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Important Introductory Note

● The goal is to understand the structure of the computer so you can 
make better use of its options to achieve its higher performance.

● It is also discussed interconnection of HW / SW
● Webpages:

https://cw.fel.cvut.cz/b192/courses/b35apo/
https://dcenet.felk.cvut.cz/apo/  - they will be opened

● Some followup related subjects:
● B4M35PAP -  Advanced Computer Architectures 
● B3B38VSY -  Embedded Systems
● B4M38AVS - Embedded Systems Application
● B4B35OSY - Operating Systems (OI)
● B0B35LSP – Logic Systems and Processors (KyR + part of OI)

● Prerequisite: Šusta, R.: APOLOS , CTU-FEE 2016, 51 pg.
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Important Introductory Note

● The course is based on a world-renowned book of authors
Paterson, D., Hennessey, V.: Computer Organization and Design, 
The HW/SW Interface. Elsevier, ISBN: 978-0-12-370606-5 

David Andrew Patterson
University of California, Berkeley
Works: RISC processor Berkley RISC → SPARC,
            DLX, RAID, Clusters, RISC-V

John Leroy Hennessy
10th President of Stanford University
Works: RISC processors MIPS, 
            DLX a MMIX 

2017 Turing Award for pioneering a systematic, quantitative approach to the design 
and evaluation of computer architectures with enduring impact on the 
microprocessor industry. → A New Golden Age for Computer Architecture – RISC-V
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Moore's Law
Gordon Moore, founder of Intel, in 1965: " The number of transistors on integrated 

circuits doubles approximately every two years "
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The cost of production is growing with decreasing design rule

Source: http://electroiq.com/

Source: http://www.eetimes.com/

Moore's Law will be 
stopped by cost…
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End of Growth of Single Program Speed?

End of 
the 

Line?
2X / 

20 yrs
(3%/yr)

RISC
2X / 1.5 yrs

(52%/yr)

CISC
2X / 3.5 yrs

(22%/yr)

End of 
Dennard
Scaling

⇒
Multicore
2X / 3.5 

yrs
(23%/yr)

Am-
dahl’s
Law
⇒

2X / 
6 yrs

(12%/yr)

Based on SPECintCPU. Source: John Hennessy and David Patterson,
Computer Architecture: A Quantitative Approach, 6/e. 2018
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Processors Architectures Development in a Glimpse

● 1960 – IBM incompatible families → IBM System/360 – one ISA to rule 
them all, 

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Model M30 M40 M50 M65

Datapath width 8 bits 16 bits 32 bits 64 bits

Microcode size 4k x 50 4k x 52 2.75k x 85 2.75k x 87

Clock cycle time (ROM) 750 ns 625 ns 500 ns 200 ns 

Main memory cycle time 1500 ns 2500  ns 2000 ns 750 ns

Price (1964 $) $192,000 $216,000 $460,000 $1,080,000

Price (2018 $) $1,560,000 $1,760,000 $3,720,000 $8,720,000

● 1976 – Writable Control Store, Verification of microprograms, David Patterson Ph.D., 
UCLA, 1976

●  Intel iAPX 432: Most ambitious 1970s micro, started in 1975 – 32-bit capability-based 
object-oriented architecture, Severe performance, complexity (multiple chips), and 
usability problems; announced 1981

● Intel 8086 (1978, 8MHz, 29,000 transistors),  “Stopgap” 16-bit processor, 52 weeks to 
new chip, architecture design 3 weeks (10 person weeks) assembly-compatible with 8 
bit 8080, further i80286 16-bit introduced some iAPX 432 lapses, i386 paging
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CISC and RISC

● IBM PC 1981 picks Intel 8088 for 8-bit bus (and Motorola 68000 was 
out of main business) 

● Use SRAM for instruction cache of user-visible instructions
● Use simple ISA – Instructions as simple as microinstructions, but not 

as wide,  Compiled code only used a few CISC instructions anyways, 
Enable pipelined implementations

● Chaitin’s register allocation scheme benefits load-store ISAs
● Berkeley (RISC I, II → SPARC) & Stanford RISC Chips (MIPS)

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Stanford MIPS (1983) contains 25,000 transistors, was fabbed in 
3 µm &4 µm NMOS, ran at 4 MHz (3 µm ), and size is 50 mm2 (4 
µm) (Microprocessor without Interlocked Pipeline Stages)
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CISC and RISC

