
1B35APO Computer Architectures

Computer Architectures

Number Representation and Computer Arithmetics

Pavel Píša, Richard Šusta

Michal Štepanovský, Miroslav Šnorek

Ver.1.10

Czech Technical University in Prague, Faculty of Electrical Engineering

English version partially supported by:
European Social Fund Prague & EU: We invests in your future.

2B35APO Computer Architectures

3B0B35APO Computer Architectures

Important Introductory Note

● The goal is to understand the structure of the computer so you can
make better use of its options to achieve its higher performance.

● It is also discussed interconnection of HW / SW
● Webpages:

https://cw.fel.cvut.cz/b192/courses/b35apo/
https://dcenet.felk.cvut.cz/apo/ - they will be opened

● Some followup related subjects:
● B4M35PAP - Advanced Computer Architectures
● B3B38VSY - Embedded Systems
● B4M38AVS - Embedded Systems Application
● B4B35OSY - Operating Systems (OI)
● B0B35LSP – Logic Systems and Processors (KyR + part of OI)

● Prerequisite: Šusta, R.: APOLOS , CTU-FEE 2016, 51 pg.

4B0B35APO Computer Architectures

Important Introductory Note

● The course is based on a world-renowned book of authors
Paterson, D., Hennessey, V.: Computer Organization and Design,
The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5

David Andrew Patterson
University of California, Berkeley
Works: RISC processor Berkley RISC → SPARC,
 DLX, RAID, Clusters, RISC-V

John Leroy Hennessy
10th President of Stanford University
Works: RISC processors MIPS,
 DLX a MMIX

2017 Turing Award for pioneering a systematic, quantitative approach to the design
and evaluation of computer architectures with enduring impact on the
microprocessor industry. → A New Golden Age for Computer Architecture – RISC-V

5B0B35APO Computer Architectures

Moore's Law
Gordon Moore, founder of Intel, in 1965: " The number of transistors on integrated

circuits doubles approximately every two years "

6B0B35APO Computer Architectures

The cost of production is growing with decreasing design rule

Source: http://electroiq.com/

Source: http://www.eetimes.com/

Moore's Law will be
stopped by cost…

7B0B35APO Computer Architectures

End of Growth of Single Program Speed?

End of
the

Line?
2X /

20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of
Dennard
Scaling

⇒
Multicore
2X / 3.5

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X /
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson,
Computer Architecture: A Quantitative Approach, 6/e. 2018

8B0B35APO Computer Architectures

Processors Architectures Development in a Glimpse

● 1960 – IBM incompatible families → IBM System/360 – one ISA to rule
them all,

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Model M30 M40 M50 M65

Datapath width 8 bits 16 bits 32 bits 64 bits

Microcode size 4k x 50 4k x 52 2.75k x 85 2.75k x 87

Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns

Main memory cycle time 1500 ns 2500 ns 2000 ns 750 ns

Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2018 $) $1,560,000 $1,760,000 $3,720,000 $8,720,000

● 1976 – Writable Control Store, Verification of microprograms, David Patterson Ph.D.,
UCLA, 1976

● Intel iAPX 432: Most ambitious 1970s micro, started in 1975 – 32-bit capability-based
object-oriented architecture, Severe performance, complexity (multiple chips), and
usability problems; announced 1981

● Intel 8086 (1978, 8MHz, 29,000 transistors), “Stopgap” 16-bit processor, 52 weeks to
new chip, architecture design 3 weeks (10 person weeks) assembly-compatible with 8
bit 8080, further i80286 16-bit introduced some iAPX 432 lapses, i386 paging

9B0B35APO Computer Architectures

CISC and RISC

● IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was
out of main business)

● Use SRAM for instruction cache of user-visible instructions
● Use simple ISA – Instructions as simple as microinstructions, but not

as wide, Compiled code only used a few CISC instructions anyways,
Enable pipelined implementations

● Chaitin’s register allocation scheme benefits load-store ISAs
● Berkeley (RISC I, II → SPARC) & Stanford RISC Chips (MIPS)

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in
3 µm &4 µm NMOS, ran at 4 MHz (3 µm), and size is 50 mm2 (4
µm) (Microprocessor without Interlocked Pipeline Stages)

10B0B35APO Computer Architectures

CISC and RISC

● CISC executes fewer instructions per program (≈ 3/4X instructions),
but many more clock cycles per instruction (≈ 6X CPI)

 ⇒ RISC ≈ 4X faster than CISC

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

PC Era
▪ Hardware translates x86
 instructions into internal RISC
 Instructions (Compiler vs Interpreter)
▪ Then use any RISC
 technique inside MPU
▪ > 350M / year !
▪ x86 ISA eventually
 dominates servers as well
 as desktops

PostPC Era: Client/Cloud
▪ IP in SoC vs. MPU
▪ Value die area, energy as much as
 performance
▪ > 20B total / year in 2017
▪ 99% Processors today are RISC
▪ Marketplace settles debate

● Alternative, Intel Itanium VLIW, 2002 instead 1997
● “The Itanium approach...was supposed to be so terrific –until it turned out

that the wished-for compilers were basically impossible to write.” - Donald
Knuth, Stanford

11B0B35APO Computer Architectures

RISC-V

● ARM, MIPS, SPARC, PowerPC – Commercialization and extensions
results in too complex CPUs again, with license and patents
preventing even original investors to use real/actual implementations
in silicon to be used for education and research

● Krste Asanovic and other prof. Patterson's students initiated
development of new architecture (start of 2010), initial estimate to
design architecture 3 months, but 3 years

● Simple, Clean-slate design (25 years later, so can learn from mistakes of
predecessors, Avoids µarchitecture or technology-dependent features),
Modular, Supports specialization, Community designed

● A few base integer ISAs (RV32E, RV32I, RV64I)
● Standard extensions (M: Integer multiply/divide, A: Atomic memory

operations, F/D: Single/Double-precision Fl-point, C: Compressed
Instructions (<x86), V: Vector Extension for DLP (>SIMD**))

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

12B0B35APO Computer Architectures

Foundation Members since 2015

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Open Architecture Goal
Create industry-standard open ISAs for all computing devices

“Linux for processors”

13B35APO Computer Architectures

Today PC Computer Base Platform – Motherboard

14B35APO Computer Architectures

Block Diagram of Components Interconnection

Microprocessor
Root

complex

End
point

End
point

End
pointRAM

RAM

RAM

End
point

End
point End

point

End
point

End
point

End
point

End
point

Switch

15B35APO Computer Architectures

Block Diagram of Components Interconnection

Microprocessor
Root

complex

End
point

End
point

End
pointRAM

RAM

RAM

End
point

End
point End

point

End
point

End
point

End
point

End
point

Switch

GPU

15

16B35APO Computer Architectures

Block Diagram of Components Interconnection

Microprocessor
Root

complex

End
point

End
point

End
pointRAM

RAM

RAM

End
point

End
point End

point

End
point

End
point

End
point

End
point

Switch

GPU

16

Additional
USB ports Wi-fi?

