only up to
We will next x up to its sign s;. Consider that the Frobenius norm of a
matrix G
e P J
1GE e G trace p@ G trace 2 C, RRC,
-
d”
J
2trace C, C, (12.50)
b ?_
| | 2}C.}* | | 2}C} (12.51)

We have used the following identities

J
dG 2c, RRC, 2c, c, (12.52)

0 z vy 0 z vy y2 z2 Xy Xz

2z 0 «x z 0 x 2 xy x2 z2 yz

y x 0 y x 0 Xz yz x%2 y?

We can now construct normalized matrix Gas
?_
G bo2° g S siR T, (12.53)

with new unknown s; Pt 1; 1uandt, denoting the unit vector in the direction
of the second camera center in; basis.
We can nd vector ¥, syt with new unknown s; Pt 1; 1u by solving

Gv, O subjectto }v,} 1 (12.54)
to get
1 S1
G s1R —wv, —Rrv ;s (12.55)
So So
sG Rrv s (12.56)
Sg1 SO2 SQU3 R vy vo v3 (12.57)

withunknown s Pt 1; 1u, unknown rotation Rand known matrices g1 g2 03
Gand vi vz vz r ¥,S.

This is a matricial equation. Matrices G rv,s are of rank two and hence do
not determine R uniquely unless we useR R | and |[R 1. That leads to a set
of polynomial equations. They can be solved but we will use ta property of vector
product, x8, to directly construct regular matrices that will determi ne R uniquely
for a xed s.

Consider that for every regular APR® 3, we have,x8,

AJ

PAX g PAYQ X1 ¥1 A va (12.58)
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which for R gives

pPRx q pRy q Rpx ¥ q (12.59)
Using it for i;j  1;2;3 to get
pBgid psgd  pRvg pRy(q (12.60)
S gd  Rwio vig (12.61)
i giq Rpvi  viq (12.62)

i.e. three more vector equations. Notice hows disappeared in the vector product.
We see that we can write

SO1 SO2 SO3 J1 92 92 O3 01 O3
R Vi V2 vz Vi Vo Vz V3 Vi vz (12.63)

There are two solutionsR for s landR fors 1. We can next compute two

solutions t v,andt | ¥, and combine them together to four possible
solutions
P, R 1| t, (12.64)
P, R 1] t, (12.65)
P, R I| t, (12.66)
P, R 1] t, (12.67)

The above four camera projection matrices are compatible wh G The one which
corresponds to the actual matrix can be selected by requirig that all reconstructed
points lie in front of the cameras, i.e. that the reconstructed points are all positive
multiples of vectors %; , and %, , for all image points.

12.4.2 Point computation
Let us assume having camera projection matrice®;, P, and image pointsx; ,, %2 ,

such that

1%1 Pl X]: and 2%2 , P2 (12.68)

1

We can getX , and i1, » by solving the following system of (inhomogeneous) linear
equations

x1 0 P]_

0 12.69
0 x , P, X ( )
1
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12.5 Calibrated relative camera pose computation

In the previous chapter, we had rst computed a multiple of th e fundamental matrix
from seven point correspondences and only then used cameralibration matrices
to recover a multiple of the essential matrix. Here we will ug the camera calibration
right from the beginning to obtain a multiple of the essential matrix directly from
only ve image correspondences. Not only that ve is smallerthan seven but using
the calibration right from the beginning permits all points of the scene generating
the correspondences to lie in a plane.

We start from Equation 12.42 to get %; , and %, , from Equation 12.43 which

are related by
% K EK 1%, 0 (12.70)
%) Ex1 0 (12.71)

The above equation holds true for all pairs of image pointspx; ,; %2 ,qthat are in
correspondence, i.e. are projections of the same point of ¢hscene.

12.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

I§ O (12.72)

true.
We will now derive additional constraints on E Let us consider that we can

write, Equation 12.48,

E RC, (12.73)

Let us introduce C | Xy z ? and evaluate

| J J
EE RC, RC, c, RRC, c, C, (12.74)
0 z vy 0 z vy 72 y? Xy Xz
z 0 x z 0 x xy z2 x? yz
y x 0 y x 0 Xz yz y?> x?
x? y2 z° XX XY Xz
2 2 2
X= o yr z Xy Yy Yz
x? y2 z? Xz yz 2z
}c.}® c.c’ (12.75)

We can multiply the above expression byE from the left again to get an interesting
equation

