Computer Architectures

Number Representation and Computer Arithmetics
Pavel Pisa, Richard Susta

Michal Stepanovsky, Miroslav Snorek

Czech Technical University in Prague, Faculty of Electrical Enaineerina

English version partially supported by: m
European Social Fund Prague & EU: We invests in your future. A b

B35APO Computer Architectures

PF2020

Let health allows you and your dears to fulfill one's dreams,
and nothing-and nobndy prevéhts you from sharing happmess
and results of your work and- ﬂreatiwty e : g’

B35APO Computer Architectures 2

Important Introductory Note

 The goal is to understand the structure of the computer so you can
make better use of its options to achieve its higher performance.

 |tis also discussed interconnection of HW / SW

 Webpages:
https://cw.fel.cvut.cz/b192/courses/b35apo/
nttps://dcenet.felk.cvut.cz/apo/ - they will be opened

* Some followup related subjects:
« BAM35PAP - Advanced Computer Architectures
« B3B38VSY - Embedded Systems
« BAM38AVS - Embedded Systems Application
 B4B350SY - Operating Systems (Ol)

 BOB35LSP — Logic Systems and Processors (KyR + part of Ol)
Prerequisite: Susta, R.: APOLOS , CTU-FEE 2016, 51 pg.

BOB35APO Computer Architectures 3

Important Introductory Note

e The course is based on a world-renowned book of authors

Paterson, D., Hennessey, V.. Computer Organization and Design,
The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5

| David Andrew Patterson
: University of California, Berkeley
Works: RISC processor Berkley RISC - SPARC,
DLX, RAID, Clusters, RISC-V

John Leroy Hennessy
10th President of Stanford University
Works: RISC processors MIPS,

DLX a MMIX

2017 Turing Award for pioneering a systematic, quantitative approach to the design
and evaluation of computer architectures with enduring impact on the
microprocessor industry. - A New Golden Age for Computer Architecture — RISC-V

BOB35APO Computer Architectures 4

Gordon Moore, founder of Intel, in 1965: " The number of transistors on integrated
circuits doubles approximately every two years "

I Stuttering [Chip introduction
® Transistors per chip, ‘000 ® Clock speed (max), MHz @ Thermal design power*, w dates, selected

Transistors bought per §, m I Pentium & | Xeon | Core 2 Duo

20
. Log scale
15 Pentium III 10
10 Pentium II .-
5 Pentium|
| | 1 | | | ! u 135
200204 06 08 10 12 15 486
10°
4004
e
10
rr rr 1 1 r 111 rr~r+~p 1 1 [11 11| ¢~ §r 1t 1. [. 111 [111 T]]ﬂ]
1970 75 80 B85 a0 95 2000 05 10 15

Sources: Intel; press reports; Bab Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

BOB35APO Computer Architectures

Process
Steps

1,400
1,200
1,000

800 -

600

400

200

Moore's Law will be
stopped by cost...

Predicted Cumulative Yield
| assuming the per-step yield
stays constant at 28nm levels.

90nm 65nm 45nm 28nm 20nm 14nm 10nm 7nm 5nm
Design Rule (nm)

Cost per constant area die, $

120

100

80

60

- 90%

- 80%

- 70%

- 60%

- 50%

=@ < 0.3M units
=i 1M units

=@ 10M units
=$=30M units
<i-100M units
== 300M units
- 209 [year
weens 0% J,r year

90 65 40 28 16/14 10 7
Source: http://www.eetimes.com/

Cumulative
Yield

Source: http://electroig.com/

40 years of Processor Performance

100000

End of

10000 he

r% Line?
= . _ Law FLORYES
§I = (3%lyr)
9 2X |
§ . 6 yrs
E (12%lyr)
= cIsC e
= 2X11.5yrs
o 10 2X13.5yrs (52%Iyry

(22%lyr)

=80 1985 15990 1995 2000 2005 2010 2015

Based on SPECintCPU. Source: John Hennessy and David Patterson,
Computer Architecture: A Quantitative Approach, 6/e. 2018

BOB35APO Computer Architectures 7

Processors Architectures Development in a Glimpse

e 1960 — IBM incompatible families - IBM System/360 — one ISAto rule

them all,

Model M30 M40 M50 M65
Datapath width 8 bits 16 bits 32 bits 64 bits
Microcode size 4k x 50 4k x 52 2.75k x 85 2.75k x 87
Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns
Main memory cycle time 1500 ns 2500 ns 2000 ns 750 ns
Price (1964 $) $192,000 $216,000 $460,000 | $1,080,000
Price (2018 $) $1,560,000 | $1,760,000 | $3,720,000 | $8,720,000

1976 — Writable Control Store, Verification of microprograms, David Patterson Ph.D.,
UCLA, 1976

* Intel iIAPX 432: Most ambitious 1970s micro, started in 1975 — 32-bit capability-based
object-oriented architecture, Severe performance, complexity (multiple chips), and
usability problems; announced 1981

* Intel 8086 (1978, 8MHz, 29,000 transistors), “Stopgap” 16-bit processor, 52 weeks to
new chip, architecture design 3 weeks (10 person weeks) assembly-compatible with 8
bit 8080, further i80286 16-bit introduced some IAPX 432 lapses, i386 paging

BOB35APO Computer Architectures 8

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

CISC and RISC

 IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was
out of main business)

e Use SRAM for instruction cache of user-visible instructions

* Use simple ISA — Instructions as simple as microinstructions, but not
as wide, Compiled code only used a few CISC instructions anyways,
Enable pipelined implementations

* Chaitin’s register allocation scheme benefits load-store ISAs
* Berkeley (RISC I, Il - SPARC) & Stanford RISC Chlps (MIPS)

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in
3 um &4 pm NMOS, ran at 4 MHz (3 um), and size is 50 mm2 (4
pum) (Microprocessor without Interlocked Pipeline Stages)

BOB35APO Computer Architectures 9

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

CISC and RISC

* CISC executes fewer instructions per program (= 3/4X instructions),
but many more clock cycles per instruction (= 6X CPI)

= RISC = 4X faster than CISC

PC Era PostPC Era: Client/Cloud
= Hardware translates x86 = |IP in SoC vs. MPU
instructions into internal RISC = Value die area, energy as much as
Instructions (Compiler vs Interpreter) performance
= Then use any RISC = > 20B total / year in 2017
technique inside MPU = 99% Processors today are RISC
= > 350M / year! = Marketplace settles debate

= X86 ISA eventually
dominates servers as well
as desktops

Alternative, Intel Itanium VLIW, 2002 instead 1997

“The Itanium approach...was supposed to be so terrific —until it turned out
that the wished-for compilers were basically impossible to write.” - Donald

Knuth, Stanford

BOB35APO Computer Architectures
Source: A New Golden Age for Computer Architecture with prof. Patterson permission

10

RISC-V

ARM, MIPS, SPARC, PowerPC — Commercialization and extensions
results in too complex CPUs again, with license and patents
preventing even original investors to use real/actual implementations
In silicon to be used for education and research

Krste Asanovic and other prof. Patterson's students initiated
development of new architecture (start of 2010), initial estimate to
design architecture 3 months, but 3 years

Simple, Clean-slate design (25 years later, so can learn from mistakes of
predecessors, Avoids parchitecture or technology-dependent features),
Modular, Supports specialization, Community designed

A few base integer ISAs (RV32E, RV32l, RV64l)

Standard extensions (M: Integer multiply/divide, A: Atomic memory
operations, F/D: Single/Double-precision Fl-point, C: Compressed
Instructions (<x86), V: Vector Extension for DLP (>SIMD**))

BOB35APO Computer Architectures
Source: A New Golden Age for Computer Architecture with prof. Patterson permission

11

Foundation Members since 2015

100

Western
Digital’

&N CHANGHONG
nvipia. ANYIKA

QLIALCONVW

75

50

T = SANMISUNG
0 Rambus== - %:% G I
Cryptography Research (@) g e
& Microsemi M\ Mellanox SiFive

0

Q215 Q315 Q415 Q116 Q216 Q316 Q416 Q117 Q217 Q317 Q417 Q118 Q218

Open Architecture Goal
Create industry-standard open ISAs for all computing devices

“Linux for processors”

BOB35APO Computer Architectures 12
Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Todaz PC Comeuter Base Platform — Motherboard

