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Abstract— Policy Gradient methods require many real-world
trials. Some of the trials may endanger the robot system and
cause its rapid wear. Therefore, a safe or at least gentle-to-wear
exploration is a desired property. We incorporate bounds on the
probability of unwanted trials into the recent Contextual Rela-
tive Entropy Policy Search method. The proposed algorithm is
evaluated on the task of autonomous flipper control for a real
Search and Rescue rover platform.

I. INTRODUCTION

The task of Reinforcement Learning (RL) [1] is to search
through the space of policies 7 : S — A, which map agent
states S to possible actions A; the actions are then applied
either in reality or using a transition model, and the agent
reaches a new state (this description is usually known as
Markov Decision Process, MDP). RL expects that the agent
is rewarded for being in state s with a reward R(s) € R,
and searches for a policy that maximizes the expected reward
over all trajectories the agent might execute. It is different
from supervised learning, which maximizes the immediate
reward, and not the long-term one.

Policy Gradient methods are used when the policy 7(s)
has a parametric form and can be written as 7(s|w), where
w) is a parameter vector. They stochastically optimize the
expected sum of rewards by direct sampling in the policy
parameter space. Thus, the learning performance of PG
methods does not depend on the complexity of controlled
systems, only on the number of policy parameters being opti-
mized [2]. Such property makes them suitable for learning of
controllers for robotic systems for which robust real behavior
prediction using the first-principle models is difficult (such as
closed form equations describing kinematic and/or dynamic
behaviors for rover-terrain interaction, or Navier-Stokes aero-
dynamic laws). Unfortunately, PGs usually require many
trials which endanger the real system or cause its excessive
wear. Therefore, they are usually not used directly on the real
system, but on data-driven models. For example, Kupcsik
et al. [3] demonstrate data-driven PG learning of the ball
throwing problem with a robotic arm, and Tedrake et al. [2]
argues that Policy Gradient learning for aerial maneuvers
with an ornithopter may be very efficient in fact. Transeth et
al. [4] show that for snake-like robots with significant side-
slip, no closed form expression of the snake’s motion exists,
therefore policy learning must resort to simulation.

Contextual REPS uses a stochastic upper-level policy
which generates deterministic lower-level policy samples.
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Fig. 1.

Search and rescue rover platform. Track flippers visible on the side
of the robot. A policy governs active tilting of the flippers assuring a safe
traversal.

The performance of these policies is evaluated by executing
them in the real world, and is used to estimate the upper-
level policy gradient. The Gaussian Process REPS (GPREPS)
method [3] adds a Gaussian Process (GP) in the loop, which
learns a representation of the system dynamics. The GP is
used for better evaluation of the policies without the need for
executing more real-world samples. Constraints have been
added to several PG methods. Uchibe and Doya [5] pro-
pose constrained policy search for GPOMDPs [6]. However,
GPOMDPs belong to early PG algorithms which use the
likelihood-ratio trick to compute the gradient of the expected
sum of rewards and then update the policy parameters by a
user-defined learning rate. Prashanth [7] propose constrained
PG method for Stochastic Shortest Path problem with in-
equality constraints on Conditional Value-at-Risk (CVaR)
as a risk measure. This method does not allow to include
implicit constraints and cannot be easily extended for general
episodic rewards, such as minimum distance of the trajec-
tory from a target position. We propose a combination of
GPREPS with the work of Uchibe and Doya — to extend
Contextual REPS with constraints. The proposed method is
called Constrained REPS, (CREPS). It evaluates the gener-
ated policies in a simulator and successively constrains the
upper-level policy distribution. This (i) reduces the number
of needed samples/iterations and consequently speeds-up the
learning process of the model, and (ii) provides a safe policy
when used with the real system.

Despite the fact that safe exploration becomes a key
issue ([8], [9]), it has remained almost neglected in the
general reinforcement learning community [10]. Akamet-
alu et al. [11] propose Policy Gradient with safety metrics
based on reachability analysis and demonstrate the algorithm
on experimental quadrotor application. In contrast to us,
they restrict the model to the class of control-affine systems



with locally Lipschitz continuous functions. Birdwell and
Livingston [12] suggest using handcrafted policies which
assure safe corrections of the evaluated policy and prevent the
robot from deviating significantly from the desired behavior
and endangering itself.