1
EFE E}C,} c.,C) }cC.}E EtracepE‘] EgE  (12.76)

or equivalently
2EFE tracepE EE (12.77)
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which provides nine equations on elements oE
In fact, these equations also imply|E| 0. Consider that Equation 12.77 implies

2EF tracepPEgl E O (12.78)

For Equation 12.78 to hold true, either E can't have the full rank, i.e. |g 0, or
2EF tracepE Egl 0. The latter case gives

0 traceEF tracepP Eglq 2tracepEF q 3tracepE Eq (12.79)

Let us check the relationship between tracgE’ Eqand tracepE E qnow. We write

trace pE’ Eq PEL B, B9 pE, B, B, pE:; B B
PEL E, Eia pB B, B pB B, By
tracepE F q (12.80)

Substituting the above into Equation 12.79 gets us
0 2tracepE P q 3tracepE’ BEg  tracepP Eq (12.81)

Equation 2EF  tracepE’ Egl 0 also implies

2EP trace p& Eql (12.82)
|2EF| | tracepE Eql | (12.83)
2’|g%>  p tracepE Eqd (12.84)
2’1572 0 (12.85)
I=] 0 (12.86)

Therefore, Equation 12.77 implies|g 0.
Let us now look at constraints on matrix G E, for some non-zero real . We
can multiply Equation 12.78 by 2 to get

3 2EF tracepP Egl E 0 (12.87)
2p Eqp E'q tracepp Elqp Eqd p Eq 0 (12.88)
2GG tracep@d @l G 0 (12.89)

Clearly, rank p&@ rankp Eq rankpeq 2.
We conclude that constraints on E and Gare the same.
12.5.2 Geometrical interpretation of Equation 12.77

Let us provide a geometrical interpretation of Equation 1277. We will mutiply both
sides of Equation 12.77 by a vectory P R® and write

2EF Ey trace pE’ EQEy (12.90)

J
2RC, C, C, ¥ 2}C }’RC, ¥ (12.91)
RC, C, C, ¥ RIC,}> C, ¥ (12.92)
cC, C, C, ¥y }YcCcYyYc,y (12.93)
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C

CpCpC ¥q CpC ¥

C vy

Figure 12.3: Identity C, pC, pC, %qq } C.,}’,C, ¥9

Now, we use that for every two vectorsx; ¥ P RS there holdsrxs ¥ % ¥ true to
get

C, pC, pC, wag } C.}C, ¥ (12.94)

which is a familiar identity of the vector pruduct in RS2, Figure 12.3.

12.5.3 Characterization of E

Let us next see that a non-zero 3 3 real matrix satisfying Equation 12.77 has rank
two and can be written in the form of Equation 12.73 for some rd¢ation Rand some
vector C,.

Consider a real 3 3 matrix E such that Equation 12.77 holds true. We will
make here use of the SVD decomposition [4, p. 411] of real mates. We can write

a
E U b Vv (12.95)
C

for some real non-negativea; b; cand some orthogonal real 3 3 matrices U, V, such
that YU 1,and\VVV | [4, p. 411]. Onecanseethat/ U |,and\VV V |

implies |Y LM 1.
Using Equation 12.95 we get

al a2
EF U kP v; PE V k? Ve (12.96)
2 2

and tracepP’ Eq tracepv B\VW q tracepv BV lq tracepD*gsince matricesD? and
EE are similar and hence their traces, which are the sums of theieigenvalues, are
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equal. Now, we can rewrite Equation 12.77 as

a? a

2U kP U pa? ¥ g U b Ve 0 (12.97)
2 c

a a
2U b3 Vv pa? B dqu b Ve 0 (12.98)
c3 c

Matrices U, V are regular and thus we get

a’ a
2 b3 pa’ B Jq b 0 (12.99)
¢ c
which nally leads to the following three equations
a® ab ac® am® P cq 0 (12.100)
B* ba&d bé bp? & a’q 0 (12.101)
G cad cbF cp? a? g 0 (12.102)

We see that there are the following two exclusive cases:

1. If any two of a;b;care zero, then the third one is zero too. For instance,

if a b 0, then Equation 12.102 givesc® 0. This can't happen for a
non-zerok

2. If any two of a; b; care non-zero, then the two non-zero are equal and the third
is zero. For instance, ifa 0 andb 0, then Equations 12.100, 12.101 imply
¢ 0 andthusa® P2, which givesa b sincea;b are non-negative, i.e.