B35APO Computer Architectures 13

Block Diagram of Components Interconnection

End
point

Root
complex

Switch

Microprocessor

point point point

B35APO Computer Architectures

Block Diagram of Components Interconnection

Root
complex

B35APO Computer Architectures 15

Block Diagram of Components Interconnection
Additional

Root
complex

B35APO Computer Architectures

16

Von Neumann and Harvard Architectures

von Neumann
CPU

Memory

Instructions

von Neumann
“bottleneck”

Data

Address,
Data and

Status
Busses

Instruction |
memory A

Harvard
CPU

Memory

Instruction
Address,
Data and
Status
Busses

Data space
Address,
Data and
Status
Busses

[Arnold S. Berger: Hardware Computer Organization for the Software Professional]

BOB35APO Computer Architectures

17

John von Neumann

Princeton Institute for Advanced Studies

Pamét

Procesor
*_____H m 28.12. 1903 -

| | 8. 2. 1957
controller | . L.
Y R NTTR
Input , y Jj:> Output
| ' 4
5 units:

*A processing unit that contains an arithmetic logic unit and processor
registers;

*A control unit that contains an instruction register and program counter;
*Memory that stores data and instructions

*External mass storage

*Input and output mechanisms

BOB35APO Computer Architectures 18

Samsung Galaxy S4 inside

* Android 5.0 (Lollipop)

 2GB RAM

* 16 GB user RAM user

* 1920 x 1080 display

* 8-core CPU (chip Exynos 5410):
* 4 cores 1.6 GHz ARM Cortex-Al5
* 4 cores 1.2 GHz ARM Cortex-A7

BOB35APO Computer Architectures 19

Samsung Galaxy S4 inside

BOB35APO Computer Architectures
Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

20

Samsung Galaxy S4 inside

Exynos 5410 Multichip memory: 64 MB
(8-core CPU DDR SDRAM, 16GB
+ 26B DRAM) NAND Flash, Controller

Power
management

Wi-fi N — - Intel PMB9820
(broadcom s BERL) e baseband
BCM4335) e processor

(functions radio -
EDGE, WCDMA,

DSP processor HSDPA/HSUPA)

for voice and
audio codec

BOB35APO Computer Architectures

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

21

Samsung Galaxy S4 inside

X-ray image of Exynos 5410 hip from the side :

We see that this is QDP (Quad die package)

To increase capacity, chips have multiple stacks of dies.
A die, in the context of integrated circuits, is a small block of semiconducting
material on which a given functional circuit is fabricated. [Wikipedia]

BOB35APO Computer Architectures 22
Sourcej: http://gammaOburst.tistory.com/m/600

Samsung Galaxy S4 inside

Chip Exynos 5410 — here, we see DRAM

BOB35APO Computer Architectures 23

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/
pages/computational-photography-part-2

Samsung Galaxy S4 inside

Chlp Exynos 5410

- SGX544
Tri-core

%OPU 4

Display

= Camera

Video
Encode

g il

L] q" ‘h"

R R A E AT
‘%: ¥
Memory
Control
+ System
Logic

Quad A15
with:2MB Cache

BOB35APO Computer Architectures

Al , -

i

T

7}

Pit Eﬂm LT

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/

Note the different sizes of 4 cores
A7 and 4 cores Al15

On the chip, other components
are integrated outside the
processor: the GPU, Video coder
and decoder, and more. This is
SoC (System on Chip)

24

pages/computational-photography-part-2, http://gammaOburst.tistory.com/m/600

Samsung Galaxy S4 inside

y axis
X axis))))) Y(
NAND flash z axis GPS @ Y
(16GB) Baseband
Accelerometer Wi-fi DFOCESSOr
T —— Application |
| M IIF , |
| (LPDDE?,OJKAMC, SD) Peripheral I/F Processor: |
| Exynos |
| cpPu CPU GPU ;
i | Cortex A15 Cortex A7 SGX544 i
i | Quad core Quad core Tri core ISP
Camera || Display Hzﬂgfcﬁeggé’)': Audio

e . DSP

BOB35APO Computer Architectures

processor
for audio

25

Common concept

* The processor performs stored memory (ROM, RAM) instructions to
operate peripherals, to respond to external events and to process data.

BOB35APO Computer Architectures 26

Example of Optimization

Autonomous cars

Source: http://www.nvidia.com/object/autonomous-cars.html

* Many artificial intelligence tasks are based on deep neural networks (deep
neural networks)

BOB35APO Computer Architectures 27

Neural network passage -> matrix multiplication

* How to increase calculation?
* The results of one of many experiments
* Naive algorithm (3 x for) — 3.6 s = 0.28 FPS

* Optimizing memory access — 195 ms = 5.13 FPS
(necessary knowledge of HW)

* 4cores—114 ms =8.77 FPS
(selection of a proper synchronization)

* GPU (256 processors) — 25 ms = 40 FPS
(knowledge of data transfer between CPU and coprocessors)

* Source: Naive algorithm, library Eigen (1 core), 4 cores (2 physical on i7-2520M, compiler
flags -03), GPU results Joela Matéjka, Department of Control Engineering, FEE, CTU
https://dce.fel.cvut.cz/

* How to speedup?

BOB35APO Computer Architectures 28

https://dce.fel.cvut.cz/

Optimize Memory Accesses

* Algorithm modification with respect to memory hierarchy

* Data from the (buffer) memory near the processor can be
obtained faster (but fast memory is small in size)

BOB35APO Computer Architectures 29

Prediction of jumps / accesses to memory

In order to increase average
performance, the execution of
Instructions is divided into
several phases => the need to
read several instructions / data
In advance

*Every condition (if, loop) means
a possible jump - poor
prediction Is expensive

*|t Is good to have an idea of
how the predictions work and
what alternatives there are on
the CPU / HW. (Eg vector /
multimedia inst.)

Source: https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg

BOB35APO Computer Architectures 30

https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg

Parallelization - Multicore Processor

e Synchronization requirements

e |Interconnection and communication possibilities between
Processors

e Transfers
between
memory levels
are very
expensive

* Improper
sharing/access
form more cores
results in slower i
code than on a
single CPU

| ’ L wingw _ [EERC

Intel Nehalem Processor, Original Core i7
Source: http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

BOB35APO Computer Architectures 31

http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

Computing Coprocessors - GPU

* Multi-core processor (hundreds)
e Some units and bclocks shared

* For effective use it is necessary to know the basic
hardware features

ispatch U
.

h Unit
Regis

=3

er File (32,768 x 32-bit)

o
3
o
3

o
H
o
H

o
3
o
:

o
|
a
H

o O 0
0§ 3
o o 0
S 2|3

o
H
o
H

Source: https://devblogs.nvidia.com/parallelforall/inside-pascal/

BOB35APO Computer Architectures 32

https://devblogs.nvidia.com/parallelforall/inside-pascal/

GPU — Maxwell

GM204

5200 milins trasistors
398 mm?

PCle 3.0 x16

2048 computation
units

4096 MB
1126 MHz
7010 MT/s
72.1 GP/s
144 GTl/s
224 GB/s

] I:Vj i |

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

BOB35APO Computer Architectures

33

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

FPGA — design/prototyping of own hardware

 Programmable logic arrays

* Well suited for effective implementaion of some digital
signal manipulation (filters — images, video or audio, FFT
analysis, custom CPU architecture...)