Bagnell [8] encodes safety into uncertainty of the dynam-
ics model, and assigns negative rewards for leaving an area
close to already visited states. Generally, connecting safety
and rewards into a single function is popular [13], [14],
[10]. However, as it is shown in e.g. [15], [16], separating
safety and rewards into independently optimized measures
simplifies the learning process and allows for re-using the
safety constraints for multiple different tasks. It is also
usually unclear how to choose the weight vector to sum up
the reward and safety terms.

Moldovan and Abbeel [17] define safe policies as those
preserving ergodicity, which means from any state there
exists a policy that returns the robot to the initial state. This
definition is too strict, since it discards a whole class of
problems where inverse actions do not exist or returning to
the starting state is not possible or even desired.

Since it is difficult to provide any guarantees on data-
driven models created from real-world samples without any
prior knowledge about the underlying physics [18], [11], we
replace the GP model from GPREPRS by a cautious physics-
based simulator [19] that certifies the safety of policies.
The cautious model of a system can never classify an
unsafe policy (in the real world) as safe; the other kind
of classification error is allowed (marking safe policies as
unsafe).

The major contribution of this work is twofold: (i) We
propose extending Contextual REPS [3] to a new constrained
Policy Gradient method by including implicit constraints
which cannot be derived explicitly from first-principle mod-
els. (ii) The new algorithm is evaluated on an autonomous
flipper control task on real Search&Rescue rover platform
(see Figure 1) and the results are compared with two existing
methods [3] and [14].

II. CONSTRAINED RELATIVE ENTROPY POLICY
SEARCH

A. Preliminaries

Model-free policy search algorithms usually follow these
steps: (i) generate trajectories from the real-world system,
(i) compute a policy maximizing the expected sum of
rewards on the so-far-generated trajectories, (iii) use the
policy to generate a new real-world trajectory, (iv) repeat
from (ii). Contextual REPS [3] adds a task-dependent context
s (a changing property of the environment, e.g. the height
of an obstacle), from which it extracts a feature vector ¢(s).
This feature vector is an input of the stochastic upper-level
policy ¢(s,w), which generates parameter vectors w which,
in turn, define the lower-level policy. Samples w ~ ¢(s) are
evaluated on the model (which is called a rollout) and the
corresponding sums of collected rewards (or a single episodic
reward) R[slc]., are recorded. Using this data, Contextual REPS
searches for a new upper-level distribution p(s,w), which

maximizes the expected sums of rewards while staying close
to the so-far-generated trajectories. The distance of trajec-
tories is measured by Kullback-Leibler (KL) divergence.
Bounding the KL divergence between p(s,w) and ¢(s,w)
as follows:
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where € specifies the trade-off between exploration and
exploitation, was shown to lead to uniform convergence in
the whole parameter space [20]. Another constraint imposed
on the upper-level distribution in Contextual REPS is to
preserve the average distribution of context features:

S5 nls.w)e(s) = b,

where ¢ is the average feature value.

B. Additional constraints

We extend Contextual REPS with additional constraints.
In particular, for systems which are not inherently safe, or
which are prone to wear, we use a cautious physics-based
simulator (see Section III) to determine a rollout safety Ss,.
The safety equals to 1 if policy w generated a safe trajectory
for context s, and equals to 0 otherwise. We force the upper-
level distribution p(s, w) to have expected safety bigger than
user-defined threshold ¢

D pls,w)(1— Sew) <6 (1)

Another source of additional constraints is a prior knowl-
edge of physical limits such as the maximal joint angles
(which are the control actions in our experiment). Violating
such constraint is usually not safety-critical, since reaching
an impossible pose is often prevented by some low-level
motor drivers. However, evaluating many impossible samples
naturally slows down the learning process.

Since all of these constraints have the same form, we
compose a vector Cg,, as a collection of evaluated quantities
(e.g. safety and mechanical constraints) and vector § as a
collection of corresponding bounds. Such notation yields the
following set of inequalities

D> p(s,w)(1 - Cew) <6 )

where 1 denotes a vector with all-ones of a corresponding
dimension.