rank pEq 2.
We thus conclude that E can be written as
a 010 0O ao
E U a v U 100 a 00 V (12.103)
0 0 01 0O 00O
0 0 DV g 0
W 0 vV W VV o VoW vV 0 (12.104)
a a v a’ | a
p signpMgd WV signpV’ q mvss (12.105)
signpMWgW V signp\? g signpMgavas (12.106)
RrsignplUgavss (12.107)

for some non-negativea and the third column v3 of V. Parameter a is zero for
E 0 and positive for rank two matrices E We introduced a new matrix Win

Equation 12.104, which is the product ofUand a rotation round the z axis. We also
usedVWV 1, and nally Equation 2.53. In Equation 12.105 we usedpsignpMud

1, VJ Vfor WV |. Matrix R signp|g|dw ¥ signp\V® qin Equation 12.107
is a rotation since signp|pg|dwas well as\? signp\? qare both rotations. Finally,

we see that sigmWgq signpUg
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12.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matx E from image
matches.

12.5.4.1 Selecting equations

Every pair of image matchespx; ,; %2> ,qprovides a linear constratint on elements of
Ein the form of Equation 12.71 and matricial Equation 12.77 gives nine polynomial
constraints for elements ofE

We have already seen in Paragraph 12.2 that a non-zero multie of E can be
obtained from seven absolutely accurate point correspondees using the constraint
|l 0. The solution was obtained by solving a set of polynomial egations out of
which seven were linear and the eighth one was a third order ggnomial.

Let us now see how to exploit Equation 12.77 in order to compu¢ a non-zero
multiple of E from as few image matches as possible.

An idea might be to use Equations 12.77 instead off 0. It would be motivated
by the fact that Equations 12.77 imply equation |E| O for real 3 3 matrices E
Unfortunately, this implication does not hold true when we allow complex numbers
in EY, which we have to do if we want to obtain E as a solution to a polynomial
system without using any additional constraints. We have to therefore use|g| 0O
as well.

The next question is whether we have to use all nine Equationd2.77. It can be
shown similarly as above that indeed none of the equations 127 is in the ideal [16]
generated by the otherd. Therefore, we have to use all Equations 12.77 as well as

lEquation | 0 can't be generated from Equations 12.77 as their algebraic @mbination, i.e.
=] 0 is not in the ideal [16] generated by Equations 12.77. It means that there might be
some matrices E satisfying Equations 12.77 which do not satisfy |Ef 0. We know that such
matrices can't be real. The proof of the above claim can be obtained by the following program
in Maple [18]

>with(LinearAlgebra):

>with(Groebner):

>E:=<<elllel2|el3>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:

>eq:=expand(convert(convert(eM,Vector),list)):

>v:=indets(eq):

>mo:=tdeg(op(v)):

>G:=Basis(eq,mo):

>Reduce(Determinant(E),G,mo);

ell e22 e33 - ell e23 e32 + e21 e32 e13 - €21 el2 e33 + €31 el2 eZll -e22 €13

which computes the Groebner basis Gof the ideal generated by Equations 12.77 and veri es that
the remainder on division of |E by Gis non-zero [16].

2To show that none of the equations 12.77 is in the ideal generated by the others, we run the

following test in Maple.
>with(LinearAlgebra):
>with(Groebner):
>E:=<<elllel2|el3>,<e2l|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>
>ReduceEqgByEqgn:=proc(eq,eqn)

local mo,G;

mo:=tdeg(op(indets(eqn)));
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|[E 0. Hence we have altogether ten polynomial equations of ordehigher than
one.

We have more equations than unknowns but they still do not fuly determine
E. We have to add some more equations from image matches. To séew many
equations we have to add, we evaluate the Hilbert dimension16] of the ideal gen-
erated by Equations 12.77 and|lEl 0. We know [16] that a system of polynomial
equations has a nite number of solutions if and only if the Hilbert dimension of the
ideal generated by the system is zero.

The Hilbert dimension of the ideal generated by Equations 1277 and|E O'is
equal to six’. An extra linear equation reduces the Hilbert dimension by me [16].
Hence, ve additional (independent) linear equations fromimage matches will reduce
the Hilbert dimension of the system to one.

Since all equations 12.71, 12.77 anfl§ 0 are homogeneous, we can't reduce the
Hibert dimension below one by adding more equations 12.77 éim image matches.
This re ects the fact that Eis xed by image measurements only up to a non-zero
scale.

