Computer Architectures

Number Representation and Computer Arithmetics Pavel Píša, Richard Šusta Michal Štepanovský, Miroslav Šnorek

Czech Technical University in Prague, Faculty of Electrical Engineering

English version partially supported by:

European Social Fund Prague & EU: We invests in your future.

Let health allows you and your dears to fulfill one's dreams, and nothing and nobody prevents you from sharing happiness and results of your work and creativity.

Important Introductory Note

- The goal is to understand the structure of the computer so you can make better use of its options to achieve its higher performance.
- It is also discussed interconnection of HW / SW
- Webpages:

https://cw.fel.cvut.cz/b192/courses/b35apo/ https://dcenet.felk.cvut.cz/apo/ - they will be opened

- Some followup related subjects:
 - B4M35PAP Advanced Computer Architectures
 - B3B38VSY Embedded Systems
 - B4M38AVS Embedded Systems Application
 - B4B35OSY Operating Systems (OI)
 - <u>B0B35LSP Logic Systems and Processors</u> (KyR + part of OI)
- Prerequisite: Šusta, R.: APOLOS, CTU-FEE 2016, 51 pg.

Important Introductory Note

 The course is based on a world-renowned book of authors Paterson, D., Hennessey, V.: Computer Organization and Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5

David Andrew Patterson <u>University of California, Berkeley</u> Works: RISC processor Berkley RISC → SPARC, DLX, RAID, Clusters, RISC-V

John Leroy Hennessy 10th President of Stanford University Works: RISC processors MIPS, DLX a MMIX

2017 Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry. \rightarrow A New Golden Age for Computer Architecture – RISC-V

B0B35APO Computer Architectures

Moore's Law

Gordon Moore, founder of Intel, in 1965: "*The number of transistors on integrated circuits doubles approximately every two years* "

The cost of production is growing with decreasing design rule

End of Growth of Single Program Speed?

40 years of Processor Performance

Computer Architecture: A Quantitative Approach, 6/e. 2018

Processors Architectures Development in a Glimpse

• 1960 – IBM incompatible families \rightarrow IBM System/360 – one ISA to rule them all,

Model	M30	M40	M50	M65
Datapath width	8 bits	16 bits	32 bits	64 bits
Microcode size	4k x 50	4k x 52	2.75k x 85	2.75k x 87
Clock cycle time (ROM)	750 ns	625 ns	500 ns	200 ns
Main memory cycle time	1500 ns	2500 ns	2000 ns	750 ns
Price (1964 \$)	\$192,000	\$216,000	\$460,000	\$1,080,000
Price (2018 \$)	\$1,560,000	\$1,760,000	\$3,720,000	\$8,720,000

- 1976 Writable Control Store, Verification of microprograms, David Patterson Ph.D., UCLA, 1976
- Intel iAPX 432: Most ambitious 1970s micro, started in 1975 32-bit capability-based object-oriented architecture, Severe performance, complexity (multiple chips), and usability problems; announced 1981
- Intel 8086 (1978, 8MHz, 29,000 transistors), "Stopgap" 16-bit processor, 52 weeks to new chip, architecture design 3 weeks (10 person weeks) assembly-compatible with 8 bit 8080, further i80286 16-bit introduced some iAPX 432 lapses, i386 paging

B0B35APO Computer Architectures

CISC and RISC

- IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was out of main business)
- Use SRAM for instruction cache of user-visible instructions
- Use simple ISA Instructions as simple as microinstructions, but not as wide, Compiled code only used a few CISC instructions anyways, Enable pipelined implementations
- Chaitin's register allocation scheme benefits load-store ISAs
- Berkeley (RISC I, II \rightarrow SPARC) & Stanford RISC Chips (MIPS)

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in 3 μ m &4 μ m NMOS, ran at 4 MHz (3 μ m), and size is 50 mm2 (4 μ m) (Microprocessor without Interlocked Pipeline Stages)

B0B35APO Computer Architectures

CISC and RISC

 CISC executes fewer instructions per program (≈ 3/4X instructions), but many more clock cycles per instruction (≈ 6X CPI)

 \Rightarrow RISC \approx 4X faster than CISC

PC Era

- Hardware translates x86 instructions into internal RISC Instructions (Compiler vs Interpreter)
- Then use any RISC technique inside MPU
- > 350M / year !
- x86 ISA eventually dominates servers as well as desktops

PostPC Era: Client/Cloud

- IP in SoC vs. MPU
- Value die area, energy as much as performance
- > 20B total / year in 2017
- 99% Processors today are RISC
- Marketplace settles debate

- Alternative, Intel Itanium VLIW, 2002 instead 1997
- "The Itanium approach...was supposed to be so terrific –until it turned out that the wished-for compilers were basically impossible to write." - Donald Knuth, Stanford

B0B35APO Computer Architectures

RISC-V

- ARM, MIPS, SPARC, PowerPC Commercialization and extensions results in too complex CPUs again, with license and patents preventing even original investors to use real/actual implementations in silicon to be used for education and research
- Krste Asanovic and other prof. Patterson's students initiated development of new architecture (start of 2010), initial estimate to design architecture 3 months, but 3 years
- Simple, Clean-slate design (25 years later, so can learn from mistakes of predecessors, Avoids µarchitecture or technology-dependent features), Modular, Supports specialization, Community designed
- A few base integer ISAs (RV32E, RV32I, RV64I)
- Standard extensions (M: Integer multiply/divide, A: Atomic memory operations, F/D: Single/Double-precision Fl-point, C: Compressed Instructions (<x86), V: Vector Extension for DLP (>SIMD**))

B0B35APO Computer Architectures

Foundation Members since 2015

Open Architecture Goal Create industry-standard open ISAs for all computing devices "Linux for processors"

B0B35APO Computer Architectures

Today PC Computer Base Platform – Motherboard

Block Diagram of Components Interconnection

Block Diagram of Components Interconnection

Block Diagram of Components Interconnection

Von Neumann and Harvard Architectures

[Arnold S. Berger: Hardware Computer Organization for the Software Professional]

John von Neumann

5 units:

- •A processing unit that contains an arithmetic logic unit and processor registers;
- •A control unit that contains an instruction register and program counter;
- Memory that stores data and instructions
- •External mass storage
- Input and output mechanisms

- Android 5.0 (Lollipop)
- 2 GB RAM
- 16 GB user RAM user
- 1920 x 1080 display
- 8-core CPU (chip Exynos 5410):
 - 4 cores 1.6 GHz ARM Cortex-A15
 - 4 cores 1.2 GHz ARM Cortex-A7

B0B35APO Computer Architectures

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

B0B35APO Computer Architectures

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

X-ray image of Exynos 5410 hip from the side :

We see that this is QDP (Quad die package)

To increase capacity, chips have multiple stacks of dies. A **die**, in the context of integrated circuits, is a small block of semiconducting material on which a given functional circuit is fabricated. [Wikipedia]

B0B35APO Computer Architectures

Sourcej: http://gamma0burst.tistory.com/m/600

Chip Exynos 5410 – here, we see DRAM

B0B35APO Computer Architectures

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/pages/computational-photography-part-2

Chip Exynos 5410

- Note the different sizes of 4 cores A7 and 4 cores A15
- On the chip, other components are integrated outside the processor: the GPU, Video coder and decoder, and more. This is SoC (System on Chip)

B0B35APO Computer Architectures

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/ pages/computational-photography-part-2, http://gamma0burst.tistory.com/m/600

Common concept

• The processor performs stored memory (ROM, RAM) instructions to operate peripherals, to respond to external events and to process data.