* Programmer interconnects blcoks available on the chip

* Zyng 7000 FPGA — two ARM cores equipped by FPGA —
fast and simple access to FPGA/peripherals from own
program

* (the platform is used for your seminaries but you will use

only design prepared by us, the FPGA programming/logic

design is topic for more advance couses)

B35APO Computer Architectures

34

Xilinx Zynq 7000 a MicroZed APO

Flash Confroller NOR, NAND, Multiport DRAM Controller
SRAM, Quad SPI DDR3, DDR3L, DDRZ

iy
SPI
2x

12¢
MPCore
iy

CAN NEON™ SIMD and FPU NEON™ SIMD and FPU

2
kR ARM® Cortox™ - A9 ARM® Cortex™ - A9

25010 512KB L2 Cache 256KB On-Chip Memory
with DMA
o it e o

Processor 1/0 Mux

2 USB
with DMA
vﬁ:nuﬁn AMBA® Interconnect Soctn
1 |
General Purpose ACP High Performance 1
AXI Ports AXI Ports |
aane Programmable Logic PCEe Gen?
T Soasr (System Gates, DSP, RAM) i
1
4 ¥ Source: https://cw.fel.cvut.cz/wiki/courses/b35apo/start

Source: https://lwww.xilinx.com/products/silicon-devices/soc/zyng-7000.html

B35APO Computer Architectures 35

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://microzed.org/product/microzed
https://cw.fel.cvut.cz/wiki/courses/b35apo/start

MZ_ APO board

you will later work with this board)

PP0ERAeEEeeEREBRIOORE@®
P0RPPPNIPIPEROOROOQ

0
- e

-0 ge DISPLAY . .
= wnm l LEDD I. I Microzep_apo-1 }F"h.'“_.:','I'}I'IZ-,!;U'J
1 CAMERAZ 7 § Nt N CAMERA1

D5,

3

-}
P
o
L -8
L -3
-
P
x g
ple
et
L O 1

,PMOD1

R ST |

BOB35APO Computer Architectures

MZ_APO - features

 The core chip: Zyng-7000 All Programmable SoC
* Typ: Z-7010, device XC7Z010

e CPU: Dual ARM® Cortex™-A9 MPCore™ @ 866 MHz
(NEON™ & Single / Double Precision Floating Point)
2x L1 32+32 kB, L2 512 KB

* FPGA: 28K Logic Cells (~430K ASIC logic gates, 35 kbit)
 Computational capability of FPGA DSP blocks: 100 GMACs
 Memory for FPGA design: 240 KB

 Memory on MicroZed board: 1GB

* Operating system: GNU/Linux

 GNU LIBC (libc6) 2.19-18+deb8u7
e Kernel: Linux 4.9.9-rt6-00002-ge6c7d1c
* Distribution: Debian Jessie

B35APO Computer Architectures 37

MZ_APO - Logic design done in Xilinx Vivado

Eile Edit Flow Tools Window Layout Wiew Help [@- Search commands]
3 B8 & BRhX 3>D>EBK LI |C:} I & Y Synthesis and Implementation Out-of-date more info
Flow Navigator 7« Block Design - top * ? x
A= Sources = B %= Diagram x & Address Editor X ?0Owe o

Q= wet R

#] datop »

4 Project Manager

»—~ Design Sources (1) canbench_cc_gpio 00 L
 Project Settings » top_wrapper - STRUCTURE (t0, 8 - ‘ M
B Add Sources od) (1Y o processing system7_0 g;og:l]ﬁso] A
e top - STRUCTURE (t o] GPio_0sk|| p LED{7:0]
%' Language Template (SWI7:0]
v L i ko audio_single_pwm_0 - top_audio_single_g q’ el R |-y
4F IP catalog 2@ axi_mem_intercon - top_axi_mem_intercon_ | [GPO O[e30p | canbench_cc_gpio v1_0
a—LF axi_pwm_coprocessor_0 - top_axi_pwm_cc | =, F\ngE L —— BFD&:D o
4 P Integrator _axi_pwm_coprocessor_0_0 - top_axi ,[;. CAN 0= i
7% Create Block Desigr &~ U0 - axi_pwm_coprocessor vl 0 -an | CAND_PHY T {3 CAN1_TXD
% Open Block Design 3Lk canbench_cc_gpio_0 -top_canbench_cc_ | & . AXI.GPO AN PHY Fote |
o i top_canbench_cc_gpio_0_0 - top_canbe | w= | AN GPO_ACLK - can_1=|||
&5 Generate Block Des o~{F0 display_16bit_cmd_data_bus_0 - top_disp f 5_AX| GPO_ACLK ZYNQ. CANL_PHY T3 {3 CAN2_TXD
>~ {}[1 processing_system7_0 - top_processing_ | & \Q_F2P(1:0] CANL_PHY_ Rx= =——
4 Simulation >~ processing_system?7_0_axi_periph - top_pre ﬁ MuizND_ﬂﬁk |
Simulation Sattings oLkl rst_processing_system7_0_100M - top_rs = i
] 9 {—iFriservo_led_ps2_0 - top_serva_led_ps2_0_C | "% TTC0_WAVED OUT
(@, Run Simulat - =P - e TICO_WAVEL OUTH
un Sirmulation >~{Fspi_leds_and_enc_0 -top_spi_leds and_e | - 3 TTCO_ WAVED_ OUTR
>{FIxlconcat_0 - top_xlconcat_0_0 (= " oLk cixap—
4 RTL Analysis 5 Constraints (1) b FCLK_RESETO_Ng— -
o~= Simulation Sources (1)
 Elaboration Setting] ZYNQT Processing System
» &% open Elaborated by | [T o2
Hierarchy IP Sources Libraries Compile Order &l
4 Synthesis o . " — i Int
b & Sources El Design Signals @ Board < 2x_Mmem,_ntercon
#5 synthesis Settings 00
2 _ A x d
b Run Synthesis External Pert Properties [e 501 A
AX]
> % Open Synthesized O Lok [|
O ENCDATA RESETN[0.0]
4 Implementation w1500 ACLK. BE
#% Implementation Set| || Mame: e]D§E maes
[» Run Implementatior || Direction: Input)| ARESETNIC:0]
3 501 _ACLK
> @7 Openimplemented | | yet = ENCDATA_L 501_ARESETNIO.0) |
U oz acik display 16bit_cmd data_bus 0
4 Program and Debug y] oo
% Bitstream Settings - poeean {55 LCO_RST
AXI Interconnect ked esn {3 LeD Cs
ﬁ Generate Bitstream led _wr 1 {3 LCD_WR
2 4 led v n
» @> Open Hardware Mar — I i [L Rs =
General Properties - o D3
- 0O %
= dding cell -- xilinx.com:ip:axi_protocol_converter:2.1 - auto_pc -
ey dding cell -- xilinx.com:ip:axi_protocol_converter:2.1 - auto_pc
= dding cell -- xilinx.com:ip:axi_protocol_converter:2.1 - auto_pc
1] dding cell -- xilinx.com:ip:axi_protocol_converter:2.1 - auto_pc
7l uccessfully read diagram <top> from BD file </home/pi/fpgaszynq/canbech-sw/system/src/top/top.bd>
3! open_bd_design: Time (s): cpu = 00:00:24 ; elapsed = 00:00:19 . Memory (MB): peak = 6008.051 ; gain = 153.621 ; free physical = 80 ; free virtual = 7868

B i set_property location {-22 483} [get_bd_ports CANZ RiD]
@ et_property location {-26 1138} [get_bd_ports ENCDATA]

write_bd layout -format pdf -orientation portrait /home/pis/mz_apo-v10-top.pdf
- /home/pi/mz_apo-v10-top.pdf

4]
Type a Tcl command here

B Td Console | (0 Messages ElLog 2 Reports ¥ Design Runs

B35APO Computer Architectures

The first seminar — physical address space on MZ_APO
Address
form
CPU

»

Memory mapped ML LU U TR
Input/Output range R

TERERRRLR

RAM memory

eB

| 1

NYr Q3M
-0dy~Q3Z0HII1H

AVIdSIO

)
yoo00b0000
00000 cessssanes

Liez ¥
4

PO

FEFEREEREF .

B35APO Computer Architectures

GNU/Linux operating system — from tiny gadgets ...

B35APO Computer Architectures

40

Linux — from tiny to supercomputers

TOP500 https://www.top500.org/ (https://en.wikipedia. org/W|k|/TOP500
Actual top one: Summit supercomputer — IBM AC922 Wa o
June 2018, US Oak Ridge National Laboratory (ORNL),
200 PetaFLOPS, 4600 “nodes”, 2x IBM Power9 CPU +
6% Nvidia Volta GV100

96 lanes of PCle 4.0, 400Gb/s

NVLink 2.0, 100GB/s CPU-to-GPU,

GPU-to-GPU

2TB DDR4-2666 per node

1.6 TB NV RAM per node

250 PB storage

POWER9-SO, Global Foundries 14nm FIinFET,
8x109 tran., 17-layer, 24 cores, 96 threads (SMT4)
120MB L3 eDRAM (2 CPU 10MB), 256GB/s

Source: http //WWW tomshardware com/

Other example: SGI SSI (single system image) Linux, 2048 Itanium CPU a 4TiB RAM

B35APO Computer Architectures 41

https://www.top500.org/
https://en.wikipedia.org/wiki/TOP500

Linux kernel and open-source

Linux kernel project

* 13,500 developers from 2005 year

* 10,000 lines of code inserted daily

e 8,000 removed and 1,500 till 1,800 modified

* GIT source control system

Many successful open-source projects exists

Open for joining by everybody

Google Summer of Code for university students

* https://developers.google.com/open-source/gsoc/

Zdroj: https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

B35APO Computer Architectures

42

https://developers.google.com/open-source/gsoc/
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

Back to the Motivational Example of Autonomous Driving

The result of a good knowledge of hardware

* Acceleration (in our case 18 x using the same number of cores)

* Reduce the power required * Butin an embedded device,
* Energy saving It IS sometimes necessary to
reduce its consumption and
cost. There are used very

* Using GPUs, we process 40 fps. simple processors or
microcontrollers, sometimes
without real number
operations, and programmed
with low-level C language.