C. Constrained REPS

Constrained REPS searches for an upper level policy
distribution p(s,w) corresponding to the solution of the



following optimization problem:
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We follow the same derivation as proposed in [3] and solve
the problem by the method of Lagrange multipliers (the
detailed derivation is provided in [3] and is not given here
due to space constraints). By setting the gradient of the
corresponding Lagrangian with respect to p(s,w) to zero,
we obtain the closed form solution
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)<

S 6,

max g(n,7,0)
1,7%,60

t.:y >0, %)
n >0,
where
_ T T
g(n,7,0 MO“ZZ s, w) exp (st o d)()n 1+7 C’”) ©6)
+ne+oT¢+wTaA
Using a dataset D = [s[i],w[i],R[sﬂ,,CLﬂ,]izl _____ ~ Wwhere

samples are picked from distribution ¢(s,w), we can rewrite
the previous equation as
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Dual problem (5) is a convex function with lower bound
constraints. We achieved the fastest convergence with the
interior point algorithm [21] with supplied gradients:
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Fig. 2. Toy example demonstrating solution of problem (3). Resulting

upper-level probability distribution (equation (11)) is in black. Please notice
the maximum reward is located in an unsafe area. Therefore, CREPS
computes a distribution that prefers safe, though suboptimal choices.

Probabilities pl’! of the new upper-level distribution are
estimated from the optimal dual variables 6, ~, n:
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To generate samples from this distribution, we either use
weighted maximum likelihood to fit a normal distribution
into samples (w!?, s[!l) weighted by probabilities pl’ as
suggested in [3], or we use importance sampling to generate
samples from the non-parametric distribution. Constrained
REPS is described in Algorithm 1.

Input: maximal information loss €, vector of
constraints d, context distribution p(s), initial
upper-level policy m(w|s), number of policy updates K,
number of samples N.
for k=1,...,K do
fori=1,...,N do

Observe sl from yu(s).

Generate parameters w!’! from 7 (w|sl).

Using w(l execute lower-level policy on the

model and collect R[sﬂ,, Cgﬂ,
end

Fill in dataset
D = [, wl, R, Cll);
Optimize dual functlon
(7,7, 0] = argmin,, ., ¢ 9(1,7,0; D).
Compute weights pl*) for all samples in D, Eq. (11).
Update upper-level policy m(wls).

=1,..,N-

end
Algorithm 1: Constrained REPS

Figure 2 shows a toy example. We generate 1000 samples
from one-dimensional normal distribution g(w) with both
mean and variance equal to 0.3. We have intentionally chosen
the position of rewards maximum into w = 0, safety equal
to one for w > 0.5 and mean of ¢ into 0.3 to make all
constraints active. We set the upper bound on KL-divergence
€ = 0.1 and the lower bound on safety § = 0.6. We verify



(b) Visualization of the simulated
robot

(a) Real robot executing a safe
policy

Fig. 3. The task is to learn how to safely traverse a pallet without any prior
knowledge about the correct policy. There are more substantially different
policies satisfying our constraints on safety and forward speed.

the average safety of samples generated from the distribution
given by (11) is 0.6064, which is indeed above the required
safety bound.

III. SAFETY FUNCTION

One of the additional constraints uses the term S,
which denotes the safety of the rollout (1 is safe, O unsafe),
and is computed by a cautious physics-based simulator. In
simple cases, it can be an equation (even implicit), that
checks some constraints of arbitrary order. When modeling
a complex system, standard software physics and dynamics
simulators can be used. The only requirement is that the
simulation has to fulfill the cautiousness requirement. From
the implementation point of view, the cautiousness can be
a core part of the simulator design, or it is achieved by
adding noise to the inputs and outputs, and testing more
possible values of uncertain parameters (such as track-soil
interaction). This way, it should be possible to create cautious
simulations of most of the real-world systems (given the
simulator can simulate all the important interactions and
influences).

Since the simulator is only approximate (and contrary to
GPs, it cannot be easily updated by new samples), real-world
verification of its reward estimates has to be performed.
Therefore, after finding an optimal policy in the simulator,
a few more policy search iterations are performed on the
real robot. Safety is still a concern, so every sampled lower-
level policy is first tested for safety in the simulator, and
if it is safe, it is executed on the real robot, and the real-
world reward is collected (instead of the one reported by the
simulator).