Example of Optimization

Autonomous cars

Source: http://www.nvidia.com/object/autonomous-cars.html

Many artificial intelligence tasks are based on deep neural networks (deep neural networks)

Neural network passage -> matrix multiplication

- How to increase calculation?
- The results of one of many experiments
 - Naive algorithm $(3 \times \text{for}) 3.6 \text{ s} = 0.28 \text{ FPS}$
 - Optimizing memory access 195 ms = 5.13 FPS (necessary knowledge of HW)
 - 4 cores– 114 ms = 8.77 FPS (selection of a proper synchronization)
 - GPU (256 processors) 25 ms = 40 FPS (knowledge of data transfer between CPU and coprocessors)
- Source: Naive algorithm, library Eigen (1 core), 4 cores (2 physical on i7-2520M, compiler flags -03), GPU results Joela Matějka, Department of Control Engineering, FEE, CTU https://dce.fel.cvut.cz/
- How to speedup?

Optimize Memory Accesses

- Algorithm modification with respect to memory hierarchy
- Data from the (buffer) memory near the processor can be obtained faster (but fast memory is small in size)

Prediction of jumps / accesses to memory

- In order to increase average performance, the execution of instructions is divided into several phases => the need to read several instructions / data in advance
- •Every condition (if, loop) means a possible jump - poor prediction is expensive
- It is good to have an idea of how the predictions work and what alternatives there are on the CPU / HW. (Eg vector / multimedia inst.)

Source: https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg

Parallelization - Multicore Processor

- Synchronization requirements
- Interconnection and communication possibilities between processors
- Transfers between memory levels are very expensive
- Improper sharing/access form more cores results in slower code than on a single CPU

Intel Nehalem Processor, Original Core i7 Source: http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

Computing Coprocessors - GPU

- Multi-core processor (hundreds)
- Some units and bclocks shared
- For effective use it is necessary to know the basic hardware features

511							Instructi	on Cache	•						
		l	nstructio	on Buffe	r						nstructio	on Buffe	r		
			Warp So	heduler							Warp Sc	heduler			
	Dispate	sh Unit			Dispat	ch Unit			Dispatch Unit Dispa					tch Unit	
		Regist	er File (3	32,768 x	32-bit)					Regist	er File (3	32,768 x	32-bit)		
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU	Core	Core	DP Unit	Core	Core	DP Unit	LD/ST	SFU
							Texture /	L1 Cach	Ð						
	Tex Tex Tex Tex														
	64KB Shared Memory														

Source: https://devblogs.nvidia.com/parallelforall/inside-pascal/

GPU – Maxwell

- GM204
- 5200 milins trasistors
- 398 mm²
- PCle 3.0 x16
- 2048 computation units
- 4096 MB
- 1126 MHz
- 7010 MT/s
- 72.1 GP/s
- 144 GT/s
- 224 GB/s

••••••••••••••••••••••••••••••••••••••			1999-1999-1999 1 4 - 1999-1999 1999-1999-1999-1999-1999-19			
	999999999 99999999 999999999 999999999	33333333 33333333 33333333 33333333 3333	99939399 99939399 99939399 99993999 99999399			
	93333333 93333333 93333333 93333333			33383333 33383333 333833338 33383338 33383338	933333333 33333333 33333333 333333333 3333	
 ار فار باغ الفر الفر الفر ا						

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

FPGA – design/prototyping of own hardware

- Programmable logic arrays
- Well suited for effective implementation of some digital signal manipulation (filters – images, video or audio, FFT analysis, custom CPU architecture...)
- Programmer interconnects blcoks available on the chip
- Zynq 7000 FPGA two ARM cores equipped by FPGA fast and simple access to FPGA/peripherals from own program
- (the platform is used for your seminaries but you will use only design prepared by us, the FPGA programming/logic design is topic for more advance couses)

Xilinx Zynq 7000 a MicroZed APO

Source: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

B35APO Computer Architectures

MZ_APO board

you will later work with this board

MZ_APO – features

- The core chip: Zynq-7000 All Programmable SoC
- Typ: Z-7010, device XC7Z010
- CPU: Dual ARM® Cortex[™]-A9 MPCore[™] @ 866 MHz (NEON[™] & Single / Double Precision Floating Point) 2x L1 32+32 kB, L2 512 KB
- FPGA: 28K Logic Cells (~430K ASIC logic gates, 35 kbit)
- Computational capability of FPGA DSP blocks: 100 GMACs
- Memory for FPGA design: 240 KB
- Memory on MicroZed board: 1GB
- Operating system: GNU/Linux
 - GNU LIBC (libc6) 2.19-18+deb8u7
 - Kernel: Linux 4.9.9-rt6-00002-ge6c7d1c
 - Distribution: Debian Jessie

MZ_APO – Logic design done in Xilinx Vivado

The first seminar – physical address space on MZ_APO

GNU/Linux operating system – from tiny gadgets ...

Linux – from tiny to supercomputers

- TOP500 https://www.top500.org/ (https://en.wikipedia.org/wiki/TOP500)
- Actual top one: Summit supercomputer IBM AC922
- June 2018, US Oak Ridge National Laboratory (ORNL),
- 200 PetaFLOPS, 4600 "nodes", 2× IBM Power9 CPU +
- 6× Nvidia Volta GV100
- 96 lanes of PCIe 4.0, 400Gb/s
- NVLink 2.0, 100GB/s CPU-to-GPU,
- GPU-to-GPU
- 2TB DDR4-2666 per node
- 1.6 TB NV RAM per node
- 250 PB storage
- POWER9-SO, Global Foundries 14nm FinFET, 8×109 tran., 17-layer, 24 cores, 96 threads (SMT4)
- 120MB L3 eDRAM (2 CPU 10MB), 256GB/s

Source: http://www.tomshardware.com/

• Other example: SGI SSI (single system image) Linux, 2048 Itanium CPU a 4TiB RAM

Linux kernel and open-source

- Linux kernel project
 - 13,500 developers from 2005 year
 - 10,000 lines of code inserted daily
 - 8,000 removed and 1,500 till 1,800 modified
 - GIT source control system
- Many successful open-source projects exists
- Open for joining by everybody
- Google Summer of Code for university students
 - https://developers.google.com/open-source/gsoc/

Zdroj: https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

Back to the Motivational Example of Autonomous Driving

The result of a good knowledge of hardware

- Acceleration (in our case 18 × using the same number of cores)
- Reduce the power required
- Energy saving
- Possibility to reduce current solutions
- Using GPUs, we process 40 fps.