17B0B35APO Computer Architectures

Von Neumann and Harvard Architectures

von Neumann
CPU

Memory

Instructions

Data

Address,
Data and
Status
Busses

von Neumann
“bottleneck”

von Neumann
“bottleneck”

Harvard
CPU

Instruction
memory

Data
Memory

Instruction
Address,
Data and
Status
Busses

Data space
Address,
Data and
Status
Busses

[Arnold S. Berger: Hardware Computer Organization for the Software Professional]

18B0B35APO Computer Architectures

John von Neumann

28. 12. 1903 -
8. 2. 1957

Princeton Institute for Advanced Studies

Procesor

Input Output

Paměť

controller

ALU

5 units:
•A processing unit that contains an arithmetic logic unit and processor
registers;
•A control unit that contains an instruction register and program counter;
•Memory that stores data and instructions
•External mass storage
•Input and output mechanisms

19B0B35APO Computer Architectures

Samsung Galaxy S4 inside

• Android 5.0 (Lollipop)
• 2 GB RAM
• 16 GB user RAM user
• 1920 x 1080 display
• 8-core CPU (chip Exynos 5410):

• 4 cores 1.6 GHz ARM Cortex-A15
• 4 cores 1.2 GHz ARM Cortex-A7

20B0B35APO Computer Architectures

Samsung Galaxy S4 inside

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

21B0B35APO Computer Architectures

Samsung Galaxy S4 inside

Exynos 5410
(8-core CPU

+ 2GB DRAM)

Multichip memory: 64 MB
DDR SDRAM, 16GB

NAND Flash, Controller

Intel PMB9820
baseband
processor

(functions radio -
EDGE, WCDMA,
HSDPA/HSUPA)

Power
management

Wi-fi
(broadcom
BCM4335)

DSP processor
for voice and
audio codec

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/

22B0B35APO Computer Architectures

Samsung Galaxy S4 inside

X-ray image of Exynos 5410 hip from the side :

We see that this is QDP (Quad die package)
To increase capacity, chips have multiple stacks of dies.
A die, in the context of integrated circuits, is a small block of semiconducting
material on which a given functional circuit is fabricated. [Wikipedia]

Sourcej: http://gamma0burst.tistory.com/m/600

23B0B35APO Computer Architectures

Samsung Galaxy S4 inside

Chip Exynos 5410 – here, we see DRAM

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/
pages/computational-photography-part-2

24B0B35APO Computer Architectures

Samsung Galaxy S4 inside

Chip Exynos 5410

• Note the different sizes of 4 cores
A7 and 4 cores A15

• On the chip, other components
are integrated outside the
processor: the GPU, Video coder
and decoder, and more. This is
SoC (System on Chip)

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/
pages/computational-photography-part-2, http://gamma0burst.tistory.com/m/600

25B0B35APO Computer Architectures

Samsung Galaxy S4 inside

Application
processor:

Exynos
CPU

Cortex A15
Quad core

CPU
Cortex A7
Quad core

GPU
SGX544
Tri core

Camera Display High speed I/F
(HSIC/ USB)

Memory I/F
(LPDDR3, eMMC, SD) Peripheral I/F

NAND flash
(16GB)

DSP
processor
for audio

Audio

ISP

GPSAccelerometer Wi-fi Baseband
processor

26B0B35APO Computer Architectures

Common concept

Procesor

Vstup Výstup

Paměť

řadič
ALU

• The processor performs stored memory (ROM, RAM) instructions to
operate peripherals, to respond to external events and to process data.

27B0B35APO Computer Architectures

Example of Optimization

Autonomous cars

Source: http://www.nvidia.com/object/autonomous-cars.html

 Many artificial intelligence tasks are based on deep neural networks (deep
neural networks)

28B0B35APO Computer Architectures

Neural network passage -> matrix multiplication

 How to increase calculation?

 The results of one of many experiments

 Naive algorithm (3 × for) – 3.6 s = 0.28 FPS

 Optimizing memory access – 195 ms = 5.13 FPS
(necessary knowledge of HW)

 4 cores– 114 ms = 8.77 FPS
(selection of a proper synchronization)

 GPU (256 processors) — 25 ms = 40 FPS
(knowledge of data transfer between CPU and coprocessors)

 Source: Naive algorithm, library Eigen (1 core), 4 cores (2 physical on i7-2520M, compiler
flags -03), GPU results Joela Matějka, Department of Control Engineering, FEE, CTU
https://dce.fel.cvut.cz/

 How to speedup?

https://dce.fel.cvut.cz/

29B0B35APO Computer Architectures

Optimize Memory Accesses

CPU

Main Memory

L2 Cache

L1 Cache

Registers

CPU

Main Memory

L2 Cache

L1 Cache

Registers

CPU

Main Memory

L2 Cache

L1 Cache

Registers

● Algorithm modification with respect to memory hierarchy
● Data from the (buffer) memory near the processor can be

obtained faster (but fast memory is small in size)

30B0B35APO Computer Architectures

Prediction of jumps / accesses to memory

●In order to increase average
performance, the execution of
instructions is divided into
several phases => the need to
read several instructions / data
in advance

●Every condition (if, loop) means
a possible jump - poor
prediction is expensive

●It is good to have an idea of
how the predictions work and
what alternatives there are on
the CPU / HW. (Eg vector /
multimedia inst.)

Source: https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg

https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg

31B0B35APO Computer Architectures

Parallelization - Multicore Processor

● Synchronization requirements
● Interconnection and communication possibilities between

processors
● Transfers

between
memory levels
are very
expensive

● Improper
sharing/access
form more cores
results in slower
code than on a
single CPU

Intel Nehalem Processor, Original Core i7
Source: http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

32B0B35APO Computer Architectures

Computing Coprocessors - GPU

● Multi-core processor (hundreds)
● Some units and bclocks shared
● For effective use it is necessary to know the basic

hardware features

Source: https://devblogs.nvidia.com/parallelforall/inside-pascal/

https://devblogs.nvidia.com/parallelforall/inside-pascal/

33B0B35APO Computer Architectures

GPU – Maxwell

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

● GM204
● 5200 milins trasistors
● 398 mm2

● PCIe 3.0 x16
● 2048 computation

units
● 4096 MB
● 1126 MHz
● 7010 MT/s
● 72.1 GP/s
● 144 GT/s
● 224 GB/s

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

34B35APO Computer Architectures

FPGA – design/prototyping of own hardware

● Programmable logic arrays
● Well suited for effective implementaion of some digital

signal manipulation (filters – images, video or audio, FFT
analysis, custom CPU architecture…)

● Programmer interconnects blcoks available on the chip
● Zynq 7000 FPGA – two ARM cores equipped by FPGA –

fast and simple access to FPGA/peripherals from own
program

● (the platform is used for your seminaries but you will use
only design prepared by us, the FPGA programming/logic
design is topic for more advance couses)

35B35APO Computer Architectures

Xilinx Zynq 7000 a MicroZed APO

MicroZed

Source: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Source: http://microzed.org/product/microzed