IV. EXPERIMENTS
A. Safe Traversal Task Description

The robot has to learn a flipper control policy that would
allow it to traverse an obstacle without any prior knowledge
about the correct traversal strategy (see Figure 3).

This task has been chosen because it very well separates
good and bad policies (as well as safe and unsafe). A bad
policy is not even able to get the robot on top of the obstacle,
and therefore the robot gets stuck in front of it and travels
only a short distance (receiving low reward). This task also
allows for a wide variety of unsafe policies.

Some results of this experiment are compared to a similar
task called Adaptive Traversability (AT) presented in [14]
and improved in [22]. The goal of that task is to find a policy
to control the flippers so that the robot maximizes a weighted
sum of rewards (and minimizes penalties). The training
process is a combination of supervised and reinforcement
learning and requires a large set of manually annotated data.
Since the forward speed is constant in the task, we compare
the policies using the penalties for high pitch angle and for
high acceleration.

We use a similar environment for the Safe Traversal (ST)
task. The tracked robot starts in front of a standard wooden
EUR 1 pallet. The robot is automatically driven forward by
a constant speed, and the experiment ends after 30 seconds.
For an illustration, see Figure 3.

a) States: States of the ST task are: (i) robot body pitch,
and (ii) height of the terrain approximately 20 cm in front of
the robot body (read from an octomap built online from laser
scans).

b) Actions: ST policy controls independently the pairs
of front and rear flippers using positional control. Therefore,
the action space is continuous and 2-dimensional.

¢) Rewards and Safety: In the AT task, safety is not
modeled separately, and some of the safety features are part
of the reward. The reward for the AT task is a weighted sum
of (i) manually assigned safety penalty, (ii) high pitch/roll
angle penalty, (iii) penalty for excessive flipper motion,
(iv) robot forward speed reward, and (v) motion roughness
penalty measured by accelerometers [14].

In the ST task, the reward is simply the distance traveled
in 30 seconds over the pallet (the choice of policy influences
e.g. track slippage and motor stress, which lower the speed).
Safety is modeled explicitly by the cautious simulator, which
marks as unsafe all rollouts in which the robot tops over, hits
hard on the ground or obstacle (measured as deceleration),
or hits objects with delicate parts of its body (e.g. sensors).

d) Policy: We use a policy that is linear in the states,
and that controls front and rear flippers separately. The state
vector is 2-dimensional, which yields 3 parameters per ac-
tion, summing up to 6 policy parameters, w = (w1, ..., ws),
to be learned.

e) Context: In this experiment, we did not make use
of the context—it was always set to zeros. This helped to
keep the experiment simple, and was also needed to keep
the possibility of comparing ST and AT results. The theory,
however, supports using the context, and our future plans
include designing an experiment that would make use of the
context.

B. Simulator Setup

To run the simulation on a computer, we use the Open
Dynamics Engine (ODE) which aims at fast approximate
simulation. In ODE, we use a simple, yet reasonably plau-
sible way to simulate the mobile robot with non-deformable
tracks — a method typically used for simulating conveyor
belts.



The collision model used in the simulator consists of
simple-shape collision links (boxes, cylinders) approximating
the CAD model of the robot. Weights, centers of mass,
inertias, friction coefficients and other dynamics coefficients
are estimated manually. It is important to estimate these
parameters precisely enough, so that the simulator can be
assumed cautious (which can be easily done using the CAD
model). Or, in case of very influential unknown parameters,
the simulator has to be run with multiple possible values and
the worst-case outcome treated as the simulation result.

C. Experiment Setup

The experiment follows the pipeline described in Sec-
tion III. First, 10 to 30 iterations of the CREPS algorithm are
done using only the simulator (until the policy converges).
It returns an upper-level policy, from which we can draw
lower-level policies that are safe and lead to high expected
rewards. In each iteration, we test approximately 150 simu-
lated rollouts to estimate the sum in the dual function (7).

If improvement by real-world samples is intended, the
experiment continues with 10 lower-level policies sampled
from the optimal upper-level policy and checked in the
simulator for safety. If they are safe, they are executed on
the real robot. Otherwise, different policies are sampled until
the desired number of safe policies is reached.