* Possibility to reduce current solutions

3
=<

BOB35APO Computer Architectures 43

Applicability of Knowledge and Techniques from the Course

*Applications not only in autonomous control

*In any embedded device - reduce size, consumption,
reliability

|In data sciences - considerably reduce runtime and energy
savings in calculations

In the user interface - improving application response
*Practically everywhere...

BOB35APO Computer Architectures 44

Application
*Algorithm)
1 Programming Language

Original Operating System/Virtual Machine
?hoemain of Instruction Set Architecture (ISA)
computer Microarchitecture
architects Gates/Register-Transfer Level (RTL)
(05509

Computer

. A

Parallel
computing,
|_security, ...

Devices

Physics

r'Y

Domain of
recent computer
architecture
(‘90s - ?7?7?)

\ 4

1Reliabi|ity,

power, ...

Reference: John Kubiatowicz: EECS 252 Graduate Computer
Architecture, Lecture 1. University of California, Berkeley

B35APO Computer Architectures

APO
course
interest

v

45

Reasons to study computer architectures

* To invent/design new computer architectures
* To be able to integrate selected architecture into silicon

* To gain knowledge required to design computer hardware/
systems (big ones or embedded)

* To understand generic guestions about computers,
architectures and performance of various architectures

 To understand how to use computer hardware
efficiently (i.e. how to write good software)

* |tis not possible to efficiently use resources provided by any
(especially by modern) hardware without insight into their
constraints, resource limits and behavior

* Itis possible to write some well paid applications without real
understanding but this requires abundant resources on the
hardware level. But no interesting and demanding tasks can
be solved without this understanding.

B35APO Computer Architectures 46

More motivation and examples

* The knowledge is necessary for every programmer who
wants to work with medium size data sets or solve little more
demanding computational tasks

* No multimedia algorithm can be implemented well without
this knowledge

 The 1/3 of the course is focussed even on peripheral access
 Examples
 Facebook — HipHop for PHP — C++/GCC — machine code
 BackBerry (RIM) — our consultations for time source
 RedHat — JAVA JIT for ARM for future servers generation
* Multimedia and CUDA computations
* Photoshop, GIMP (data/tiles organization in memory)
 Knot-DNS (RCU, Copy on write, Cuckoo hashing,)

B35APO Computer Architectures 47

The course's background and literature

* Course is based on worldwide recognized book and
courses; evaluation Graduate Record Examination — GRE

Paterson, D., Henessy, J.. Computer Organization and
Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-
370606-5

e John L. Henessy — president of Stanford University, one of
founders of MIPS Computer Systems Inc.

* David A. Patterson — leader of Berkeley RISC project and
RAID disks research

* Our experience even includes distributed systems,
embedded systems design (of mobile phone like
complexity), peripherals design, cooperation with
carmakers, medical and robotics systems design

B35APO Computer Architectures 48

Topics of the lectures

Architecture, structure and organization of computers and its
subsystems.

Floating point representation

Central Processing Unit (CPU)

Memory

Pipelined instruction execution

Input/output subsystem of the computer
Input/output subsystem (part 2)

External events processing and protection
Processors and computers networks

Parameter passing

Classic register memory-oriented CISC architecture
INTEL x86 processor family

CPU concepts development (RISC/CISC) and examples
Multi-level computer organization, virtual machines

B35APO Computer Architectures

49

Topics of seminaries

1 - Introduction to the lab

2 - Data representation in memory and floating point
3 - Processor instruction set and algorithm rewriting
4 - Hierarchical concept of memories, cache - part 1
5 - Hierarchical concept of memories, cache - part 2
6 - Pipeline and gambling

7 - Jump prediction, code optimization

8 - 1/ O space mapped to memory and PCI bus

9 - HW access from C language on MZ_APO
Semestral work

B35APO Computer Architectures

50

Classification and Conditions to Pass the Subject

Conditions for assessment:

Category Points R(—::q_uwed Remark
minimum
4 homeworks 36 12 3of4
Activity 8 0
Team project 24 5
Points
60 30 Grade
Sum (68) range
A 90 and
more
Exam: B 80 - 89
- C 70-79
i Required
Category Points | . um D 60 - 69
Written exam part 30 15 E 50 - 59
Oral exam part +/-10 |0 = less than
50

B35APO Computer Architectures

The 1. lecture contents

* Number representation in computers
* numeral systems
* Integer numbers, unsigned and signed
* boolean values
e Basic arithmetic operations and their implementation
 addition, subtraction
 shift right/left
* multiplication and division

B35APO Computer Architectures

52

Motivation: What is the output of next code snippet?

int main() {
int a = -200;
printf("value: %u = %d = %f = % \n", a, a,
((float)(&a)), a);

return 0O;

}
value: 4294967096 = -200 = nan = 8

and memory content is: 0x38 Oxff Oxff Oxff
when run on little endian 32 bit CPU.

B35APO Computer Architectures

53

1st [ecture

INT

How to perform basic op
Adding, Subtracting,
Multiplying

AEOB36APO Computer Architectures 54

http://diameter.si/sciquest/E1.htm

e 1) ¥

10, 100, 1000, 10000, 100000, 1 million

The value iIs the sum: 1 333 331

AEOB36APO Computer Architectures 55

Terminology basics

* Positional (place-value) notation n

* Decimal/radix point a

* Z ... base of numeral system

* smallest representable number ¢ = z=™

* Module = Z , one increment/unit
higher than biggest representable
number for given encoding/notation

* A, the representable number for given
n and m selection, where k is natural
number in range {(0,znr+m+1-1)

* The representation and value

A~ ApQp_1...00,Q1 .. 0_qm,

0 -1 -m

a1 a|a,l--|a,
radix point

0< A=k < Z

A=a,z2" 4+ ap_12" 1 +...4+ao+a1z"t...a_,,z7™

AEOB36APO Computer Architectures

56

Unsigned integers

Language C:
unsigned 1int

AEOB36APO Computer Architectures

AEOB36APO Computer Architectures

Integer number representation (unsigned, non-negative)

The most common numeral system base in computers is
z=2

The value of a,is in range {0,1,...z-1}, i.e. {0,1} for base 2
This maps to true/false and unit of information (bit)

We can represent number 0 ... 2"-1 when n bits are used
Which range can be represented by one byte?

1B (byte) ... 8 bits, 28 = 256, combinations, values O ... 255, =
Ob11111111,

Use of multiple consecutive bytes

* 2B ... 26 =65536,, 0 ... 65535,= OxFFFFh (h ..
hexadeumal base 16, ainrange 0, ... 9, A, B, C D, E, F)

* 4B ... 2% = 4294967296, 0 ... 4294967295d =
OXFFFFFFFF,

58

Unsigned integer

1 00..000
11..111

00..100
00..011
00..010
00..001
00..000

AEOB36APO Computer Architectures

binary value

0]0]0]0]0]0]0]0]
00000001

01111101
01111110
011111113
10000000
10000001
10000010

111113701
11111310
111113131

unsigned int

O(10)

1(10)

125,
126,
127 44,
128,
129,
1304,

2534,
25415,
255,44,

Unsigned 4-bit numbers

Assumptions:we'll assume a 4 bit machine word

1111 0000

+1 +2 MSB
+12 oo11| 3 0100 = + 4
+11 1011 0100/ +4 1100 =12

+10 +5 }/ISB

1000 0111

BECumbersome subtraction

60

Sighed numbers

Language C:
int
signed 1int

AEOB36APO Computer Architectures

Two's Complement.

* The most frequent code
* The sum of two opposite numbers with the same absolute value is 00000000H!