Source: https://cw.fel.cvut.cz/wiki/courses/b35apo/start

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://microzed.org/product/microzed
https://cw.fel.cvut.cz/wiki/courses/b35apo/start

36B0B35APO Computer Architectures

MZ_APO board

you will later work with this board

37B35APO Computer Architectures

MZ_APO – features

● The core chip: Zynq-7000 All Programmable SoC
● Typ: Z-7010, device XC7Z010
● CPU: Dual ARM® Cortex™-A9 MPCore™ @ 866 MHz

(NEON™ & Single / Double Precision Floating Point)
2x L1 32+32 kB, L2 512 KB

● FPGA: 28K Logic Cells (~430K ASIC logic gates, 35 kbit)
● Computational capability of FPGA DSP blocks: 100 GMACs
● Memory for FPGA design: 240 KB
● Memory on MicroZed board: 1GB
● Operating system: GNU/Linux

● GNU LIBC (libc6) 2.19-18+deb8u7
● Kernel: Linux 4.9.9-rt6-00002-ge6c7d1c
● Distribution: Debian Jessie

38B35APO Computer Architectures

MZ_APO – Logic design done in Xilinx Vivado

39B35APO Computer Architectures

The first seminar – physical address space on MZ_APO

RAM memory

Memory mapped
Input/Output range

Address
form
CPU

40B35APO Computer Architectures

GNU/Linux operating system – from tiny gadgets ...

41B35APO Computer Architectures

Linux – from tiny to supercomputers

● TOP500 https://www.top500.org/ (https://en.wikipedia.org/wiki/TOP500)
● Actual top one: Summit supercomputer – IBM AC922
● June 2018, US Oak Ridge National Laboratory (ORNL),
● 200 PetaFLOPS, 4600 “nodes”, 2× IBM Power9 CPU +
● 6× Nvidia Volta GV100
● 96 lanes of PCIe 4.0, 400Gb/s
● NVLink 2.0, 100GB/s CPU-to-GPU,
● GPU-to-GPU
● 2TB DDR4-2666 per node
● 1.6 TB NV RAM per node
● 250 PB storage
● POWER9-SO, Global Foundries 14nm FinFET,

 8×109 tran., 17-layer, 24 cores, 96 threads (SMT4)
● 120MB L3 eDRAM (2 CPU 10MB), 256GB/s

● Other example: SGI SSI (single system image) Linux, 2048 Itanium CPU a 4TiB RAM

Source: http://www.tomshardware.com/

https://www.top500.org/
https://en.wikipedia.org/wiki/TOP500

42B35APO Computer Architectures

Linux kernel and open-source

● Linux kernel project
● 13,500 developers from 2005 year
● 10,000 lines of code inserted daily
● 8,000 removed and 1,500 till 1,800 modified
● GIT source control system

● Many successful open-source projects exists
● Open for joining by everybody
● Google Summer of Code for university students

● https://developers.google.com/open-source/gsoc/

Zdroj: https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

https://developers.google.com/open-source/gsoc/
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

43B0B35APO Computer Architectures

Back to the Motivational Example of Autonomous Driving

The result of a good knowledge of hardware

 Acceleration (in our case 18 × using the same number of cores)

 Reduce the power required

 Energy saving

 Possibility to reduce current solutions

 Using GPUs, we process 40 fps.

 But in an embedded device,
it is sometimes necessary to
reduce its consumption and
cost. There are used very
simple processors or
microcontrollers, sometimes
without real number
operations, and programmed
with low-level C language.

44B0B35APO Computer Architectures

Applicability of Knowledge and Techniques from the Course

●Applications not only in autonomous control
●In any embedded device - reduce size, consumption,
reliability
●In data sciences - considerably reduce runtime and energy
savings in calculations
●In the user interface - improving application response
●Practically everywhere…

45B35APO Computer Architectures

Computer

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original
domain of
the
computer
architects
(‘50s-’80s)

Domain of
recent computer
architecture
(‘90s - ???)

Reliability,
power, …

Parallel
computing,
security, …

Reference: John Kubiatowicz: EECS 252 Graduate Computer
Architecture, Lecture 1. University of California, Berkeley

APO
course
interest

46B35APO Computer Architectures

Reasons to study computer architectures

● To invent/design new computer architectures
● To be able to integrate selected architecture into silicon
● To gain knowledge required to design computer hardware/

systems (big ones or embedded)
● To understand generic questions about computers,

architectures and performance of various architectures
● To understand how to use computer hardware

efficiently (i.e. how to write good software)
● It is not possible to efficiently use resources provided by any

(especially by modern) hardware without insight into their
constraints, resource limits and behavior

● It is possible to write some well paid applications without real
understanding but this requires abundant resources on the
hardware level. But no interesting and demanding tasks can
be solved without this understanding.

47B35APO Computer Architectures

More motivation and examples

● The knowledge is necessary for every programmer who
wants to work with medium size data sets or solve little more
demanding computational tasks

● No multimedia algorithm can be implemented well without
this knowledge

● The 1/3 of the course is focussed even on peripheral access
● Examples

● Facebook – HipHop for PHP C++/GCC machine code
● BackBerry (RIM) – our consultations for time source
● RedHat – JAVA JIT for ARM for future servers generation
● Multimedia and CUDA computations
● Photoshop, GIMP (data/tiles organization in memory)
● Knot-DNS (RCU, Copy on write, Cuckoo hashing,)

48B35APO Computer Architectures

The course's background and literature

● Course is based on worldwide recognized book and
courses; evaluation Graduate Record Examination – GRE

Paterson, D., Henessy, J.: Computer Organization and
Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-
370606-5
● John L. Henessy – president of Stanford University, one of

founders of MIPS Computer Systems Inc.
● David A. Patterson – leader of Berkeley RISC project and

RAID disks research
● Our experience even includes distributed systems,

embedded systems design (of mobile phone like
complexity), peripherals design, cooperation with
carmakers, medical and robotics systems design

49B35APO Computer Architectures

Topics of the lectures

● Architecture, structure and organization of computers and its
subsystems.