 But in an embedded device, it is sometimes necessary to reduce its consumption and cost. There are used very simple processors or microcontrollers, sometimes without real number operations, and programmed with low-level C language.

Applicability of Knowledge and Techniques from the Course

- •Applications not only in autonomous control
- •In any embedded device reduce size, consumption, reliability
- •In data sciences considerably reduce runtime and energy savings in calculations
- •In the user interface improving application response
- •Practically everywhere...

Computer

Reference: John Kubiatowicz: EECS 252 Graduate Computer Architecture, Lecture 1. University of California, Berkeley

Reasons to study computer architectures

- To invent/design new computer architectures
- To be able to integrate selected architecture into silicon
- To gain knowledge required to design computer hardware/ systems (big ones or embedded)
- To understand generic questions about computers, architectures and performance of various architectures
- To understand how to use computer hardware efficiently (i.e. how to write good software)
 - It is not possible to efficiently use resources provided by any (especially by modern) hardware without insight into their constraints, resource limits and behavior
 - It is possible to write some well paid applications without real understanding but this requires abundant resources on the hardware level. But no interesting and demanding tasks can be solved without this understanding.

More motivation and examples

- The knowledge is necessary for every programmer who wants to work with medium size data sets or solve little more demanding computational tasks
- No multimedia algorithm can be implemented well without this knowledge
- The 1/3 of the course is focussed even on peripheral access
- Examples
 - Facebook HipHop for PHP \rightarrow C++/GCC \rightarrow machine code
 - BackBerry (RIM) our consultations for time source
 - RedHat JAVA JIT for ARM for future servers generation
 - Multimedia and CUDA computations
 - Photoshop, GIMP (data/tiles organization in memory)
 - Knot-DNS (RCU, Copy on write, Cuckoo hashing,)

The course's background and literature

- Course is based on worldwide recognized book and courses; evaluation Graduate Record Examination – GRE Paterson, D., Henessy, J.: Computer Organization and Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5
 - John L. Henessy president of Stanford University, one of founders of MIPS Computer Systems Inc.
 - David A. Patterson leader of Berkeley RISC project and RAID disks research
- Our experience even includes distributed systems, embedded systems design (of mobile phone like complexity), peripherals design, cooperation with carmakers, medical and robotics systems design

Topics of the lectures

- Architecture, structure and organization of computers and its subsystems.
- Floating point representation
- Central Processing Unit (CPU)
- Memory
- Pipelined instruction execution
- Input/output subsystem of the computer
- Input/output subsystem (part 2)
- External events processing and protection
- Processors and computers networks
- Parameter passing
- Classic register memory-oriented CISC architecture
- INTEL x86 processor family
- CPU concepts development (RISC/CISC) and examples
- Multi-level computer organization, virtual machines

Topics of seminaries

- 1 Introduction to the lab
- 2 Data representation in memory and floating point
- 3 Processor instruction set and algorithm rewriting
- 4 Hierarchical concept of memories, cache part 1
- 5 Hierarchical concept of memories, cache part 2
- 6 Pipeline and gambling
- 7 Jump prediction, code optimization
- 8 I / O space mapped to memory and PCI bus
- 9 HW access from C language on MZ_APO
- Semestral work

Classification and Conditions to Pass the Subject

Conditions for assessment:

Category	Points	Required minimum	Remark
4 homeworks	36	12	3 of 4
Activity	8	0	
Team project	24	5	
Sum	60 (68)	30	

Exam:

Category	Points	Required minimum
Written exam part	30	15
Oral exam part	+/- 10	0

Grade	Points range
А	90 and more
В	80 - 89
С	70 - 79
D	60 - 69
Ε	50 - 59
F	less than 50

The 1. lecture contents

- Number representation in computers
 - numeral systems
 - integer numbers, unsigned and signed
 - boolean values
- Basic arithmetic operations and their implementation
 - addition, subtraction
 - shift right/left
 - multiplication and division

Motivation: What is the output of next code snippet?

```
int main() {
  int a = -200;
  printf("value: \%u = \%d = \%f = \%c \n", a, a,
  *((float*)(&a)), a);
  return 0;
}
value: 4294967096 = -200 = nan = 8
and memory content is: 0x38 0xff 0xff 0xff
when run on little endian 32 bit CPU.
```

1st lecture

- How they are stored on your computer
 - INTEGER numbers, with or without sign?
- How to perform basic operations
 - Adding, Subtracting,
 - Multiplying

Non-positional numbers ©

http://diameter.si/sciquest/E1.htm

\cap \Im \Im \Im \Im \Im \Im 100, 10000, 100000, 1 million

The value is the sum: 1 333 331

Terminology basics

- Positional (place-value) notation
- Decimal/radix point
- z ... base of numeral system
- smallest representable number $\ arepsilon = z^{-m}$
- Module = Z , one increment/unit higher than biggest representable number for given encoding/notation
- A, the representable number for given n and m selection, where k is natural number in range (0,z^{n+m+1}-1)

0

 a_{\circ}

n

 \mathbf{a}_n

, **a**_{n-1},

-1

a_1'

-**m**

(**a**_m)

radix point

$$0 \leq A = k \cdot arepsilon < \mathcal{Z}$$

The representation and value

$$A \sim a_n a_{n-1} \dots a_0, a_1 \dots a_{-m}$$

$$A = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 + a_1 z^{-1} \dots a_{-m} z^{-m}$$

Unsigned integers

Language C: unsigned int

AE0B36APO Computer Architectures

Integer number representation (unsigned, non-negative)

- The most common numeral system base in computers is z=2
- The value of \mathbf{a}_i is in range {0,1,...z-1}, i.e. {0,1} for base 2
- This maps to true/false and unit of information (bit)
- We can represent number $0 \dots 2^n 1$ when n bits are used
- Which range can be represented by one byte? 1B (byte) ... 8 bits, $2^8 = 256_d$ combinations, values 0 ... $255_d = 0b1111111_b$
- Use of multiple consecutive bytes
 - 2B ... $2^{16} = 65536_d$, 0 ... $65535_d = 0xFFFF_h$, (h ... hexadecimal, base 16, a in range 0, ... 9, A, B, C, D, E, F)
 - 4B ... $2^{32} = 4294967296_d$, 0 ... $4294967295_d = 0xFFFFFF_h$

Unsigned integer

Unsigned 4-bit numbers

Assumptions:we'll assume a 4 bit machine word

Cumbersome subtraction

Signed numbers

Language C: int signed int

AE0B36APO Computer Architectures

Two's Complement.

- The most frequent code
- The sum of two opposite numbers with the same absolute value is 0000000H!

Decimal value	4 bit two's compliment
6	0110
-6	1010

Dvojkový doplněk – pokračování...