Decimal value 4 bit two’s compliment
6 0110
-6 1010

AEOB36APO Computer Architectures

Two's Complement

Dvojkovy doplnek — pokracovani... gi 21 dnota %\(/)cgllfnoé\{(y
 Pokud N bude pocet bitu:
<M1 N1 .15 00000000 Opuo)
00000001 1)
1+ AX) :
011111601 125 .,
01111110 126,
01111111 127 44,
10000000 -128,,,
10000001 -127 44,
10000010 -126,,,
° X 11111101 -3
-M/2 11111110 210
min

Two's complement - examples

* Examples:
* Op = 00000000,
« 1p = 00000001H, e -1b = FFFFFFFFH,
* 2p = 00000002, e -20 = FFFFFFFEH,

* 3p = 00000003H, e -3p=FFFFFFFDH,

AEOB36APO Computer Architectures

Number Representations

Twos Complement
(In Czech: Druhy doplnék)

-1 +0
_3 +2 +
-4 o011\ +3 0100 =+4
-5 |1011 0100 [+4 1\100 =-4

1000 0111
-8 +7

Only one representation for O
One more negative number than positive number

65

Two's complement — addition and subtraction

* Addition
. OOOOOOO 06000 0111s=7o Symbols use: O=0+, 0=0s

* + 0000000 06000 0110s= 6o
‘ 0000000 0000 1101s= 13o

* Subtraction can be realized as addition of
negated number
° OOO000OO 606600 0111s=7o
* + FFFFFFF 1111 1010s= -6p
* OOOOO000 0O 0OO1s = lo

* Question for revision: how to obtain negated number in two's complement
binary arithmetics?

AEOB36APO Computer Architectures 66

Other Possibilities

AEOB36APO Computer Architectures

Integer — biased representation

* Known as excess-K or offset binary as well

* Transform to the representation K. 0. 21K
D(A) = A+K

* Usually K=Z/2

* Advantages

* Preserves order of original set in mapped
set/representation

* Disadvantages

* Needs adjustment by -K after addition and +K after
subtraction processed by unsigned arithmetic unit

* Requires full transformation before and after multiplication

AEOB36APO Computer Architectures

68

Number Systems

Excess-K, offset binary or biased representation

7 -8
5 -6 +
4 0011~ 0100=-4
3 0100/ -4 1100 =+ 4

1000 0111

One 0 representation, we can select count of negative numbers -
used e.g. for exponents of real numbers..

Inteier arithmetic unit are not desiined to calculate with Excess-K numbers

69O

Integer — sign-magnitude code

* Sign and magnitude of the value (absolute
value) P(X)

* Natural to humans -1234, 1234

oA
* One (usually most significant — MSB) bit of 1z

the memory location is used to represent

the sign Y
* Bit has to be mapped to meaning -1z 0 1z

* Commonuse Q=" 1="%"
* Disadvantages:

* When location is k bits long then only k-1
bits hold magnitude and each operation has
to separate sign and magnitude

* Two representations of the value O

2"+1...0...2"-1

AEOB36APO Computer Architectures 70

Sign and Magnitude Representation.

<-2N-1.1, 2N1.1> Binary value Code
00000000 +0,40

00000001 (P

*ARX) 01111101 1254,

01111110 126,,,

01111111 127,44,

10000000 Ogo

10000001 Al

10000010 240
| 11111101 125,
© > X 11111110 1264,
-M/2 0 M/2 11111111 1274,

AEOB36APO Computer Architectures

Number Systems

Sign and Magnitude Representation

-7 +0
-5 +2 +
-4 +3 /
0011 0100=+4
-3\ 1011 0100/ +4 1100=-4

1000 0111
-0 +7
BCumbersome addition/subtraction

BSign+Magnitude usually used only
for float point numbers

79

Integers — ones' complement

* Transform to the representation
D(A) = A iff A>0
D(A) = Z-1-|A| iff A<O (i.e. subtract from all ones)
* Advantages
* Symmetric range

* Almost continuous, requires hot one addition when sign
changes

Disadvantage
* Two representations of value O
* More complex hardware

Negate (-A) value can be computed by bitwise
complement (flipping) of each bit in representation

-2"+1...0... 21

AEOB36APO Computer Architectures

73

Ones Complement

Binary value Code

coNI] ON1_15 00000000 Ouo)
’ 00000001 Lo
A ACX) 01111101 125,
01111110 126,

01111111 127 .,
10000000 -127
10000001 -126,,,
10000010 -125,,,,

11111101 240

. X 11111110 1,

11111111 -Og)

-M/2 0 M/2

AEOB36APO Computer Architectures

Number Systems

Ones Complement
(In Czech: Prvni doplnék)

-0 +0
_2 +2 +
-3 o011\ +3 0100 =+4
-4 1011 0100 | +4 1{11 =-4

1000 0111

Still two representations of 0! This causes some problems
Some complexities in addition, nowadays nearly not used

78

AEOB36APO Computer Architectures

Direct realization of adder as logical function

Number of logic operations
bit width for calculating sum
1 3
22
89
272
727
1567
3287
7127
17623
53465
115933

O 0O (O |O1 | WIIN

=
o

=
=

Complexity is higher than O(2")

The calculation was performed by BOOM logic minimizer
created at the Department of Computer Science CTU-FEE

AEOB36APO Computer Architectures

1bit Full Adder

o, 1, 0, 1, ©0 1 0

00, 01 01! 10! e0! 01! 01! 10

+ Carry-In e, 6, 6, 6, 1, 1 1 1
‘CarryOutSum | 0 01 61 10 01 10 10 11
A B
| |
COUthin
S

78

Adder

A3 B3 A2 B2 Al B1 AO BO
I I I I I I I I
A B A B A B A B
Carry _ _ _ .
—Lou Cin ou Cin ou Cin out in
S S S S
I I I /,/’ I \\\
S3 S2 S1 / SO N\
/ ' \

1bit full adder

Simple Adder

A31 B31 Aso B3o A29 Bzg Al Bl Ao B°
S SIS SN T cot, ¥+ 4 4
cout, SCTSESITSES 27 Scncons “LSPPSISATS
Cin,
Sy S3 S S, S

Simplest N-bit adder
we chain 1-bit full adders
"Carry" ripple through their chain
Minimal number of logical elements

Delay is given by the last Cout - 2*(N-1)+ 3 gates of the
last adder
= (2 N+1) times propagation delay of 1 gate

32bit CLA "carry look-ahead" adder
The carry-lookahead adder calculates one or more carry bits before the sum,

which reduces the wait time to calculate the result of the larger value bits

5 5 8 5 5 5
t tt f] t t [t ft[t t [t 11
A, B.| A, B, A, B,|A B, A B |A B,
R A N R
h\ir% ¥ A ¥ AN AN AN A
l Cin,=Cout, l l l Cin,
S, S, S, S, S, S,

Static "carry look ahead (CLA)" unit for 4 bits

Increment / Decrement

Very fast operations that do
not need an adder!

The last bit is always negated,
and the previous ones are
negated according to the end
1/0

© 0O N o o b W N B+, O

e~ e o N
g A W N P O

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

+1

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

Special Case +1/-1

SO=not A0 A
S1=A1 xor A0 S
1 —
S2=A2 xor (A1 and A0)
Eq: S,=A xor (A,and A, and ... A, and A,); i=0..n-1
SO=not A0
A—
S1=A1 xor (not A0) s
S2=A2 xor (not Al and not A0) -1—

Eq: S,=A, xor (notA and ... and not A,); i=0..n-1

The number of circuits is given by the arithmetic series, with the complexity O (n?) where n is

the number of bits. The operation can be performed in parallel for all bits, and for the both
+1/-1 operations, we use a circuit that differs only by negations.