● Floating point representation
● Central Processing Unit (CPU)
● Memory
● Pipelined instruction execution
● Input/output subsystem of the computer
● Input/output subsystem (part 2)
● External events processing and protection
● Processors and computers networks
● Parameter passing
● Classic register memory-oriented CISC architecture
● INTEL x86 processor family
● CPU concepts development (RISC/CISC) and examples
● Multi-level computer organization, virtual machines

50B35APO Computer Architectures

Topics of seminaries

● 1 - Introduction to the lab
● 2 - Data representation in memory and floating point
● 3 - Processor instruction set and algorithm rewriting
● 4 - Hierarchical concept of memories, cache - part 1
● 5 - Hierarchical concept of memories, cache - part 2
● 6 - Pipeline and gambling
● 7 - Jump prediction, code optimization
● 8 - I / O space mapped to memory and PCI bus
● 9 - HW access from C language on MZ_APO
● Semestral work

51B35APO Computer Architectures

Classification and Conditions to Pass the Subject

Category Points
Required
minimum

Remark

4 homeworks 36 12 3 of 4

Activity 8 0

Team project 24 5

Sum 60
(68)

30

Category Points Required
minimum

Written exam part 30 15

Oral exam part +/- 10 0

Conditions for assessment:

Exam:

Grade
Points
range

A
90 and
more

B 80 - 89

C 70 - 79

D 60 - 69

E 50 - 59

F
less than
50

52B35APO Computer Architectures

The 1. lecture contents

● Number representation in computers
● numeral systems
● integer numbers, unsigned and signed
● boolean values

● Basic arithmetic operations and their implementation
● addition, subtraction
● shift right/left
● multiplication and division

53B35APO Computer Architectures

Motivation: What is the output of next code snippet?

int main() {
 int a = -200;
 printf("value: %u = %d = %f = %c \n", a, a,
((float)(&a)), a);

 return 0;
}

value: 4294967096 = -200 = nan = 8

and memory content is: 0x38 0xff 0xff 0xff
when run on little endian 32 bit CPU.

1st lecture

• How they are stored on your computer
• INTEGER numbers, with or without sign?

• How to perform basic operations
• Adding, Subtracting,
• Multiplying

AE0B36APO Computer Architectures 54

Non-positional numbers

AE0B36APO Computer Architectures 55

The value is the sum: 1 333 331

http://diameter.si/sciquest/E1.htm

56AE0B36APO Computer Architectures

Terminology basics

 Positional (place-value) notation
 Decimal/radix point
 z … base of numeral system
 smallest representable number
 Module = , one increment/unit

higher than biggest representable
number for given encoding/notation

 A, the representable number for given
n and m selection, where k is natural
number in range 0,zn+m+1 -1

 The representation and value

radix point

a
n

a
n-1

a
0

a
-1

a
-m

n -m-10

… …

Unsigned integers

Language C:

unsigned int

AE0B36APO Computer Architectures

58AE0B36APO Computer Architectures

Integer number representation (unsigned, non-negative)

 The most common numeral system base in computers is
z=2

 The value of ai is in range {0,1,…z-1}, i.e. {0,1} for base 2
 This maps to true/false and unit of information (bit)
 We can represent number 0 … 2n-1 when n bits are used
 Which range can be represented by one byte?

1B (byte) … 8 bits, 28 = 256d combinations, values 0 … 255d =
0b11111111b

 Use of multiple consecutive bytes
 2B … 216 = 65536d, 0 … 65535d = 0xFFFFh ,(h …

hexadecimal, base 16, a in range 0, … 9, A, B, C, D, E, F)
 4B … 232 = 4294967296d, 0 … 4294967295d =

0xFFFFFFFFh

Unsigned integer

AE0B36APO Computer Architectures 59

binary value unsigned int

00000000 0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 128(10)

10000001 129(10)

10000010 130(10)

⋮ ⋮

11111101 253(10)

11111110 254(10)

11111111 255(10)

X
M0

A(X)

1 00..000
11..111

…
00..100
00..011
00..010
00..001
00..000

Unsigned 4-bit numbers

[Seungryoul Maeng:Digital Systems]

Cumbersome subtraction

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7+8

+9

+10

+11

+12

+13

+14

+15

0 100 = + 4

1 100 = 12

MSB

MSB

Assumptions:we'll assume a 4 bit machine word

60

Signed numbers

Language C:

int

signed int
AE0B36APO Computer Architectures

Two's Complement.

• The most frequent code

• The sum of two opposite numbers with the same absolute value is 00000000H!

AE0B36APO Computer Architectures 62

Decimal value 4 bit two’s compliment

6 0110

-6 1010

Two's Complement

Dvojkový doplněk – pokračování…

• Pokud N bude počet bitů:

<-2N-1 , 2N-1 -1>

AE0B36APO Computer Architectures 63

Binární hodnota Dvojkový
doplněk

00000000 0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 -128(10)

10000001 -127(10)

10000010 -126(10)

⋮ ⋮

11111101 -3(10)

11111110 -2(10)

11111111 -1(10)

X

M/20

A(X)

-M/2

M

M/2

Two's complement - examples

• Examples:
• 0D = 00000000H,
• 1D = 00000001H, ● -1D = FFFFFFFFH,
• 2D = 00000002H, ● -2D = FFFFFFFEH,
• 3D = 00000003H, ● -3D = FFFFFFFDH,

AE0B36APO Computer Architectures 64

Twos Complement
(In Czech: Druhý doplněk)

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4

1 100 = - 4

+

-

Number Representations

Only one representation for 0

One more negative number than positive number

65

[Seungryoul Maeng:Digital Systems]

66AE0B36APO Computer Architectures

Two's complement – addition and subtraction

 Addition
 0000000 0000 0111B ≈ 7D Symbols use: 0=0H, 0=0B

 + 0000000 0000 0110B ≈ 6D

 0000000 0000 1101B ≈ 13D

 Subtraction can be realized as addition of
negated number
 0000000 0000 0111B ≈ 7D

 + FFFFFFF 1111 1010B ≈ -6D

 0000000 0000 0001B ≈ 1D

 Question for revision: how to obtain negated number in two's complement
binary arithmetics?

Other Possibilities

AE0B36APO Computer Architectures

68AE0B36APO Computer Architectures

Integer – biased representation

 Known as excess-K or offset binary as well
 Transform to the representation

D(A) = A+K
 Usually K=Z/2
 Advantages

 Preserves order of original set in mapped
set/representation

 Disadvantages
 Needs adjustment by -K after addition and +K after

subtraction processed by unsigned arithmetic unit
 Requires full transformation before and after multiplication

-K … 0 … 2n-1-K

Excess-K, offset binary or biased representation

Number Systems

One 0 representation, we can select count of negative numbers -
used e.g. for exponents of real numbers..

Integer arithmetic unit are not designed to calculate with Excess-K numbers

69

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

-8
-7

-6

-5

-4

-3

-2

-10

1

2

3

4

5

6

7

0 100 = - 4

1 100 = + 4

+

-

[Seungryoul Maeng:Digital Systems]

70AE0B36APO Computer Architectures

Integer – sign-magnitude code

 Sign and magnitude of the value (absolute
value)

 Natural to humans -1234, 1234
 One (usually most significant – MSB) bit of

the memory location is used to represent
the sign

 Bit has to be mapped to meaning
 Common use 0 ≈ “+”, 1 ≈ “-”
 Disadvantages:

 When location is k bits long then only k-1
bits hold magnitude and each operation has
to separate sign and magnitude

 Two representations of the value 0

-2n-1+1 … 0 … 2n-1-1

Sign and Magnitude Representation.