Pokud N bude počet bitů:
 <-2^{N-1}, 2^{N-1} -1>

Binární hodnota	Dvojkový doplněk
00000000	O ₍₁₀₎
00000001	1 ₍₁₀₎
:	
0 1111101	125 ₍₁₀₎
0 1111110	126 ₍₁₀₎
01111111	127 ₍₁₀₎
10000000	-128 ₍₁₀₎
1 0000001	-127 ₍₁₀₎
1 0000010	-126 ₍₁₀₎
:	
1 1111101	-3 ₍₁₀₎
1 1111110	-2 ₍₁₀₎
1 1111111	-1 ₍₁₀₎

Two's complement - examples

- Examples:
 - 0_D = 0000000H,
 - 1_D = 0000001_H,
 - 2_D = 0000002_H,
 - 3_D = 0000003_H,

- $-1_D = FFFFFFFFH$,
- -2d = FFFFFFFEн,
- $-3_D = FFFFFFD_H$,

Number Representations

Twos Complement

(In Czech: Druhý doplněk)

Only one representation for 0

One more negative number than positive number

[Seungryoul Maeng:Digital Systems]

- Addition
 - 0000000 0000 0111_B \approx 7_D Symbols use: 0=0_H, 0=0_B
 - + $0000000 0000 0110_{\rm B} \approx 6_{\rm D}$
 - 0000000 0000 1101_B≈ 13_D
- **Subtraction** can be realized as addition of negated number
 - $0000000 0000 0111_{B} \approx 7_{D}$
 - + FFFFFF <u>1111</u> $1010_{B} \approx -6_{D}$
 - $0000000 0000 0001_{B} \approx 1_{D}$
- Question for revision: how to obtain negated number in two's complement binary arithmetics?

Other Possibilities

AE0B36APO Computer Architectures

Integer – biased representation

- Known as excess-K or offset binary as well
- Transform to the representation $-K \dots 0 \dots 2^{n}-1-K$ D(A) = A+K
- Usually K=Z/2
- Advantages
 - Preserves order of original set in mapped set/representation
- Disadvantages
 - Needs adjustment by -K after addition and +K after subtraction processed by unsigned arithmetic unit
 - Requires full transformation before and after multiplication

Number Systems

Excess-K, offset binary or biased representation

One 0 representation, we can select count of negative numbers - *used e.g. for exponents of real numbers.*.

Integer arithmetic unit are not designed to calculate with Excess-K numbers [Seungryoul Maeng:Digital Systems]

- Sign and magnitude of the value (absolute value)
- Natural to humans -1234, 1234
- One (usually most significant MSB) bit of the memory location is used to represent the sign
- Bit has to be mapped to meaning
- Common use 0 ≈ "+", 1 ≈ "-"
- Disadvantages:
 - When location is **k** bits long then only **k-1** bits hold magnitude and each operation has to separate sign and magnitude
 - Two representations of the value 0

 $\mathcal{P}(X)$

Sign and Magnitude Representation.

$\begin{array}{ c c c c } \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
:: 01111101 $125_{(10)}$ 01111110 $126_{(10)}$ 01111111 $127_{(10)}$ 10000000 $-0_{(10)}$ 10000001 $-1_{(10)}$	
$\begin{array}{ c c c c } \textbf{01111101} & 125_{(10)} \\ \hline \textbf{01111110} & 126_{(10)} \\ \hline \textbf{01111111} & 127_{(10)} \\ \hline \textbf{10000000} & -\textbf{0}_{(10)} \\ \hline \textbf{10000001} & -\textbf{1}_{(10)} \end{array}$	
$\begin{array}{ c c c c c } \textbf{01111110} & \textbf{126}_{(10)} \\ \hline \textbf{01111111} & \textbf{127}_{(10)} \\ \hline \textbf{10000000} & -\textbf{0}_{(10)} \\ \hline \textbf{10000001} & -\textbf{1}_{(10)} \end{array}$	
01111111 $127_{(10)}$ 10000000 $-0_{(10)}$ 10000001 $-1_{(10)}$	
1000000 -0(10) 10000001 -1(10)	
1 0000001 -1 ₍₁₀₎	
1 0000010 -2 ₍₁₀₎	
: · · · · · · · · · · · · · · · · · · ·	
1 1111101 -125 ₍₁₀₎	
1 1111110 -126 ₍₁₀₎	
1 1111111 -127 ₍₁₀₎	

AE0B36APO Computer Architectures

Number Systems

Sign and Magnitude Representation

- Transform to the representation D(A) = A iff $A \ge 0$ D(A) = Z-1-|A| iff A < 0 (i.e. subtract from all ones)
- Advantages
 - Symmetric range
 - Almost continuous, requires hot one addition when sign changes
- Disadvantage
 - Two representations of value 0
 - More complex hardware
- Negate (-A) value can be computed by bitwise complement (flipping) of each bit in representation

Ones Complement

Binary value	Code
00000000	0 ₍₁₀₎
0000001	1 ₍₁₀₎
:	:
0 1111101	125 ₍₁₀₎
0 1111110	126 ₍₁₀₎
01111111	127 ₍₁₀₎
1 0000000	-127 ₍₁₀₎
1 0000001	-126 ₍₁₀₎
1 0000010	-125 ₍₁₀₎
:	÷
1 1111101	-2 ₍₁₀₎
1 1111110	-1 ₍₁₀₎
1 1111111	-0 ₍₁₀₎

Number Systems

Ones Complement (In Czech: První doplněk)

Still two representations of 0! This causes some problems Some complexities in addition, nowadays nearly not used

OPERATION WITH INTEGERS

AE0B36APO Computer Architectures

Direct realization of adder as logical function

	Number of logic operations
bit width	for calculating sum
1	3
2	22
3	89
4	272
5	727
6	1567
7	3287
8	7127
9	17623
10	53465
11	115933

Complexity is higher than O(2ⁿ)

The calculation was performed by BOOM logic minimizer created at the Department of Computer Science CTU-FEE

1bit Full Adder

A	Θ	Θ	1	1	Θ	Θ	1	1
+B	Θ	1	Θ	1	Θ	1	Θ	1
Sum	00	01	01	1 0	00	01	01	1 0
+ Carry-In	Θ	Θ	Θ	Θ	1	1	1	1
CarryOut Sum	00	01	01	1 0	01	10	10	1 1

Adder

Simple Adder

Simplest N-bit adder

we chain 1-bit full adders

"Carry" ripple through their chain

Minimal number of logical elements

- Delay is given by the last Cout 2*(N-1)+ 3 gates of the last adder
 - = (2 N+1) times propagation delay of 1 gate

32bit CLA "carry look-ahead" adder The carry-lookahead adder calculates one or more carry bits before the sum, which reduces the wait time to calculate the result of the larger value bits

Static "carry look ahead (CLA)" unit for 4 bits

Increment / Decrement

Very fast operations that do not need an adder!