Addition / Subtraction HW

A B
\U/ fast operation
negation
T SuB
< ADD
NS NS
N7 SN

——— slower operation

Source: X36JPO, A. Pluhacek

AEOB36APO Computer Architectures

11011011

U

0000

1

&1

1101
01101
1101

10011
0000
01001
1101
10001

-]

w0

]

— v)
- | o
= (O
— v
— O
0 | o
o (Y
a——

85

AEOB36APO Computer Architectures

Sequential hardware multiplier (32b case)

ot
.
o
-
.

g S S Y

O Ol =] =
LoD - OO Ol Ol O

o= Ol= O
(ki =t = OO O = == O

A
e
Shift Arith. Right Control
AC MQ Write Test
64-bit AxB

The speed of the multiplier is horrible

AEOB36APO Computer Architectures

86

Algorithm for Multiplication

A = multiplicand,;
MQ = multiplier;
AC =0;

for(Iinti=1; 1 <= n; i++)
{
If(MQ,==1) AC=AC + A

SR (shift AC MQ by one bit right and insert information about
carry from the MSB from previous step)

}

end.

when loop ends AC MQ holds 64-bit result

AEOB36APO Computer Architectures

87

Example of the multiply X by Y

Multiplicand x=110 and multiplier y=101.

i operation AC MQ A comment
000 101 110 |Iinitialsetup

1 AC =AC+MB 110 101 start of the cycle
oR 011 010

7 nothing 011 010 because of MQ, = =
>R 001 101

3 AC=AC+MB 111 101
SR 011 110 end of the cycle

The whole operation: xxXy =110x101 = 011110, (6XxX5=30)

AEOB36APO Computer Architectures

Multiplication in two’s compliment

Can be implemented, but there is a problem ...

The intended product is generally not the same as the product of two’s
numbers!

Details are already outside the intended APO range.

The best way is the multiplication of their absolute values and decision
about its sign.

AEOB36APO Computer Architectures 89

Wallace tree based multiplier

Q=X.Y, XandY are considered as and 8bit unsigned numbers
(X7 Xg X5 X4 X3 X5 X; Xo). (Y7 Yo Y5 Ya Ya Y2 Y1 Yo) =

0 0 0 0 0 0 0 0 XV XYoo XYo XV XY X¥o XYoo XY, PO
0 0 0 0 0 0 0 Xy, Xy, Xy, Xy, Xy, Xy, Xy, Xy, O P1
0 0 O 0 0 0 Xy, XY, XY, XV, X3y, X¥, XV, Xy, O 0 P2
0 0 0 0 0 XV XgVs XV3 XV, X5¥; Xo¥; XV, Xy, O 0 0 P3
0 0 0 0 XV, XV, XV, XY, X3V, XV, XV, Xy, O 0 0 0 P4
0 0 0 XV XgVs X Ve XV X3¥: X,V: XVe Xy: O 0 0 0 0 P5
0 0 XVe XVe XVo XV X3Ve X¥s XVe X¥e O 0 0 0 0 0 P6
0 Xy, XY, XY, XV, X3V, XV, XV, Xy, O 0 0 0 0 0 0 P7
Qs Q. Qs Q, Q Q, Q Q Q Q Q Q Q Q Q Q
The sum of PO+P1+...+P7 gives result of X and Y multiplication.
Q=X.Y=PO+P1l+..+P7
AEOB36APO Computer Architectures 90

91

82

73

38

V4

47

56

Vi

61

52

41

173

111

103

113

Parallel adder of 9 numbers

284

216

We get intermediate results that we do not need at all,
but we still wait for the sum of them to finish!

257

941

01

Decadic Carry-save adder

82

+ orders 46

73

Carry 200

38

+ orders 11

Carry 110

47

+ orders 21 _

Carry 120

56

61

+ orders 530 |
Carry 0000

+ orders 420

Carry 0000

52

+ pozic 54

41

Carry 100

NVERNVERNY/

Here, we wait only
for adder carries

541

1bit Carry Save Adder

L —> |
| %] [
B |
| | |
JES N, PN e m
L =S e
I i St Rt — npes >]
HI® i H|® I dI T e L |
AR A A
o aialeal >
| ® |
©ldldH|e !«] > W,na
A R N L1 T |
® | © H|d o S ——
BN A
T T (—
™ OO ™
N L
o L
et —— ——]
e e e
| | | | | N
A R S R I
”Oﬁdlﬁnv 1”nu” N —»
o L
[P I bl B . + 9
© o ole!le
1@ 0 1@
NN T
— ©
o
R
=N
R
2 s
| —-—
| | | @ | | O |
| | Qe 10
<< imin I S0
R INTO IO
I i

93

3-bit Carry-save adder

3 2 1 0

A, B, Z A, B, Z A B, Z A B, Z

L Lf S LT S LT L
- - - -
b b b b
c, S c, S c, S c, So

Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

AEOB36APO Computer Architectures

1

s f X
I

Y
i

Rekodovaci logika nasobicky

| ¥ L 4 []_
CLA
| . —
VXY
95

Terminology basics

* Positional (place-value) notation

* Decimal/radix point

* Z ... base of numeral system

* smallest representable number € = z=™

* Module = Z , one increment/unit
higher than biggest representable
number for given encoding/notation

* A, the representable number for given

n 0 -1 -m
an 1 ceoe aO a-l cee a-m
T radix point

0<A=kE < Z

n and m selection, where K Is natural

number in range (0,zm+m+1-1)
* The representation and value

A~ QpQp_1...00,Q1 «+.Q_4p

A=a,z2"+a, 12" 1 +...4+ap+a1z7t...a_,,z7™

B35APO Computer Architectures

96

Integer number representation (unsigned, non-negative)

 The most common numeral system base in computers is
z=2

 The value of a;i1s in range {0,1,...z-1}, i.e. {0,1} for base 2

* This maps to true/false and unit of information (bit)

* We can represent number 0 ... 2"-1 when n bits are used

* Which range can be represented by one byte?

1B (byte) ... 8 bits, 28 = 256, combinations, values O ...
255,=0b11111111,

* Use of multiple consecutive bytes

e 2B ... 26 =65536,, 0 ... 65535,= OXFFFF, ,(h ...
hexadecimal, base 16, ainrange O, ... 9,A,B,C, D, E, F)

o 4B ... 232 =4294967296,, 0 ... 4294967295,=
OxFFFFFFFF,

B35APO Computer Architectures 97

Signed integer numbers

* Work with negative numbers is required for many
applications

* When appropriate representation is used then same
hardware (with minor extension) can be used for many
operations with signed and unsigned numbers

* Possible representations

e sign-magnitude code, direct representation, sign bit
* two's complement
* ones' complement

e excess-K, offset binary or biased representation

B35APO Computer Architectures 98

Integer — sign-magnitude code

e Sign and magnitude of the value (absolute
value) P(X)

e Natural to humans -1234, 1234

Z
* One (usually most significant — MSB) bit of 1z

the memory location is used to represent

the sign “
e Bit has to be mapped to meaning —iz 0 1z

e Commonuse 0="+" 1=""

* Disadvantages:

* When location is k bits long then only k-1
bits hold magnitude and each operation has
to separate sign and magnitude

* Two representations of the value 0

2"1+1...0...2"-1

B35APO Computer Architectures 99

Integer — two's complement

e Other option is to designate one half of D (X)
range/combinations for non-negative 1

numbers and other one for positive numbers <
* Transform to the representation / ______
D(A) = A iff A>0 i / i
D(A) = Z-|A| iff A<O <5 =X
* Advantages ol Q. oniq
e Continuous range when cyclic arithmetics is
considered

* Single and one to one mapping of value O
« Same HW for sighed and unsigned adder

* Disadvantage
* Asymmetric range (-(-1/22))

B35APO Computer Architectures 100

Integers — ones' complement

* Transform to the representation onig] Q.. 2riq

D(A) = A iff A>0
D(A) = Z-1-|A| iff A<O (i.e. subtract from all ones)
* Advantages

* Symmetric range

e Almost continuous, requires hot one addition when sign
changes

Disadvantage
* Two representations of value O
* More complex hardware

Negate (-A) value can be computed by bitwise
complement (flipping) of each bit in representation

B35APO Computer Architectures

101

Integer — biased representation

 Known as excess-K or offset binary as well

* Transform to the representation K. 0. 21K
D(A) = A+K

* Usually K=Z/2

 Advantages

* Preserves order of original set in mapped
set/representation

* Disadvantages

* Needs adjustment by -K after addition and +K after
subtraction processed by unsigned arithmetic unit

* Requires full transformation before and after multiplication

B35APO Computer Architectures 102

Back to two's complement and the C language

 Two's complement is most used signed integer numbers
representation in computers

 Complement arithmetic is often used as its synonym

e “C” programing language speaks about integer numeric type
without sign as unsigned integers and they are declared in
source code as unsigned int.

* The numeric type with sign is simply called integers and is
declared as signed int.

 Examples of the values representations when 32 bits are used:
- Op = 00000000k,

+ 1p = 00000001H, -1p = FFFFFFFFH,
« 2p = 00000002+, -20 = FFFFFFFEH,
+ 3p=00000003H, -3p = FFFFFFFDH,

« Considerations about value overflow and underflow from order grit are discussed
later.