<-2N-1 -1, 2N-1 -1>

AE0B36APO Computer Architectures 71

Binary value Code

00000000 +0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 -0(10)

10000001 -1(10)

10000010 -2(10)

⋮ ⋮

11111101 -125(10)

11111110 -126(10)

11111111 -127(10)

X

M/20

A(X)

-M/2

M

Sign and Magnitude Representation

Number Systems

[Seungryoul Maeng:Digital Systems]

Cumbersome addition/subtraction
Sign+Magnitude usually used only
 for float point numbers

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4

1 100 = - 4

+

-

72

73AE0B36APO Computer Architectures

Integers – ones' complement

 Transform to the representation
D(A) = A iff A≥0
D(A) = Z-1-∣A∣ iff A<0 (i.e. subtract from all ones)

 Advantages
 Symmetric range
 Almost continuous, requires hot one addition when sign

changes
 Disadvantage

 Two representations of value 0
 More complex hardware

 Negate (-A) value can be computed by bitwise
complement (flipping) of each bit in representation

-2n-1+1 … 0 … 2n-1-1

Ones Complement

<-2N-1 -1, 2N-1 -1>

AE0B36APO Computer Architectures 74

Binary value Code

00000000 0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 -127(10)

10000001 -126(10)

10000010 -125(10)

⋮ ⋮

11111101 -2(10)

11111110 -1(10)

11111111 -0(10)

X

M/20

A(X)

-M/2

M

M/2

Ones Complement
(In Czech: První doplněk)

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4

1 011 = - 4

+

-

Number Systems

Still two representations of 0! This causes some problems
Some complexities in addition, nowadays nearly not used

75

[Seungryoul Maeng:Digital Systems]

OPERATION WITH INTEGERS

AE0B36APO Computer Architectures

Number of logic operations
bit width for calculating sum

1 3
2 22
3 89
4 272
5 727
6 1567
7 3287
8 7127
9 17623
10 53465
11 115933

The calculation was performed by BOOM logic minimizer
created at the Department of Computer Science CTU-FEE

Direct realization of adder as logical function

AE0B36APO Computer Architectures

Complexity is higher than O(2n)

1bit Full Adder

78

 A 0 0 1 1 0 0 1 1

+B 0 1 0 1 0 1 0 1

Sum 00 01 01 10 00 01 01 10

+ Carry-In 0 0 0 0 1 1 1 1

CarryOut Sum 00 01 01 10 01 10 10 11

A B

CinCout

S

+

A B

CinCout

S

S1

A1 B1

Adder

A B

CinCout

S

S0

A0 B0

A B

CinCout

S

S2

A2 B2

A B

CinCout

S

S3

A3 B3

Carry
++++

1bit full adder

Simple Adder

Simplest N-bit adder
we chain 1-bit full adders

"Carry" ripple through their chain

Minimal number of logical elements

Delay is given by the last Cout - 2*(N-1)+ 3 gates of the
last adder
= (2 N+1) times propagation delay of 1 gate

80

A31 B31

Cout31

S31

+

A30 B30

S30

+

A29 B29

S29

+

A1 B1

S1

+

A0 B0

S0

+
Cout1

Cin29=Cout28

Cin0

32bit CLA "carry look-ahead" adder
The carry-lookahead adder calculates one or more carry bits before the sum,

which reduces the wait time to calculate the result of the larger value bits

81

S3

+

S2

+

S1

+

A3 B3 A2 B2 A1 B1 A0 B0

S0

+
Cin0

A4 B4

S4

+
Cin4=Cout3

A5 B5

S5

+

Static "carry look ahead (CLA)" unit for 4 bits
C

ou
t 2

C
ou

t 1

C
ou

t 0

C
ou

t 3

C
ou

t 1

C
ou

t 0

Increment / Decrement

AE0B36APO Computer Architectures

Dec. Binary
8 4 2 1

+1 Binary
8 4 2 1

-1

0 0000 0001 0000 1111

1 0001 0010 0001 0000

2 0010 0011 0010 0001

3 0011 0100 0011 0010

4 0100 0101 0100 0011

5 0101 0110 0101 0100

6 0110 0111 0110 0101

7 0111 1000 0111 0110

8 1000 1001 1000 0111

9 1001 1010 1001 1000

10 1010 1011 1010 1001

11 1011 1100 1011 1010

12 1100 1101 1100 1011

13 1101 1110 1101 1100

14 1110 1111 1110 1101

15 1111 0000 1111 1110

Very fast operations that do
not need an adder!
The last bit is always negated,
and the previous ones are
negated according to the end
1 / 0

Special Case +1/-1

83

The number of circuits is given by the arithmetic series, with the complexity O (n2) where n is
the number of bits. The operation can be performed in parallel for all bits, and for the both
+1/-1 operations, we use a circuit that differs only by negations.

1

A
S+

S0=not A0

S1=A1 xor A0

S2=A2 xor (A1 and A0)

Eq: Si = Ai xor (Ai-1 and Ai-2 and … A1 and A0); i=0..n-1

-1

A
S+

S0=not A0

S1=A1 xor (not A0)

S2=A2 xor (not A1 and not A0)

Eq: Si = Ai xor (not Ai-1 and … and not A0); i=0..n-1

Addition / Subtraction HW

AE0B36APO Computer Architectures 84

SUB
ADD

negation

Source: X36JPO, A. Pluháček

fast operation

slower operation

85AE0B36APO Computer Architectures

Unsigned binary numbers multiplication

86AE0B36APO Computer Architectures

Sequential hardware multiplier (32b case)

AC MQ

The speed of the multiplier is horrible

87AE0B36APO Computer Architectures

Algorithm for Multiplication

A = multiplicand;
MQ = multiplier;
AC = 0;

for(int i=1; i <= n; i++) // n – represents number of bits

{
if(MQ0 = = 1) AC = AC + A; // MQ0 = LSB of MQ

SR (shift AC MQ by one bit right and insert information about
carry from the MSB from previous step)
}
end.

when loop ends AC MQ holds 64-bit result

88AE0B36APO Computer Architectures

Example of the multiply X by Y

i operation AC MQ A comment

000 101 110 initial setup

1 AC = AC+MB 110 101 start of the cycle

SR 011 010
2 nothing 011 010 because of MQ0 = = 0

SR 001 101
3 AC = AC+MB 111 101

SR 011 110 end of the cycle

Multiplicand x=110 and multiplier y=101.

The whole operation: xy = 110101 = 011110, (65 = 30)

Multiplication in two’s compliment

Can be implemented, but there is a problem ...
The intended product is generally not the same as the product of two’s

numbers!

Details are already outside the intended APO range.

The best way is the multiplication of their absolute values and decision
about its sign.