The last bit is always negated, and the previous ones are negated according to the end 1 / 0

Dec.	Binary 8 4 2 1	+1	Binary 8 4 2 1	-1
0	0000	000 <mark>1</mark>	0000	1111
1	000 <mark>1</mark>	00 <mark>10</mark>	0001	0000
2	0010	001 <mark>1</mark>	001 <mark>0</mark>	0001
3	0011	0100	0011	001 <mark>0</mark>
4	0100	010 <mark>1</mark>	0100	0011
5	010 <mark>1</mark>	01 <mark>10</mark>	0101	010 <mark>0</mark>
6	0110	011 <mark>1</mark>	011 <mark>0</mark>	01 <mark>01</mark>
7	0111	1000	0111	0110
8	1000	100 <mark>1</mark>	1000	0111
9	100 <mark>1</mark>	10 <mark>10</mark>	1001	100 <mark>0</mark>
10	1010	101 <mark>1</mark>	101 <mark>0</mark>	10 <mark>01</mark>
11	10 <mark>11</mark>	1100	1011	101 <mark>0</mark>
12	1100	110 <mark>1</mark>	1100	1011
13	110 <mark>1</mark>	1110	1101	110 <mark>0</mark>
14	1110	111 <mark>1</mark>	111 <mark>0</mark>	1101
15	1111	0000	1111	111 <mark>0</mark>

Special Case +1/-1

S0=not A0

S1=A1 xor A0

S2=A2 xor (A1 and A0)

Eq: $S_i = A_i$ xor $(A_{i-1} \text{ and } A_{i-2} \text{ and } \dots A_1 \text{ and } A_0)$; i=0..n-1

S0=not A0

S1=A1 xor (not A0)

S2=A2 xor (not A1 and not A0)

Eq: $S_i = A_i$ xor (not A_{i-1} and ... and not A_0); i=0...n1

The number of circuits is given by the arithmetic series, with the complexity O (n^2) where n is the number of bits. The operation can be performed in parallel for all bits, and for the both +1/-1 operations, we use a circuit that differs only by negations.

Addition / Subtraction HW

Source: X36JPO, A. Pluháček

AE0B36APO Computer Architectures

Unsigned binary numbers multiplication

					ļ	4				E	3	
				1	1	0	1	•	1	0	1	1
									\downarrow	\downarrow	\downarrow	\downarrow
				0	0	0	0					
				1	1	0	1			P.	1	1
			0	1	1	0	1					
			1	1	0	1			Pr.	£1	1	
		1	0	0	1	1						
		0	0	0	0			7º	印	0		
	0	1	0	0	1	•						
	1	1	0	1	_		P	51	1			
1	0	0	0	1	•							
\downarrow												
1	0	0	0	1	1	1	1					
	C	1			C	0						

Sequential hardware multiplier (32b case)

The speed of the multiplier is horrible

Algorithm for Multiplication

A = multiplicand; MQ = multiplier; AC = 0;

for(int i=1; i <= n; i++) // n – represents number of bits { if(MQ₀ = = 1) AC = AC + A; // MQ₀ = LSB of MQ

SR (shift AC MQ by one bit right and insert information about carry from the MSB from previous step)
}
end.

when loop ends AC MQ holds 64-bit result

Example of the multiply X by Y

Multiplicand x=110 and multiplier y=101.

i	operation	AC	MQ	Α	comment
		000	101	110	initial setup
1	AC = AC + MB	110	101		start of the cycle
	SR	011	010		
2	nothing	011	010		because of $MQ_0 = = 0$
	SR	001	101		
3	AC = AC + MB	111	101		
	SR	011	110		end of the cycle

The whole operation: $x \times y = 110 \times 101 = 011110$, ($6 \times 5 = 30$)

Multiplication in two's compliment

Can be implemented, but there is a problem ...

The intended product is generally not the same as the product of two's numbers!

Details are already outside the intended APO range.

The best way is the multiplication of their absolute values and decision about its sign.

Wallace tree based multiplier

Q=X .Y, X and Y are considered as and 8bit unsigned numbers ($x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0$). ($y_7 y_6 y_5 y_4 y_3 y_2 y_1 y_0$) =

0	0	0	0	0	0	0	0	x_7y_0	x_6y_0	x_5y_0	$x_4y_0 \\$	x_3y_0	x_2y_0	$x_1y_0\\$	x_0y_0	P0
0	0	0	0	0	0	0	x_7y_1	x_6y_1	x_5y_1	x_4y_1	x_3y_1	x_2y_1	x_1y_1	x_0y_1	0	P1
0	0	0	0	0	0	x_7y_2	x_6y_2	x_5y_2	x_4y_2	x_3y_2	x_2y_2	x_1y_2	x_0y_2	0	0	P2
0	0	0	0	0	x_7y_3	x_6y_3	x_5y_3	x_4y_3	x_3y_3	$\mathbf{X}_2 \mathbf{y}_3$	$\mathbf{X}_1\mathbf{y}_3$	x_0y_3	0	0	0	Р3
0	0	0	0	x_7y_4	x_6y_4	x_5y_4	x_4y_4	x_3y_4	x_2y_4	x_1y_4	x_0y_4	0	0	0	0	P4
0	0	0	x_7y_5	x_6y_5	x_5y_5	x_4y_5	x_3y_5	x_2y_5	x_1y_5	x_0y_5	0	0	0	0	0	P5
0	0	x_7y_6	x_6y_6	x_5y_6	x_4y_6	x_3y_6	x_2y_6	x_1y_6	x_0y_6	0	0	0	0	0	0	P6
0	x_7y_7	x_6y_7	x_5y_7	x_4y_7	x_3y_7	x_2y_7	x_1y_7	x_0y_7	0	0	0	0	0	0	0	P7
\mathbf{Q}_{15}	\mathbf{Q}_{14}	\mathbf{Q}_{13}	\mathbf{Q}_{12}	Q ₁₁	\mathbf{Q}_{10}	\mathbf{Q}_9	Q_8	Q_7	Q_6	Q_5	\mathbf{Q}_4	Q_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	
The sum of P0+P1++P7 gives result of X and Y multiplication. Q = X .Y = P0 + P1 + + P7																

Parallel adder of 9 numbers

Decadic Carry-save adder

1bit Carry Save Adder

A	Θ	Θ	1	1	Θ	Θ	1	1
+B	Θ	1	Θ	1	Θ	1	Θ	1
Z=Carry-In	Θ	Θ	Θ	Θ	1	1	1	1
Sum	Θ	1	1	Θ	1	Θ	Θ	1
C=Cout	Θ	Θ	Θ	1	Θ	1	1	1

3-bit Carry-save adder

AE0B36APO Computer Architectures

The basic element is an CSA circuit (Carry Save Adder)

$$S = S^{b} + C$$

$$S_{i}^{b} = X_{i} \oplus Y_{i} \oplus Z_{i}$$
$$C_{i+1} = X_{i}Y_{i} + Y_{i}Z_{i} + Z_{i}X_{i}$$

Terminology basics

- Positional (place-value) notation
- Decimal/radix point
- z ... base of numeral system
- smallest representable number $\varepsilon = z$
- Module = Z , one increment/unit higher than biggest representable number for given encoding/notation
- A, the representable number for given n and m selection, where k is natural number in range (0,z^{n+m+1}-1)
- The representation and value

$$A \sim a_n a_{n-1} \dots a_0, a_1 \dots a_{-m}$$

$$A = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0 + a_1 z^{-1} \dots a_{-m} z^{-m}$$

$$0 \leq A = k \cdot \varepsilon < \mathcal{Z}$$

Integer number representation (unsigned, non-negative)