B35APO Computer Architectures 103

Two's complement — addition and subtraction

 Addition
. OOOOOO0O 0000 0111s=70 Symbols use: @=0x, 0=0¢

¢ + 0000000 06000 0110 = 6o
. OOOOO00 0000 1101s=13o

 Subtraction can be realized as addition of
negated number
. 0000000 6060600 0111s=T7o

e + FFFFFFF 1111 1010:s= -6p
. OOOOOO0 06000 0001: = 1o

* Question for revision: how to obtain negated number in
two's complement binary arithmetics?

B35APO Computer Architectures 104

Hardware of ripple-carry adder

b

: Common symbol for adder
a"l—l “br'-‘_ al t:"]. aE‘ bEi
: ' rYy oy

c - > e <« 5 |« 3 |« ®©
n-bit 3
Internal structure

: . Y \J \J
Realized by 1-bit s s s,

full adders
ab

'? f} where half X
1y adder is y

9= 2 — P — q._@ 1 1_p Z

4
S
105

B35APO Computer Architectures

Fast parallel adder realization and limits

* The previous, cascade based adder is slow — carry
propagation delay

* The parallel adder is combinatorial circuit, it can be
realized through sum of minterms (product of sums), two
levels of gates (wide number of inputs required)

* But for 64-bit adder 10%° gates is required
Solution #1

e Use of carry-lookahead circuits in adder combined with
adders without carry bit

Solution #2
e Cascade of adders with fraction of the required width

Combination (hierarchy) of #1 and #2 can be used for wider
Inputs

B35APO Computer Architectures 106

Speed of the adder

« Parallel adder is combinational logic/circuit. Is there any
reason to speak about its speed? Try to describe!

* Yes, and it is really slow. Why?

* Possible enhancement — adder with carry-lookahead
(CLA) logic!

G5=Ps Tfipa alzfz o3 T ? Py

2 Pe] el D
o4 L

G||P, |Gl|P, |G|IP, |G,

Po

D=1

]

(1)

carry-lookahead

B35APO Computer Architectures 107

CLA — carry-lookahead

 Adder combined with CLA provides enough speedup
when compared with parallel ripple-carry adder and yet
number of additional gates is acceptable

 CLAfor 64-bit adder increases hardware price for about
50% but the speed is increased (signal propagation time
decreased) 9 times.

* The result is significant speed/price ratio enhancement.

B35APO Computer Architectures 108

The basic equations for the CLA logic

* Let:
* the generation of carry on position (bit) j is defined as:

9gj =Xj¥;
* the need for carry propagation from previous bit:

— — = VvV =
Pj =X;®Y; =X;¥; X;Y;

* Then:
 the result of sum for bit j is given by:

S zcj(xj eByj)V Ej(xj EByj) =c;p, Y cC;p; =p,; ®c,

* and carry to the higher order bit (j+1) is given by:
— \Z _ \%
cia =xy; " ;@ yle; =g, pic,

B35APO Computer Architectures 109

CLA

The carry can be computed as:
€, =9, PoCo
C;=0; "P:C: =9 " Pi(9o " PCo) =91 P10 " PiPoCo
C3=0, ' PL =05 PG " P10 PiPCY) = 9> PoGs " PaP1do * PoPiPoCo
Ci=03 PsCs=- =05 Py PsP:9: PaPoP:90 * PaPoP:PoCo
C= ...
Description of the equation for c,as an example:

The carry input for bit 3 is active when carry is generated in bit 2 or carry
propagates condition holds for bit 2 and carry is generated in the bit 1 or
both bits 2 and 1 propagate carry and carry is generated in bit O

B35APO Computer Architectures 110

Arithmetic unit for add/subtract operations

A B
|
S
bitwise not
~“— T SUB
<l ADD
N 7 N 7
S 7 7

AN
Inspiration: X36JPO, A. Pluhacek

B35APO Computer Architectures 111

Arithmetic overflow (underflow)

* Result of the arithmetic operation is
Incorrect because, it does not fit into

selected number of the
representation bits (width) q ’E B,
e But for the signed arithmetics, it is not -

equivalent to the carry from the most "
significant bit. §

* The arithmetic overflow is signaled if]
result sign is different from operand q P
signs if both operands have same T [
sign {‘

* or can be detected with exclusive-OR s

of carry to and from the most
significant bit

B35APO Computer Architectures 112

Arithmetic shift to the left and to the right

* arithmetic shift by one to the left/right is equivalent to

signed multiply/divide by 2 (digits movement in positional
(place-value) representation)

* Notice difference between arithmetic, logic and cyclic shift
operations

loss of the
N\ precision
I
) l — —0
over - ((—‘ ']“] 1
' !

e Remark: Barrel shifter can be used for fast variable shifts

B35APO Computer Architectures 113

Addition and subtraction for the biased representation

* Short note about other signed number representation

A(A + B) = A(A) + AB) — K
A(A — B) = A(A) — AB) + K

 Qverflow detection

 for addition:
same sign of addends and different result sign
e for subtraction:

signs of minuend and subtrahend are opposite and sign of
the result is opposite to the sign of minuend

B35APO Computer Architectures 114

Unsigned binary numbers multiplication

ok
ok
o
ok
.

o =|lo == o

o« Ol= O

O Ofl= =] =

L O — OlO0 OO0 O|l=-= O

(= — == OO Ol == ©

e
| =t —

B35APO Computer Architectures 115

Sequential hardware multiplier (32b case)

-y
.
o
—
.

o =|lo == o

g S S

o Q= =IO =
O OO Ol Ol= O

o QOl= O
(ke b et OO O b= == ©

Nz <

—....

AC

Shift Arith. Right

M Q Write

64-bit AxB

Control

Test

The speed of the multiplier is horrible

B35APO Computer Architectures

116

Algorithm for multiplication

A = multiplicand;
MQ = multiplier,;
AC = 0;

for(Iinti=1; 1 <= n; i++)
{
If(MQ,==1) AC=AC + A

SR (shift AC MQ by one bit right and insert information about
carry from the MSB from previous step)

}

end.

when loop ends AC MQ holds 64-bit result

B35APO Computer Architectures 117

Example of the multiply X by Y
Multiplicand x=110 and multiplier y=101.

i operation AC MQ A comment
000 101 110 initialsetup

1 AC =AC+MB 110 101 start of the cycle
SR 011 010

), nothing 011 010 because of MQ, == 10
SR 001 101

3 AL=ACMB 1171 101
SR 011 110 end of the cycle

The whole operation: xXy = 110x101 = 011110, (6Xx5=30)

B35APO Computer Architectures 118

Signed multiplication by unsigned HW for two's complement

One possible solution

C=A-*B
Let A and B representations are n bits and result is 2n bits

D(C) = D(A) « D(B)
_ (D(B)<<n) ifA<0
_ (D(A)<<n) if B <0

Consider for negative numbers
(2"+A) * (2"+B) = 22"+2"A + 2"B + A*B
where 22" is out of the result representation, next two elements

have to be eliminated if input is negative
B35APO Computer Architectures 119

Wallace tree based multiplier

Q=X.Y, XandY are considered as and 8bit unsigned numbers

(X7 Xg X5 X, X3 X, Xy Xo)e (V7 Yo Vs Ya Y3 Vo Y1 Yo) =

0 0 0 0 0 0 0 0 XY XYoo XYoo XuYo XYoo XY XYoo XoYo
0 0 0 0 0 0 0 X591 XeY1 XsY: XY XY, Xy Xy Xy, 0

0 0 0 0 0 0 Xy, XY, XY, XV, X3y, X5, XV, X, O 0

0 0 0 0 0 Xy, X Vs XV XY; X3V, X,V X\Y; XY; O 0 0

0 0 0 0 XY, XV, XV, XY, XY, XV, XV, Xy, O 0 0 0

0 0 0 X¥s XgVs XV X,¥s XV X,¥s X(¥s X¥s O 0 0 0 0

0 0 XVe Xe¥s X5Vs XV X3V XV XV X¥s O 0 0 0 0 0

0 XY, XY, XY, XV, XV, XV, Xy, Xy, O 0 0 0 0 0 0
Qs Qu Q3 Q, Q Q, Q Q Q Q Q Q Qg Q Q Q

The sum of PO+P1+...+P7 gives result of X and Y multiplication.