To conclude, ve independent linear equations 12.71 plus Egations 12.77 and
[ 0 x Eup to anon-zero scale.

The scale ofE has to be xed in a di erent way. For instance, one often knows
that some of the elements ofE can be set to one. By doing so, an extra independent
linear equation is obtained and the Hilbert dimension is rediced to zero. Alterna-

G:=Basis(eqn,mo);
Reduce(eq,G,mo);
end proc:
>
>for i from 1 to 9 do
ReduceEqByEqn(eq[i],eq[[op( f$1..9 g minus fi g)]]);
end;

e11® ellel2? ellel3? elle21? 2e2lel2e22 2e2lel3e23 elle3l? 2e31el2e32 2e3lel3e33 elle22?
elle32? elle23? elle33

e112e21 2ellel2e22 2ellel3e23 e213 e21e22? e21e232 e21e312 2e31e22e32 2e31e23e33 e21el2?
e21e322 e21el3? e21e33

e112e3]l 2ellel2e32 2ellel3e33 e212e31 2e2le22e32 2e21e23e33 e31° e31e322 e31e332 e31el2?
e31e22? e31e13? e31e23

e12el11? e12% el2e13? 2e22elle2l el2e22? 2e22el3e23 2e32elle3l el2e32? 2e32el13e33 el2e21?
el2e31? el2e23? el2e33

2el2elle2l el2?2e22 2el2el3e23 e22e21? e22° e22e23° 2e32e21e31 e22e32? 2e32e23e33 e22ell?
e22e31?2 e22e13? e22e33

2el2elle3l el2?e32 2el2el3e33 2e22e2le3l e22?e32 2e22e23e33 e32e312 e32° e32e332 e32el1?
e32e21? e32e13? e32e23

e13el11? el3el2? €133 2e23elle2l 2e23el2e22 el3e232 2e33elle3l 2e33el2e32 el3e332 el3e21?
el3e31?2 el3e22? el3e32

2el3elle2l 2el3el2e22 e132e23 e23e21? e23e222 e23° 2e33e21e31 2e33e22e32 e23e332 e23ell?
e23e312  e23el12? e23e32

2el3elle3l 2el3el2e32 el132e33 2e23e2le3l 2e23e22e32 e23%2e33 e33e312 e33e32?2 e33% e33el1?
e33e21?2 e33el2? e33e22?

3The Hilber Dimension of the ideal is computed in Maple as foll ows
>with(LinearAlgebra):
>E:=<<elllel2|el3>,<e21|e22|e23>,<e31|e32|e33>>:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>with(Polynomialldeals):
>HilbertDimension(<op(eq),Determinant(E)>);

6
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tively, one can ask for}E? 1, which adds a second order equation. That also
reduces the Hilbert dimension to zero but doubles the numbenf solutions for E

12.5.4.2 Solving the equations
We will next describe one way how to solve equations

%, ,Ex;1, O 2EE tracepE’Egl E 0; | 0 i 1;:::;5
(12.108)
We will present a solution based on [19], which is somewhat $&s e cient than [20, 21]
but requires only eigenvalue computation.
First, using Equation 2.92 from Paragraph 2.5, we can write
Xi;l 1b X?L;Z 0
X%;1 1b X%;Z
X%;l 1b X‘3]’;2
'Xi;l 1b *31;2
Xé;l 1b 'X%;Z

2 vpE (12.109)

O OO0OOo

to obtain a 6 9 matrix of a system of linear equations onvpeq Row & can be
chosen randomly to x the scale ofvpeg There is only a negligible chance that it
will be chosen in the orthogonal complement of the span of thesolutions to force
the solutions be trivial. If so, it can be detected and a newa’ generated.

Assuming that the rows of the matrix of the system are linearly independent,
we obtain a 3-dimensional a ne space of solutions. After rearanging the particu-
lar solution, resp. the basis of the solution of the associad homogeneous system,
back to 3 3 matrices G, resp. G; &; G, we will get all solutions compatible with
Equation 12.109 in the form

G & xG Y& zG (12.110)

for x;y;z PR.