AE0B36APO Computer Architectures 89

90AE0B36APO Computer Architectures

Wallace tree based multiplier

Q=X .Y, X and Y are considered as and 8bit unsigned numbers

(x7 x6 x5 x4 x 3 x2 x1 x0). (y7 y6 y5 y4 y3 y2 y1 y0) =

0 0 0 0 0 0 0 0 x7y0 x6y0 x5y0 x4y0 x3y0 x2y0 x1y0 x0y0 P0

0 0 0 0 0 0 0 x7y1 x6y1 x5y1 x4y1 x3y1 x2y1 x1y1 x0y1 0 P1

0 0 0 0 0 0 x7y2 x6y2 x5y2 x4y2 x3y2 x2y2 x1y2 x0y2 0 0 P2

0 0 0 0 0 x7y3 x6y3 x5y3 x4y3 x3y3 x2y3 x1y3 x0y3 0 0 0 P3

0 0 0 0 x7y4 x6y4 x5y4 x4y4 x3y4 x2y4 x1y4 x0y4 0 0 0 0 P4

0 0 0 x7y5 x6y5 x5y5 x4y5 x3y5 x2y5 x1y5 x0y5 0 0 0 0 0 P5

0 0 x7y6 x6y6 x5y6 x4y6 x3y6 x2y6 x1y6 x0y6 0 0 0 0 0 0 P6

0 x7y7 x6y7 x5y7 x4y7 x3y7 x2y7 x1y7 x0y7 0 0 0 0 0 0 0 P7

Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

The sum of P0+P1+...+P7 gives result of X and Y multiplication.
 Q = X .Y = P0 + P1 + ... + P7

Parallel adder of 9 numbers

AE0B36APO Computer Architectures 91

91

82

73

38

47

56

61

52

41

173

111

103

113

284

216

257

541

We get intermediate results that we do not need at all,
but we still wait for the sum of them to finish!

Decadic Carry-save adder

AE0B36APO Computer Architectures 92

91

82

73

38

47

56

61

52

41

+ orders 46_

Carry 200

+ orders 21_

Carry 120

+ pozic 54_

Carry 100

+ orders 11_

Carry 110

+ orders 420

Carry 0000

+ orders 530

Carry 0000

+

541

Here, we wait only
for adder carries

1bit Carry Save Adder

93

 A 0 0 1 1 0 0 1 1

+B 0 1 0 1 0 1 0 1

Z=Carry-In 0 0 0 0 1 1 1 1

Sum 0 1 1 0 1 0 0 1

C=Cout 0 0 0 1 0 1 1 1

A B Z

C S

+

& & &

1

S C

3-bit Carry-save adder

AE0B36APO Computer Architectures

A0 B0 Z0

C0
S0

+

A1 B1 Z1

C1
S1

+

A2 B2 Z2

C2
S2

+

A3 B3 Z3

C3
S3

+

95AE0B36APO Computer Architectures

Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

S = Sb + C

Sb
i = xi yi zi

Ci+1 = xi yi + yi zi +

zi xi

& & &

1

96B35APO Computer Architectures

Terminology basics

● Positional (place-value) notation
● Decimal/radix point
● z … base of numeral system
● smallest representable number
● Module = , one increment/unit

higher than biggest representable
number for given encoding/notation

● A, the representable number for given
n and m selection, where k is natural
number in range 0,zn+m+1 -1

● The representation and value

radix point

a
n

a
n-1

a
0

a
-1

a
-m

n -m-10

… …

97B35APO Computer Architectures

Integer number representation (unsigned, non-negative)

● The most common numeral system base in computers is
z=2

● The value of ai is in range {0,1,…z-1}, i.e. {0,1} for base 2
● This maps to true/false and unit of information (bit)
● We can represent number 0 … 2n-1 when n bits are used
● Which range can be represented by one byte?

1B (byte) … 8 bits, 28 = 256d combinations, values 0 …
255d = 0b11111111b

● Use of multiple consecutive bytes
● 2B … 216 = 65536d, 0 … 65535d = 0xFFFFh ,(h …

hexadecimal, base 16, a in range 0, … 9, A, B, C, D, E, F)
● 4B … 232 = 4294967296d, 0 … 4294967295d =

0xFFFFFFFFh

98B35APO Computer Architectures

Signed integer numbers

● Work with negative numbers is required for many
applications

● When appropriate representation is used then same
hardware (with minor extension) can be used for many
operations with signed and unsigned numbers

● Possible representations
● sign-magnitude code, direct representation, sign bit
● two's complement
● ones' complement
● excess-K, offset binary or biased representation

99B35APO Computer Architectures

Integer – sign-magnitude code

● Sign and magnitude of the value (absolute
value)

● Natural to humans -1234, 1234
● One (usually most significant – MSB) bit of

the memory location is used to represent
the sign

● Bit has to be mapped to meaning
● Common use 0 ≈ “+”, 1 ≈ “-”
● Disadvantages:

● When location is k bits long then only k-1
bits hold magnitude and each operation has
to separate sign and magnitude

● Two representations of the value 0

-2n-1+1 … 0 … 2n-1-1

100B35APO Computer Architectures

Integer – two's complement

● Other option is to designate one half of
range/combinations for non-negative
numbers and other one for positive numbers

● Transform to the representation
D(A) = A iff A≥0
D(A) = Z-∣A∣ iff A<0

● Advantages
● Continuous range when cyclic arithmetics is

considered
● Single and one to one mapping of value 0
● Same HW for signed and unsigned adder

● Disadvantage
● Asymmetric range (-(-1/2Z))

-2n-1 … 0 … 2n-1-1

101B35APO Computer Architectures

Integers – ones' complement

● Transform to the representation
D(A) = A iff A≥0
D(A) = Z-1-∣A∣ iff A<0 (i.e. subtract from all ones)

● Advantages
● Symmetric range
● Almost continuous, requires hot one addition when sign

changes
● Disadvantage

● Two representations of value 0
● More complex hardware

● Negate (-A) value can be computed by bitwise
complement (flipping) of each bit in representation

-2n-1+1 … 0 … 2n-1-1

102B35APO Computer Architectures

Integer – biased representation

● Known as excess-K or offset binary as well
● Transform to the representation

D(A) = A+K
● Usually K=Z/2
● Advantages

● Preserves order of original set in mapped
set/representation

● Disadvantages
● Needs adjustment by -K after addition and +K after

subtraction processed by unsigned arithmetic unit
● Requires full transformation before and after multiplication

-K … 0 … 2n-1-K

103B35APO Computer Architectures

Back to two's complement and the C language

● Two's complement is most used signed integer numbers
representation in computers

● Complement arithmetic is often used as its synonym
● “C” programing language speaks about integer numeric type

without sign as unsigned integers and they are declared in
source code as unsigned int.

● The numeric type with sign is simply called integers and is
declared as signed int.

● Examples of the values representations when 32 bits are used:
● 0D = 00000000H,
● 1D = 00000001H, -1D = FFFFFFFFH,
● 2D = 00000002H, -2D = FFFFFFFEH,
● 3D = 00000003H, -3D = FFFFFFFDH,

● Considerations about value overflow and underflow from order grit are discussed
later.

104B35APO Computer Architectures

Two's complement – addition and subtraction

● Addition
● 0000000 0000 0111B ≈ 7D Symbols use: 0=0H, 0=0B

● + 0000000 0000 0110B ≈ 6D

● 0000000 0000 1101B ≈ 13D

● Subtraction can be realized as addition of
negated number
● 0000000 0000 0111B ≈ 7D

● + FFFFFFF 1111 1010B ≈ -6D

● 0000000 0000 0001B ≈ 1D

● Question for revision: how to obtain negated number in
two's complement binary arithmetics?