- The most common numeral system base in computers is z=2
- The value of \mathbf{a}_i is in range {0,1,...z-1}, i.e. {0,1} for base 2
- This maps to true/false and unit of information (bit)
- We can represent number $0 \dots 2^n 1$ when n bits are used
- Which range can be represented by one byte? 1B (byte) ... 8 bits, $2^8 = 256_d$ combinations, values 0 ... $255_d = 0b1111111_b$
- Use of multiple consecutive bytes
 - 2B ... $2^{16} = 65536_d$, 0 ... $65535_d = 0xFFFF_h$, (h ... hexadecimal, base 16, a in range 0, ... 9, A, B, C, D, E, F)
 - 4B ... $2^{32} = 4294967296_d$, 0 ... $4294967295_d = 0xFFFFFF_h$

Signed integer numbers

- Work with negative numbers is required for many applications
- When appropriate representation is used then same hardware (with minor extension) can be used for many operations with signed and unsigned numbers
- Possible representations
 - sign-magnitude code, direct representation, sign bit
 - two's complement
 - ones' complement
 - excess-K, offset binary or biased representation

Integer – sign-magnitude code

- Sign and magnitude of the value (absolute value)
- Natural to humans -1234, 1234
- One (usually most significant MSB) bit of the memory location is used to represent the sign
- Bit has to be mapped to meaning
- Common use 0 ≈ "+", 1 ≈ "-"
- Disadvantages:
 - When location is k bits long then only k-1 bits hold magnitude and each operation has to separate sign and magnitude
 - Two representations of the value 0

Integer – two's complement

- Other option is to designate one half of range/combinations for non-negative numbers and other one for positive numbers
- Transform to the representation

 $\begin{array}{ll} \mathsf{D}(\mathsf{A}) = \mathsf{A} & \text{iff } \mathsf{A} {\geq} \mathsf{0} \\ \mathsf{D}(\mathsf{A}) = \mathsf{Z}{\text{-}} |\mathsf{A}| & \text{iff } \mathsf{A} {<} \mathsf{0} \end{array}$

• Advantages

- bers $\frac{D(\mathbf{X})}{Z}$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$ $\frac{1}{2}Z$
- Continuous range when cyclic arithmetics is considered
- Single and one to one mapping of value 0
- Same HW for signed and unsigned adder
- Disadvantage
 - Asymmetric range (-(-1/2Z))

- Transform to the representation D(A) = A iff $A \ge 0$ D(A) = Z-1-|A| iff A < 0 (i.e. subtract from all ones)
- Advantages
 - Symmetric range
 - Almost continuous, requires hot one addition when sign changes
- Disadvantage
 - Two representations of value 0
 - More complex hardware
- Negate (-A) value can be computed by bitwise complement (flipping) of each bit in representation

Integer – biased representation

- Known as excess-K or offset binary as well
- Transform to the representation $-K \dots 0 \dots 2^{n}-1-K$ D(A) = A+K
- Usually K=Z/2
- Advantages
 - Preserves order of original set in mapped set/representation
- Disadvantages
 - Needs adjustment by -K after addition and +K after subtraction processed by unsigned arithmetic unit
 - Requires full transformation before and after multiplication

Back to two's complement and the C language

- Two's complement is most used signed integer numbers representation in computers
- Complement arithmetic is often used as its synonym
- "C" programing language speaks about integer numeric type without sign as *unsigned integers* and they are declared in source code as unsigned int.
- The numeric type with sign is simply called *integers* and is declared as signed int.
- Examples of the values representations when 32 bits are used:
 - 0_D = 0000000H,
 - 1_D = 0000001_H, -1_D = FFFFFFF_H,
 - 2_D = 0000002_H, -2_D = FFFFFFE_H,
 - $3_D = 0000003_H$, $-3_D = FFFFFFD_H$,
- Considerations about value overflow and underflow from order grit are discussed later.

Two's complement – addition and subtraction

- Addition
 - 0000000 0000 0111 $_{B} \approx 7_{D}$ Symbols use: 0=0H, 0=0B
 - + $0000000 0000 0110_{\rm B} \approx 6_{\rm D}$
 - $0000000 0000 1101_{B} \approx 13_{D}$
- **Subtraction** can be realized as addition of negated number
 - $0000000 0000 0111_{B} \approx 7_{D}$
 - + FFFFFF 1111 1010_B \approx -6_D
 - $0000000 0000 0001_{B} \approx 1_{D}$
- Question for revision: how to obtain negated number in two's complement binary arithmetics?

Hardware of ripple-carry adder

Fast parallel adder realization and limits

- The previous, cascade based adder is slow carry propagation delay
- The parallel adder is combinatorial circuit, it can be realized through sum of minterms (product of sums), two levels of gates (wide number of inputs required)
- But for 64-bit adder 10²⁰ gates is required

Solution #1

• Use of carry-lookahead circuits in adder combined with adders without carry bit

Solution #2

 Cascade of adders with fraction of the required width Combination (hierarchy) of #1 and #2 can be used for wider inputs

Speed of the adder

- Parallel adder is combinational logic/circuit. Is there any reason to speak about its speed? Try to describe!
- Yes, and it is really slow. Why?
- Possible enhancement adder with carry-lookahead (CLA) logic!

CLA – carry-lookahead

- Adder combined with CLA provides enough speedup when compared with parallel ripple-carry adder and yet number of additional gates is acceptable
- CLA for 64-bit adder increases hardware price for about 50% but the speed is increased (signal propagation time decreased) 9 times.
- The result is significant speed/price ratio enhancement.
The basic equations for the CLA logic

- Let:
 - the generation of carry on position (bit) j is defined as:

$$g_j = x_j y_j$$

• the need for carry propagation from previous bit:

$$p_j = x_j \oplus y_j = x_j \overline{y}_j \stackrel{\vee}{} \overline{x}_j y_j$$

- Then:
 - the result of sum for bit j is given by:

$$s_{j} = c_{j} (\overline{x_{j} \oplus y_{j}})^{\vee} \overline{c}_{j} (x_{j} \oplus y_{j}) = c_{j} \overline{p}_{j}^{\vee} \overline{c}_{j} p_{j} = p_{j} \oplus c_{j}$$

• and carry to the higher order bit (j+1) is given by:

$$c_{j+1} = x_j y_j \lor (x_j \oplus y_j) c_j = g_j \lor p_j c_j$$

CLA

The carry can be computed as:

$$c_{1} = g_{0} \lor p_{0}c_{0}$$

$$c_{2} = g_{1} \lor p_{1}c_{1} = g_{1} \lor p_{1}(g_{0} \lor p_{0}c_{0}) = g_{1} \lor p_{1}g_{0} \lor p_{1}p_{0}c_{0}$$

$$c_{3} = g_{2} \lor p_{2}c_{2} = g_{2} \lor p_{2}(g_{1} \lor p_{1}g_{0} \lor p_{1}p_{0}c_{0}) = g_{2} \lor p_{2}g_{1} \lor p_{2}p_{1}g_{0} \lor p_{2}p_{1}p_{0}c_{0}$$

$$c_{4} = g_{3} \lor p_{3}c_{3} = \dots = g_{3} \lor p_{3}g_{2} \lor p_{3}p_{2}g_{1} \lor p_{3}p_{2}p_{1}g_{0} \lor p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$c_{5} = \dots$$