Now, we can substitute Gfor E into the two remaining equations in 12.108. We
get ten trird-order polynomial equations in three unknowns and with 20 monomials.
We can write it as

Mm 0 (12.111)

where Mis a constant 10 20 matrix* and

m o x3yxZyxy3zx2zyx;zy? z2x; 2%y 25 X%y x y2 z X,z y; 22X,y z; 1s
(12.112)

“Matrix Mcan be obtained by the following Maple [18] program
>with(LinearAlgebra):
>G0:=<<g011]|g012|g013>,<g021|g022|g023>,<g031|g032|g033>>:
>G1:=<<g111|g112|g113>,<g121|g122|g123>,<g131|g132|g133>>:
>(G2:=<<g211|g212|g213>,<g221|g222|g223>,<g231|g232|g233>>:
>G3:=<<g311|g312|g313>,<g321|g322|g323>,<g331|g332|g333>>:
>trc:=E->simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert(trc(G),listlist)),Determinant(G)]:
>mo:=tdeg(x,y,z);
>m:=PolyVarMonomials(eq,mo);

m:r x3yx2iy2xy dizx2zyxzy 2:z2%x22%y;23:x%yxy 2izxzyiz 2ixyiz, 1s

>M:=PolyCoeffMatrix(eq,m,mo):
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is a vector of 20 monomials.
Next, we rewrite the system 12.112 as

wlG 722G zG  Gqc 0 (12.113)
with
C 2G 7°G zG G (12.114)
containing 10 monomials. MatricesG;:::; G are constant 10 10 matrices
G m m m m m;p My M3 M7 Mg Mo (12.115)
G 0 00O mMmMmMmM Mg Ms Mo (12.116)
G 0 0O0OO0OOOOTMT™M mMs (12.117)
G 000O0O0O0OOOO0T™m (12.118)

where m are columns ofM

Sincemcontains all monomials inx; y; z up to degree three, we could have written
similar equations as Equation 12.113 withx and y.

Equation 12.113 is known as a Polynomial Eigenvealue Probfe (PEP) [22] of de-
gree three. The strandard solution to such a problem is to redx it into a generelized
eigenvalue problem of a larger size as follows.

We can write z2c  zmcqand zc  zpcq altogether with Equation 12.113 in a
matrix form as

0 I 0 c I 0 O c
0 0 I zc z 01 O zc (12.119)
G G G z%c 0 0 G z%c

Av zBv (12.120)

This is a Generelized Eigenvalue Problem (GEP) [22] of size®B 30, which can
be solved forz and v. Values of x;y can be recovered fromv asx  cg{c1p and
X  Co{Cp. It provides 30 solutions in general.

When G is regular, we can pass to a standard eigenvalue problem forron-zero
z by inverting Aand usingw  1{z

q) 1(:1 CO 1(:2 q) l(:3 WZC WZC
| 0 0 we w o we (12.121)
0 I 0 c c

>M[1,1];
29122 g112 g121 29133 g113 g131 g1232 g111 g1222 g111 29132 g112 g131 g1322 g111 g¢1312gl111 g¢1122 gi11l
g111% 29123 9113 g121 g1332g111 g1212g111 g1132glil
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ideal plane, 103
a ne coordinate system, 23 image calibration matrix, 46
a ne function, 15 image plane, 34
ane space, 21 image projection matrix, 37
axioms of linear space, 18 o
axioms of a ne space, 22 join, 95
basis, 19 Kronecker product, 12
bound vector, 17 line at in nity, 92
camera pose, 42 linear function, 15
camera calibration matrix, 42 linear space, 18

camera cartesian coordinate system, 42

camera calibration, 42 marked ruler, 15

camera coordinate system, 34 meet, 95
camera projection matrix, 46 omnidirectional image, 72
coordinate linear space, 2 origin of a ne coordinate system, 23
coordinates, 19
cross product, 7 panoramic image, 72
partition, 19
dual basis, 9 perspective camera, 34
dual space, 9 point at in nity, 89

position vector, 23
principal plane, 34
principal point, 45
projection center, 34
projective space, 88

epipolar plane, 113
epipolar geometry, 113
epipolar line, 113
epipole, 113

essential matrix, 114

real projective plane
a ne point, 89, 90
algebraic model, 90
geometrical model, 88
ideal point, 89, 90

focal length, 42

free vector, 20
Frobenius norm, 119
fundamental matrix, 114

geometric scalars, 16 line, 91
geometric vector, 17 point, 88
homogeneous coordinates, 93 spherical image, 72
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standard basis, 2

three-dimensional real projective space,
101

vanishing point, 98
vanishing line, 98
vector product, 7
vector product, 7

world coordinate system, 34
world unit length, 50

zero bound vector, 17
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