These real samples are further used to update the upper-
level policy in the CREPS algorithm. This way we can
correct the policy if the simulator estimated the rewards
incorrectly.

D. Results

We tested the algorithm with several settings to show it
consistently converges to high rewards in safe regions. The
settings differed in e.g. the initial policy, upper-level policy
representation (either a multivariate Gaussian distribution or
the Importance Sampling mechanism as described in Sec-
tion II-C), and the expected safety lower bound (generally
0.8, but in one experiment it was set to 0.0 to simulate
unconstrained REPS).

The probability distribution of safe/unsafe policies showed
to be very complex during the experiments, and it is far from
being Gaussian or uniform. As can be seen in Figure 4, most
of the time, the mean safety of rollouts is below the desired
threshold of 0.8. However, it still tries to reach the threshold.
In this case, the Importance Sampling method yields better
results, as it better represents the complex distribution.

In the two experiments with unconstrained REPS, com-
paring Figure 4 and Figure 5, it is clear the algorithm
strived for the highest rewards possible and safety quickly
dropped to almost zero (which means the traversal was
faster, but the robot hit ground too hard during the rollout).
Interestingly, one of the unconstrained experiments reach a
level of expected rewards not seen in any of the safety-
constrained cases, which suggests the best policies are unsafe
and CREPS correctly avoids these maxima.

Figures 4 and 5 show that the CREPS algorithm maxi-
mizes the rewards in cca the first 10 iterations, and then it
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on safety. The solid black curve is from a policy initialized close to a local
maximum of the safety function. Compare with Figure 5 to see that the
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(behaving like Contextual REPS), and they quickly found the best rewards
lie in the unsafe space. Also note the Importance Sampling experiments
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safety converged to an optimum with the highest expected reward.

holds the good rewards and tries to satisfy the expected safety
constraint. As we discussed earlier in this section, since the
safe policy distribution is difficult to represent, the expected
safety constraint is often broken. It does not, however, mean,
that the robot could be damaged because of this imperfection.
It only means we probably need to sample more lower-level
policies until we find a safe one (which is always tested in
the simulator before real execution).

We compared the high-pitch and high-acceleration penal-
ties gathered by both an optimal policy for the ST task
and also for the AT task. We performed 10 rollouts with
each of the methods, and compared the penalties; results are
shown in Figure 6. The pitch histogram was essentially the
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TABLE I
EXECUTION IN THE REAL WORLD

Iteration | Kind Policy Converged | Mean Reward
29 Simulated | yes (in sim.) 0.80 £0.01
30 Real no 0.73 £0.10
31 Real yes (in real) 0.85 + 0.05

The converged simulated policy performance was lower when used
in the real world, but after only 2 real-world iterations, the CREPS
algorithm converged to the real-world optimum (which is different from the
simulated optimum, since the simulator is only approximate). The reader
should notice that the simulated optimum had to be close to the real-world
optimum, since CREPS doesn’t allow large changes of the policy.

same for both tasks, so only the acceleration histograms are
shown in Figure 6. The figure illustrates that the CREPS
policy doesn’t generate more dangerous trajectories than the
AT policy (which was however trained with a large set of
manually annotated data).

Last, we closed the loop improving one of the best policies
found in the simulator by real-world reward samples. We
executed two CREPS iterations, each with 10 samples. Safety
was always checked in the simulator, then the sampled policy
was executed, and the real-world reward collected. After two
gradient search steps, the expected reward is higher than the
best reward achieved in the simulator, as is shown in Table I.
It is important to note that the policy search now cannot reuse
samples from the simulator, since the reward estimate may
be biased by imperfection of the simulator.

V. CONCLUSION AND FUTURE WORK

In a small number of iterations (and with about 2000 sim-
ulated trajectories), the robot learned how to safely traverse
a previously unknown obstacle, and even the learning process
itself was safe—thanks to the cautious simulator. We show
that the cautious simulator can be designed in such a way
that it does not constrain the possible actions too much and
the robot is still able to reach the safe optimal rewards.

In our future work, we would like to address some of
the open problems — first, constructing an experiment in
which the context would be utilized (which it is not in
this work, although the theory fully supports utilizing it).
Second, examining different classes of the safety function
and deducing e.g. convergence properties based on these
classes.
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