Description of the equation for c_3 as an example:

The carry input for bit 3 is active **when** carry is generated in bit 2 **or** carry propagates condition holds for bit 2 and carry is generated in the bit 1 **or** both bits 2 and 1 propagate carry and carry is generated in bit 0

Arithmetic unit for add/subtract operations

Inspiration: X36JPO, A. Pluháček

B35APO Computer Architectures

Arithmetic overflow (underflow)

- Result of the arithmetic operation is incorrect because, it does not fit into selected number of the representation bits (width)
- But for the signed arithmetics, it is not equivalent to the carry from the most significant bit.
- The arithmetic overflow is signaled if result sign is different from operand signs if both operands have same sign
- or can be detected with exclusive-OR of carry to and from the most significant bit

Arithmetic shift to the left and to the right

- arithmetic shift by one to the left/right is equivalent to signed multiply/divide by 2 (digits movement in positional (place-value) representation)
- Notice difference between arithmetic, logic and cyclic shift operations

• Remark: Barrel shifter can be used for fast variable shifts

Addition and subtraction for the biased representation

• Short note about other signed number representation

$$\mathcal{A}(A+B) = \mathcal{A}(A) + \mathcal{A}(B) - K$$
$$\mathcal{A}(A-B) = \mathcal{A}(A) - \mathcal{A}(B) + K$$

- Overflow detection
 - for addition:

same sign of addends and different result sign

• for subtraction:

signs of minuend and subtrahend are opposite and sign of the result is opposite to the sign of minuend

Unsigned binary numbers multiplication

					ļ	4		E	3			
				1	1	0	1	•	1	0	1	1
									\downarrow	\downarrow	\downarrow	\downarrow
				0	0	0	0					
				1	1	0	1			ą.	21	1
			0	1	1	0	1					
			1	1	0	1			P	1	1	
		1	0	0	1	1						
		0	0	0	0			7	印	0		
	0	1	0	0	1	•						
	1	1	0	1	_		P.	£1	1			
1	0	0	0	1	•							
\downarrow												
1	0	0	0	1	1	1	1					
C1					C	i0						

Sequential hardware multiplier (32b case)

The speed of the multiplier is horrible

Algorithm for multiplication

```
A = multiplicand;
MQ = multiplier;
AC = 0;
for( int i=1; i <= n; i++) // n – represents number of bits
  if (MQ_0 = = 1) AC = AC + A; // MQ_0 = LSB of MQ
  SR (shift AC MQ by one bit right and insert information about
  carry from the MSB from previous step)
}
end.
```

when loop ends AC MQ holds 64-bit result

Example of the multiply X by Y

Multiplicand x=110 and multiplier y=101.

i	operation	AC	MQ	Α	comment
		000	101	110	initial setup
1	AC = AC + MB	110	101		start of the cycle
	SR	011	010		
2	nothing	011	010		because of $MQ_0 = = 0$
	SR	001	101		
3	AC = AC + MB	111	101		
	SR	011	110		end of the cycle

The whole operation: $x \times y = 110 \times 101 = 011110$, ($6 \times 5 = 30$)

Signed multiplication by unsigned HW for two's complement

One possible solution

 $C = A \cdot B$ Let A and B representations are n bits and result is 2n bits

$$D(C) = D(A) \bullet D(B) - (D(B) << n) if A < 0 - (D(A) << n) if B < 0$$

Consider for negative numbers

 $(2^{n}+A) \cdot (2^{n}+B) = 2^{2n}+2^{n}A + 2^{n}B + A \cdot B$

where 2²ⁿ is out of the result representation, next two elements have to be eliminated if input is negative

Wallace tree based multiplier

Q=X .Y, X and Y are considered as and 8bit unsigned numbers ($x_7 x_6 x_5 x_4 x_3 x_2 x_1 x_0$). ($y_7 y_6 y_5 y_4 y_3 y_2 y_1 y_0$) =

0	0	0	0	0	0	0	0	x_7y_0	$x_6y_0\\$	$x_5y_0\\$	$x_4y_0 \\$	x_3y_0	x_2y_0	$x_1y_0 \\$	$x_0y_0\\$	P0
0	0	0	0	0	0	0	x_7y_1	x_6y_1	x_5y_1	x_4y_1	x_3y_1	x_2y_1	x_1y_1	x_0y_1	0	P1
0	0	0	0	0	0	x_7y_2	x_6y_2	x_5y_2	x_4y_2	x_3y_2	x_2y_2	$\mathbf{x}_1 \mathbf{y}_2$	x_0y_2	0	0	P2
0	0	0	0	0	x_7y_3	x_6y_3	x_5y_3	x_4y_3	x_3y_3	x_2y_3	x_1y_3	x_0y_3	0	0	0	Р3
0	0	0	0	x_7y_4	x_6y_4	x_5y_4	x_4y_4	x_3y_4	x_2y_4	x_1y_4	x_0y_4	0	0	0	0	P4
0	0	0	x_7y_5	x_6y_5	x_5y_5	x_4y_5	x_3y_5	x_2y_5	x_1y_5	x_0y_5	0	0	0	0	0	P5
0	0	x_7y_6	x_6y_6	x_5y_6	x_4y_6	x_3y_6	x_2y_6	x_1y_6	x_0y_6	0	0	0	0	0	0	P6
0	x_7y_7	x_6y_7	x_5y_7	x_4y_7	x_3y_7	x_2y_7	x_1y_7	x_0y_7	0	0	0	0	0	0	0	P7
\mathbf{Q}_{15}	Q_{14}	Q ₁₃	Q_{12}	Q ₁₁	Q_{10}	Q_9	Q_8	Q_7	Q_6	Q_5	\mathbf{Q}_4	Q_3	\mathbf{Q}_2	\mathbf{Q}_1	\mathbf{Q}_0	
The sum of P0+P1++P7 gives result of X and Y multiplication. $Q = X \cdot Y = P0 + P1 + + P7$																

Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

$$S = S^{b} + C$$

$$S_{i}^{b} = X_{i} \oplus Y_{i} \oplus Z_{i}$$
$$C_{i+1} = X_{i}Y_{i} + Y_{i}Z_{i} + Z_{i}X_{i}$$

Hardware divider

Hardware divider logic (32b case)

Algorithm of the sequential division

MQ = dividend; B = divisor; (Condition: divisor is not 0!) AC = 0;

for(int i=1; i <= n; i++) { SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero) if(AC >= B) { AC = AC - B; MQ₀ = 1; // the LSB of the MQ register is set to 1 }