105B35APO Computer Architectures

Binary adder hadrwareHardware of ripple-carry adder

Common symbol for adder

Internal structure

Realized by 1-bit
full adders

where half
adder is

 x
y

z

w

w = x yz = x . y

106B35APO Computer Architectures

Fast parallel adder realization and limits

● The previous, cascade based adder is slow – carry
propagation delay

● The parallel adder is combinatorial circuit, it can be
realized through sum of minterms (product of sums), two
levels of gates (wide number of inputs required)

● But for 64-bit adder 1020 gates is required

Solution #1
● Use of carry-lookahead circuits in adder combined with

adders without carry bit

Solution #2
● Cascade of adders with fraction of the required width

Combination (hierarchy) of #1 and #2 can be used for wider
inputs

107B35APO Computer Architectures

Speed of the adder

● Parallel adder is combinational logic/circuit. Is there any
reason to speak about its speed? Try to describe!

● Yes, and it is really slow. Why?
● Possible enhancement – adder with carry-lookahead

(CLA) logic!

carry-lookahead

108B35APO Computer Architectures

CLA – carry-lookahead

● Adder combined with CLA provides enough speedup
when compared with parallel ripple-carry adder and yet
number of additional gates is acceptable

● CLA for 64-bit adder increases hardware price for about
50% but the speed is increased (signal propagation time
decreased) 9 times.

● The result is significant speed/price ratio enhancement.

109B35APO Computer Architectures

The basic equations for the CLA logic

● Let:
● the generation of carry on position (bit) j is defined as:

● the need for carry propagation from previous bit:

● Then:
● the result of sum for bit j is given by:

● and carry to the higher order bit (j+1) is given by:

jjj yxg

jjjjjjj yxyxyxp

 jjjjjjjjjjjjj cppcpcyxcyxcs

 jjjjjjjjj cpgcyxyxc 1

110B35APO Computer Architectures

CLA

The carry can be computed as:

c1 = g0 p0c0

c2 = g1 p1c1 = g1 p1(g0 p0c0) = g1 p1g0 p1p0c0

c3 = g2 p2c2 = g2 p2(g1 p1g0 p1p0c0) = g2 p2g1 p2p1g0 p2p1p0c0

c4 = g3 p3c3 = ... = g3 p3g2 p3p2g1 p3p2p1g0 p3p2p1p0c0

c5 = ...

 Description of the equation for c3 as an example:

The carry input for bit 3 is active when carry is generated in bit 2 or carry
propagates condition holds for bit 2 and carry is generated in the bit 1 or
both bits 2 and 1 propagate carry and carry is generated in bit 0

111B35APO Computer Architectures

Arithmetic unit for add/subtract operations

SUB
ADD

bitwise not

Inspiration: X36JPO, A. Pluháček

112B35APO Computer Architectures

Arithmetic overflow (underflow)

● Result of the arithmetic operation is
incorrect because, it does not fit into
selected number of the
representation bits (width)

● But for the signed arithmetics, it is not
equivalent to the carry from the most
significant bit.

● The arithmetic overflow is signaled if
result sign is different from operand
signs if both operands have same
sign

● or can be detected with exclusive-OR
of carry to and from the most
significant bit

113B35APO Computer Architectures

Arithmetic shift to the left and to the right

● arithmetic shift by one to the left/right is equivalent to
signed multiply/divide by 2 (digits movement in positional
(place-value) representation)

● Notice difference between arithmetic, logic and cyclic shift
operations

loss of the
precision

● Remark: Barrel shifter can be used for fast variable shifts

114B35APO Computer Architectures

Addition and subtraction for the biased representation

● Short note about other signed number representation

● Overflow detection
● for addition:

same sign of addends and different result sign
● for subtraction:

signs of minuend and subtrahend are opposite and sign of
the result is opposite to the sign of minuend

115B35APO Computer Architectures

Unsigned binary numbers multiplication

116B35APO Computer Architectures

Sequential hardware multiplier (32b case)

AC MQ

The speed of the multiplier is horrible

117B35APO Computer Architectures

Algorithm for multiplication

A = multiplicand;
MQ = multiplier;
AC = 0;

for(int i=1; i <= n; i++) // n – represents number of bits

{
if(MQ0 = = 1) AC = AC + A; // MQ0 = LSB of MQ

SR (shift AC MQ by one bit right and insert information about
carry from the MSB from previous step)

}
end.

when loop ends AC MQ holds 64-bit result

118B35APO Computer Architectures

Example of the multiply X by Y

i operation AC MQ A comment

000 101 110 initial setup

1 AC = AC+MB 110 101 start of the cycle

SR 011 010
2 nothing 011 010 because of MQ0 = = 0

SR 001 101
3 AC = AC+MB 111 101

SR 011 110 end of the cycle

Multiplicand x=110 and multiplier y=101.

The whole operation: xy = 110101 = 011110, (65 = 30)

119B35APO Computer Architectures

Signed multiplication by unsigned HW for two's complement

One possible solution

C = A • B
Let A and B representations are n bits and result is 2n bits

D(C) = D(A) • D(B)
– (D(B)<<n) if A < 0
– (D(A)<<n) if B < 0

Consider for negative numbers

(2n+A) • (2n+B) = 22n+2n A + 2n B + A•B

where 22n is out of the result representation, next two elements
have to be eliminated if input is negative

120B35APO Computer Architectures

Wallace tree based multiplier

Q=X .Y, X and Y are considered as and 8bit unsigned numbers

(x7 x6 x5 x4 x 3 x2 x1 x0). (y7 y6 y5 y4 y3 y2 y1 y0) =

0 0 0 0 0 0 0 0 x7y0 x6y0 x5y0 x4y0 x3y0 x2y0 x1y0 x0y0 P0

0 0 0 0 0 0 0 x7y1 x6y1 x5y1 x4y1 x3y1 x2y1 x1y1 x0y1 0 P1

0 0 0 0 0 0 x7y2 x6y2 x5y2 x4y2 x3y2 x2y2 x1y2 x0y2 0 0 P2

0 0 0 0 0 x7y3 x6y3 x5y3 x4y3 x3y3 x2y3 x1y3 x0y3 0 0 0 P3

0 0 0 0 x7y4 x6y4 x5y4 x4y4 x3y4 x2y4 x1y4 x0y4 0 0 0 0 P4

0 0 0 x7y5 x6y5 x5y5 x4y5 x3y5 x2y5 x1y5 x0y5 0 0 0 0 0 P5

0 0 x7y6 x6y6 x5y6 x4y6 x3y6 x2y6 x1y6 x0y6 0 0 0 0 0 0 P6

0 x7y7 x6y7 x5y7 x4y7 x3y7 x2y7 x1y7 x0y7 0 0 0 0 0 0 0 P7

Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

The sum of P0+P1+...+P7 gives result of X and Y multiplication.
 Q = X .Y = P0 + P1 + ... + P7