Q=X.Y=PO+P1l+..+P7

B35APO Computer Architectures

PO
P1
P2
P3
P4
P5
P6
P7

120

Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

_— ! |
vV Vv VV VV VV
@ & & &
|ﬁv Y |ﬁv \7, L
(&) 1
_________ ‘l_\ll

B35APO Computer Architectures

s f X
I

1

Rekddovaci logika nasobicky

11-7 17-T 11~

121

Hardware divider

000111

<= 1100 . .
1 . .
01110 . .
L1111
1101 .

[0011 .
100001
111
0001

] 1100
1

01110

NI 0011
10001
001

B35APO Computer Architectures

111 : 011

o 011

negate
hot one

— = 0

+ =1

— =0
return

— reminder

0 1 0 — quotient

122

Hardware divider logic (32b case)

111 : 011 | divident = quotient X divisor + reminder

000111 : o 011
< 1100 : : negate B
1 . . hotone I
% i[é % 32-bit ALU
[H o011 . -
100001 + =1 Shift Righ
U} e
0001 Shift Left
El ! 1 U 2 AC MQ Write
01110 — =0 A mod B 64-bit AdivB
N 0011 return
10001
0 0 1 — reminder 010 — quotient

B35APO Computer Architectures 123

Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;
for(int i=1; i <= n; i++) {
SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)
If(AC >=B) {
AC =AC - B;
MQ, = 1;
}
}

— Value of MQ register represents quotient and AC remainder

B35APO Computer Architectures 124

Dividend x=1010 and divisor y=0011

i

Example of X/Y division

operation

SL
nothing
SL

SL
AC=AC-B; MQ,=1,;
SL
AC=AC-B; MQ,=1,;

AC
0000

0001
0001
0010
0010
0101
0010

0100
0001

MQ

1010
0100
0100
1000
1000
0000
0001

0010
0011

B
0011

comment
initial setup

the if condition not true

the if condition not true

r=>y

r=y

end of the cycle

X :y=1010: 0011 = 0011 reminder 0001, (10 : 3 =3 reminder 1)

B35APO Computer Architectures

125

Higher dynamic range for numbers (REAL/float)

* Scientific notation, semilogarithmic, floating point
* The value is represented by:
- EXPONENT (E) — represents scale for given value
- MANTISSA (M) — represents value in that scale
- the sign(s) are usually separated as well
 Normalized notation

* The exponent and mantissa are adjusted such way, that
mantissa is held in some standard range. (0.5, 1) or (1, 2) for
considered base z=2

» Generally: the first digit is non-zero or mantissa range is {1, z)

B35APO Computer Architectures 126

Standardized format for REAL type numbers

e Standard IEEE-754 defines next REAL representation
and precision

» single-precision — in the C language declared as f Lloat
» double-precision — C language double

B35APO Computer Architectures 127

Examples of (de)normalized numbers in base 10 and 2

—2.34 x 10°°

normalized
+OOO2) 10_4 T not normalized bmary
+987.02 x 10° — +1 XXXXXXX, % 2VYVY
Sign of M
2 N
' [- / | T "’ | T .
t | IUAA.I(-I.E:): LI-I | I I | : |] | |I-lq/-fl-ll : | I I I IO I |

The radix point position for E and M

B35APO Computer Architectures 128

The representation/encoding of floating point number

* Mantissa encoded as the sign and absolute value
(magnitude) — equivalent to the direct representation

* Exponent encoded in biased representation (K=127 for
single precision)

* The implicit leading one can be omitted due to
normalization of m € {1, 2) — 23+1 implicit bit for single

X = -1s 2A8-12T'm where m € (1, 2)
m=1+2%M
Sign of M
v / .
4 AE] LML

Radix point position for E and M

B35APO Computer Architectures 129

Implied (hidden) leading 1 bit

* Most significant bit of the mantissa is one for each
normalized number and it is not stored in the
representation for the normalized numbers

* If exponent representation is zero then encoded value is
zero or denormalized number which requires to store
most significant bit

 Denormalized numbers allow to keep resolution in the
range from the smallest normalized number to zero

B35APO Computer Architectures 130

Underflow/lost of the precision for IEEE-754 representation

e The case where stored number value Is not zero but it Is
smaller than smallest number which can be represented
In the normalized form

* The direct underflow to the zero can be prevented by
extension of the representation range by denormalized
numbers

underflow normalized numbers

0 A IN
\ \

denormalized normalized

smallest representable number
B35APO Computer Architectures 131

ANSI/IEEE Std 754-1985 — 32b a 64b formats

ANSI/IEEE Std 754-1985 — single precision format — 32b

8 b
E+127 24 b
H——T [M] |
L fraction point
{L
8 b 23 b
o 7 |

ANSI/IEEE Std 754-1985 — double precision format — 64b

g...11b f...52b

B35APO Computer Architectures 132

Representation of the fundamental values

Zero
Positive zero O 00OPOAAAO 00000OOAAAAOOO0O0O0OOOAAEAO +0.0
Negative zero 1 00000000 0O000OO00OO00OO00OOO00OO0000 -0.0
Infinity
Positive infinity 0 11111111 00000000000000000000000 +Inf
Negative infinity 1 11111111 00000000000000000000000 -Inf
Representation corner values
Smallest * 00000001 0000OEONOAONLOAONLAEOOLAO | +2(1-127)
normalized +1.1755 1038
Biggest * 00000000 11111111111111111111111 +(1-2-23)2(1-120)

denormalized

Smallest
denormalized

* 00000000 00000000000000000000001

+9-239-126
+1.4013 10%

Max. value

0 11111110 1111111131313131311117113131111

B35APO Computer Architectures

(2 _ 2-23) 2(127)
+3.4028 10*38

133

Not a number (NaN)

All ones in the exponent

* Mantissa not equal to the zero

Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
Compare to (X+ +Inf) where +Inf is sane result

B35APO Computer Architectures 134

sign bit

b O O Pk, O Fr O FL O

B35APO Computer Architectures

IEEE-754 special values summary

Exponent
representation

0<e<255
O<e<255
0

0

0

0

255

255

255

255

Mantissa

any value
any value
>0

>0

0

0

0

0

#0

#0

Represented value/meaning

normalized positive number
normalized negative number
denormalized positive number
denormalized negative number
positive zero

negative zero

positive infinity

negative infinity

NaN — does not represent a number
NaN — does not represent a number

Comparison

 Comparison of the two IEEE-754 encoded numbers
requires to solve signs separately but then it can be
processed by unsigned ALU unit on the representations

A>Be=>A-B=0 <= D(A) - D(B)=0

* This Iis advantage of the selected encoding and reason
why sign is not placed at start of the mantissa

B35APO Computer Architectures 136

Addition of floating point numbers

* The number with bigger exponent value is selected

* Mantissa of the number with smaller exponent is shifted
right — the mantissas are then expressed at same scale

* The signs are analyzed and mantissas are added (same
sign) or subtracted (smaller number from bigger)

* The resulting mantissa is shifted right (max by one) if
addition overflows or shifted left after subtraction until all
leading zeros are eliminated

* The resulting exponent is adjusted according to the shift
* Result is normalized after these steps

* The special cases and processing is required if inputs are
not regular normalized numbers or result does not fit into
normalized representation

B35APO Computer Architectures 137

[Soo[wom] Fmown | [sun] emonent |

Fraction

=

o)
21.lf

()
:
]
/
v

[s9n | Exponen | Facn |

B35APO Computer Architectures

Shift smaligr
number right

Round

A

138

Multiplication of floating point numbers

* EXponents are added and signs xor-ed
* Mantissas are multiplied
* Result can require normalization

max 2 bits right for normalized numbers
* The result is rounded

 Hardware for multiplier is of the same or even lower
complexity as the adder hardware — only adder part is
replaced by unsigned multiplier

B35APO Computer Architectures 139

Floating point arithmetic operations overview

Addition: A-z2,B-z°,b<a unify exponents
B-z°=(B-2z"?).z>0ka by shift of mantissa
A-z2+ B-z" = [A+(B-z"?)]-z2 sum + normalization

Subtraction: unification of exponents, subtraction and
normalization

Multiplication: A-z2- B-z°=A-B-z*®

A-B - normalize if required

A-B-z2"=A-B-z.23h1 - by left shift
Division: A-z3B-z"= AIB - za"

AIB - normalize if required

AIB-za*= AIB-z-z>P*1 - by right shift

B35APO Computer Architectures 140

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140