 \rightarrow Value of MQ register represents quotient and AC remainder

Example of X/Y division

Dividend x=1010 and divisor y=0011

i	operation		AC	MQ	B	comment
			0000	1010	0011	initial setup
1	SL		0001	0100		
	nothing		0001	0100		the if condition not true
2	SL		0010	1000		
			0010	1000		the if condition not true
3	SL		0101	0000		$r \ge y$
	AC = AC - B;	MQ ₀ = 1;	0010	0001		
4	SL		0100	0010		$r \ge y$
	AC = AC - B;	MQ ₀ = 1;	0001	0011		end of the cycle

x : y = 1010 : 0011 = 0011 reminder 0001, (10 : 3 = 3 reminder 1)

Higher dynamic range for numbers (REAL/float)

- Scientific notation, semilogarithmic, floating point
 - The value is represented by:
 - EXPONENT (E) represents scale for given value
 - MANTISSA (M) represents value in that scale
 - the sign(s) are usually separated as well
- Normalized notation
 - The exponent and mantissa are adjusted such way, that mantissa is held in some standard range. (0.5, 1) or (1, 2) for considered base z=2
 - Generally: the first digit is non-zero or mantissa range is $\langle 1, z \rangle$

Standardized format for REAL type numbers

- Standard IEEE-754 defines next REAL representation and precision
 - single-precision in the C language declared as float
 - double-precision C language double

Examples of (de)normalized numbers in base 10 and 2

B35APO Computer Architectures

The representation/encoding of floating point number

- Mantissa encoded as the sign and absolute value (magnitude) equivalent to the direct representation
- Exponent encoded in biased representation (K=127 for single precision)
- The implicit leading one can be omitted due to normalization of m \in (1, 2) 23+1 implicit bit for single

$$X = -1^{s} 2^{A(E)-127} m$$
 where $m \in (1, 2)$

$$m = 1 + 2^{-23} M$$

Radix point position for E and M

Implied (hidden) leading 1 bit

- Most significant bit of the mantissa is one for each normalized number and it is not stored in the representation for the normalized numbers
- If exponent representation is zero then encoded value is zero or denormalized number which requires to store most significant bit
- Denormalized numbers allow to keep resolution in the range from the smallest normalized number to zero

Underflow/lost of the precision for IEEE-754 representation

- The case where stored number value is not zero but it is smaller than smallest number which can be represented in the normalized form
- The direct underflow to the zero can be prevented by extension of the representation range by denormalized numbers

ANSI/IEEE Std 754-1985 — single precision format — 32b

ANSI/IEEE Std 754-1985 — double precision format — 64b

Representation of the fundamental values

Zero

Positive zero	0	00000000	000000000000000000000000000000000000000	+0.0
Negative zero	1	00000000	000000000000000000000000000000000000000	-0.0
Infinity				

Positive infinity	0	11111111	000000000000000000000000000000000000000	+Inf
Negative infinity	1	11111111	000000000000000000000000000000000000000	-Inf

Representation corner values

Smallest normalized	* 0000001 000000000000000000000000	± 2⁽¹⁻¹²⁷⁾ ±1.1755 10 ⁻³⁸			
Biggest denormalized	* 0000000 111111111111111111111111	±(1-2 ⁻²³)2 ⁽¹⁻¹²⁶⁾			
Smallest denormalized	* 0000000 00000000000000000000000000000	±2⁻²³2⁻¹²⁶ ±1.4013 10 ⁻⁴⁵			
Max. value	0 11111110 1111111111111111111111111	(2-2 ⁻²³)2 ⁽¹²⁷⁾ +3.4028 10 ⁺³⁸			
B35APO Computer Architectures 133					

Not a number (NaN)

- All ones in the exponent
- Mantissa not equal to the zero
- Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
- Compare to (X+ +Inf) where +Inf is sane result

IEEE-754 special values summary

sign bit	Exponent representation	Mantissa	Represented value/meaning
0	0 <e<255< td=""><td>any value</td><td>normalized positive number</td></e<255<>	any value	normalized positive number
1	0 <e<255< td=""><td>any value</td><td>normalized negative number</td></e<255<>	any value	normalized negative number
0	0	>0	denormalized positive number
1	0	>0	denormalized negative number
0	0	0	positive zero
1	0	0	negative zero
0	255	0	positive infinity
1	255	0	negative infinity
0	255	≠0	NaN – does not represent a number
1	255	≠0	NaN – does not represent a number

Comparison

• Comparison of the two IEEE-754 encoded numbers requires to solve signs separately but then it can be processed by unsigned ALU unit on the representations

 $A \ge B \Leftarrow A - B \ge 0 \Leftarrow D(A) - D(B) \ge 0$

• This is advantage of the selected encoding and reason why sign is not placed at start of the mantissa

Addition of floating point numbers

- The number with bigger exponent value is selected
- Mantissa of the number with smaller exponent is shifted right the mantissas are then expressed at same scale
- The signs are analyzed and mantissas are added (same sign) or subtracted (smaller number from bigger)
- The resulting mantissa is shifted right (max by one) if addition overflows or shifted left after subtraction until all leading zeros are eliminated
- The resulting exponent is adjusted according to the shift
- Result is normalized after these steps
- The special cases and processing is required if inputs are not regular normalized numbers or result does not fit into normalized representation

Hardware of the floating point adder

Multiplication of floating point numbers

- Exponents are added and signs xor-ed
- Mantissas are multiplied
- Result can require normalization
 max 2 bits right for normalized numbers
- The result is rounded
- Hardware for multiplier is of the same or even lower complexity as the adder hardware – only adder part is replaced by unsigned multiplier

Floating point arithmetic operations overview

Addition:	$A \cdot z^a, B \cdot z^b, b < a$	unify exponents
	$\mathbf{B} \cdot \mathbf{z}^{\mathrm{b}} = (\mathbf{B} \cdot \mathbf{z}^{\mathrm{b} \cdot \mathbf{a}}) \cdot \mathbf{z}^{\mathrm{b} \cdot (\mathrm{b} \cdot \mathbf{a})}$	by shift of mantissa
A · z ^a +	$\mathbf{B} \cdot \mathbf{z}^{\mathrm{b}} = [\mathbf{A} + (\mathbf{B} \cdot \mathbf{z}^{\mathrm{b} \cdot \mathrm{a}})] \cdot \mathbf{z}^{\mathrm{a}}$	sum + normalization
Subtraction:	unification of exponen normalization	ts, subtraction and
Multiplication:	$\mathbf{A} \cdot \mathbf{z}^{\mathbf{a}} \cdot \mathbf{B} \cdot \mathbf{z}^{\mathbf{b}} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{z}^{\mathbf{a}+\mathbf{b}}$	
	A·B	- normalize if required
	$\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{z}^{a+b} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{z} \cdot \mathbf{z}^{a+b-2}$	¹ - by left shift
Division:	$\mathbf{A} \cdot \mathbf{z}^{\mathbf{a}} / \mathbf{B} \cdot \mathbf{z}^{\mathbf{b}} = \mathbf{A} / \mathbf{B} \cdot \mathbf{z}^{\mathbf{a} \cdot \mathbf{b}}$	
	A/B	- normalize if required
	$A/B \cdot z^{a \cdot b} = A/B \cdot z \cdot z^{a \cdot b + 1}$	- by right shift