121B35APO Computer Architectures

Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

S = Sb + C

Sb
i = xi yi zi

Ci+1 = xi yi + yi zi +

zi xi

& & &

1

122B35APO Computer Architectures

Hardware divider

negate
hot one

reminder

return

quotient

123B35APO Computer Architectures

Hardware divider logic (32b case)

divident = quotient divisor + reminder

AC MQ

negate
hot one

return

reminder quotient

124B35APO Computer Architectures

Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;

for(int i=1; i <= n; i++) {
 SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

 if(AC >= B) {
AC = AC – B;
MQ0 = 1; // the LSB of the MQ register is set to 1

 }
}

 Value of MQ register represents quotient and AC remainder

125B35APO Computer Architectures

Example of X/Y division

i operation AC MQ B comment
0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r y

AC = AC – B; MQ0 = 1;
0010 0001

4 SL 0100 0010 r y

AC = AC – B; MQ0 = 1;
0001 0011 end of the cycle

Dividend x=1010 and divisor y=0011

x : y = 1010 : 0011 = 0011 reminder 0001, (10 : 3 = 3 reminder 1)

126B35APO Computer Architectures

Higher dynamic range for numbers (REAL/float)

● Scientific notation, semilogarithmic, floating point
● The value is represented by:

– EXPONENT (E) – represents scale for given value
– MANTISSA (M) – represents value in that scale
– the sign(s) are usually separated as well

● Normalized notation
● The exponent and mantissa are adjusted such way, that

mantissa is held in some standard range. 〈0.5, 1) or 〈1, 2) for
considered base z=2

● Generally: the first digit is non-zero or mantissa range is 〈1, z)

127B35APO Computer Architectures

Standardized format for REAL type numbers

● Standard IEEE-754 defines next REAL representation
and precision
● single-precision – in the C language declared as float
● double-precision – C language double

128B35APO Computer Architectures

Examples of (de)normalized numbers in base 10 and 2

binary

The radix point position for E and M

Sign of M

129B35APO Computer Architectures

The representation/encoding of floating point number

● Mantissa encoded as the sign and absolute value
(magnitude) – equivalent to the direct representation

● Exponent encoded in biased representation (K=127 for
single precision)

● The implicit leading one can be omitted due to
normalization of m ∈ 1, 2) 〈 – 23+1 implicit bit for single

Radix point position for E and M

Sign of M

X = -1s 2A(E)-127 m where m ∈ 1, 2)〈
m = 1 + 2-23 M

130B35APO Computer Architectures

Implied (hidden) leading 1 bit

● Most significant bit of the mantissa is one for each
normalized number and it is not stored in the
representation for the normalized numbers

● If exponent representation is zero then encoded value is
zero or denormalized number which requires to store
most significant bit

● Denormalized numbers allow to keep resolution in the
range from the smallest normalized number to zero

131B35APO Computer Architectures

Underflow/lost of the precision for IEEE-754 representation

● The case where stored number value is not zero but it is
smaller than smallest number which can be represented
in the normalized form

● The direct underflow to the zero can be prevented by
extension of the representation range by denormalized
numbers

smallest representable number
denormalized

0

underflow

normalized

normalized numbers

132B35APO Computer Architectures

ANSI/IEEE Std 754-1985 – 32b a 64b formats

ANSI/IEEE Std 754-1985 — double precision format — 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — single precision format — 32b

fraction point

133B35APO Computer Architectures

Representation of the fundamental values

Zero

Infinity

Representation corner values

Positive zero 0 00000000 00000000000000000000000 +0.0

Negative zero 1 00000000 00000000000000000000000 -0.0

Positive infinity 0 11111111 00000000000000000000000 +Inf

Negative infinity 1 11111111 00000000000000000000000 -Inf

Smallest
normalized

* 00000001 00000000000000000000000 ±2(1-127)

±1.1755 10-38

Biggest
denormalized

* 00000000 11111111111111111111111 ±(1-2-23)2(1-126)

Smallest
denormalized

* 00000000 00000000000000000000001 ±2-232-126

±1.4013 10-45

Max. value 0 11111110 11111111111111111111111 (2-2-23)2(127)

+3.4028 10+38

134B35APO Computer Architectures

Not a number (NaN)

● All ones in the exponent
● Mantissa not equal to the zero
● Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
● Compare to (X+ +Inf) where +Inf is sane result

135B35APO Computer Architectures

IEEE-754 special values summary

sign bit Exponent
representation

Mantissa Represented value/meaning

0 0<e<255 any value normalized positive number

1 0<e<255 any value normalized negative number

0 0 >0 denormalized positive number

1 0 >0 denormalized negative number

0 0 0 positive zero

1 0 0 negative zero

0 255 0 positive infinity

1 255 0 negative infinity

0 255 ≠0 NaN – does not represent a number

1 255 ≠0 NaN – does not represent a number

136B35APO Computer Architectures

Comparison

● Comparison of the two IEEE-754 encoded numbers
requires to solve signs separately but then it can be
processed by unsigned ALU unit on the representations

 A ≥ B A − B ≥ 0 D(A) − D(B) ≥ 0⇐⇒ ⇐⇒
● This is advantage of the selected encoding and reason

why sign is not placed at start of the mantissa

137B35APO Computer Architectures

Addition of floating point numbers

● The number with bigger exponent value is selected
● Mantissa of the number with smaller exponent is shifted

right – the mantissas are then expressed at same scale
● The signs are analyzed and mantissas are added (same

sign) or subtracted (smaller number from bigger)
● The resulting mantissa is shifted right (max by one) if

addition overflows or shifted left after subtraction until all
leading zeros are eliminated

● The resulting exponent is adjusted according to the shift
● Result is normalized after these steps
● The special cases and processing is required if inputs are

not regular normalized numbers or result does not fit into
normalized representation

138B35APO Computer Architectures

Hardware of the floating point adder

139B35APO Computer Architectures

Multiplication of floating point numbers

● Exponents are added and signs xor-ed
● Mantissas are multiplied
● Result can require normalization

max 2 bits right for normalized numbers
● The result is rounded

● Hardware for multiplier is of the same or even lower
complexity as the adder hardware – only adder part is
replaced by unsigned multiplier

140B35APO Computer Architectures

Floating point arithmetic operations overview

Addition: A⋅za , B⋅zb , b < a unify exponents
 B⋅zb = (B⋅zb-a)⋅zb-(b-a) by shift of mantissa

 A⋅za + B⋅zb = [A+(B⋅zb-a)]⋅za sum + normalization

Subtraction: unification of exponents, subtraction and
normalization

Multiplication: A⋅za ⋅ B⋅zb = A⋅B⋅za+b

 A⋅B - normalize if required
 A⋅B⋅za+b = A⋅B⋅z⋅za+b-1 - by left shift

Division: A⋅za/B⋅zb = A/B⋅za-b

 A/B - normalize if required
 A/B⋅za-b = A/B⋅z⋅za-b+1 - by right shift

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140