● CISC executes fewer instructions per program (≈ 3/4X instructions), 
but many more clock cycles per instruction (≈ 6X CPI) 

 ⇒ RISC ≈ 4X faster than CISC

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

PC Era
▪ Hardware translates x86 
  instructions into internal RISC
  Instructions (Compiler vs Interpreter)
▪ Then use any RISC
 technique inside MPU
▪ > 350M / year !
▪ x86 ISA eventually
 dominates servers as well
 as desktops

PostPC Era: Client/Cloud
▪ IP in SoC vs. MPU
▪ Value die area, energy as much as
 performance
▪ > 20B total / year in 2017
▪ 99% Processors today are RISC
▪ Marketplace settles debate

● Alternative, Intel Itanium VLIW, 2002 instead 1997
● “The Itanium approach...was supposed to be so terrific –until it turned out 

that the wished-for compilers were basically impossible to write.” - Donald 
Knuth, Stanford 
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RISC-V

● ARM, MIPS, SPARC, PowerPC – Commercialization and extensions 
results in too complex CPUs again, with license and patents 
preventing even original investors to use real/actual implementations 
in silicon to be used for education and research

● Krste Asanovic and other prof. Patterson's students initiated 
development of new architecture (start of 2010), initial estimate to 
design architecture 3 months, but 3 years

● Simple,  Clean-slate design (25 years later, so can learn from mistakes of 
predecessors, Avoids µarchitecture or technology-dependent features), 
Modular, Supports specialization, Community designed

● A few base integer ISAs (RV32E, RV32I, RV64I)
● Standard extensions (M: Integer multiply/divide, A: Atomic memory 

operations, F/D: Single/Double-precision Fl-point, C: Compressed 
Instructions (<x86), V: Vector Extension for DLP (>SIMD**))

Source: A New Golden Age for Computer Architecture with prof. Patterson permission
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Foundation Members since 2015 

Source: A New Golden Age for Computer Architecture with prof. Patterson permission

Open Architecture Goal
Create industry-standard open ISAs for all computing devices

“Linux for processors” 
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Today PC Computer Base Platform – Motherboard
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Block Diagram of Components Interconnection
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Block Diagram of Components Interconnection
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Additional 
USB ports Wi-fi?
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Von Neumann and Harvard Architectures

von Neumann
CPU

Memory

Instructions

Data

Address,
Data and
Status
Busses

von Neumann
“bottleneck”

von Neumann
“bottleneck”

Harvard
CPU

Instruction
memory

Data
Memory

Instruction
Address,
Data and
Status
Busses

Data space
Address,
Data and
Status
Busses

[Arnold S. Berger: Hardware Computer Organization for the Software Professional]
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John von Neumann

28. 12. 1903 - 
8. 2. 1957

Princeton Institute for Advanced Studies 

Procesor

Input Output

Paměť

controller

ALU

5 units: 
•A processing unit that contains an arithmetic logic unit and processor 
registers; 
•A control unit that contains an instruction register and program counter;
•Memory that stores data and instructions
•External mass storage
•Input and output mechanisms
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Samsung Galaxy S4 inside

• Android 5.0 (Lollipop)
• 2 GB RAM
• 16 GB user RAM user
• 1920 x 1080 display
• 8-core CPU (chip Exynos 5410): 

• 4 cores 1.6 GHz ARM Cortex-A15
• 4 cores 1.2 GHz ARM Cortex-A7
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Samsung Galaxy S4 inside

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/
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Samsung Galaxy S4 inside

Exynos 5410
(8-core CPU 

+ 2GB DRAM) 

Multichip memory: 64 MB 
DDR SDRAM, 16GB 

NAND Flash, Controller

Intel PMB9820 
baseband 
processor 

(functions radio - 
EDGE, WCDMA, 
HSDPA/HSUPA)

Power 
management

Wi-fi 
(broadcom 
BCM4335)

DSP processor 
for voice and 
audio codec

Source: http://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s4-teardown/
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Samsung Galaxy S4 inside

X-ray image of Exynos 5410 hip from the side :

We see that this is QDP (Quad die package)
To increase capacity, chips have multiple stacks of dies. 
A die, in the context of integrated circuits, is a small block of semiconducting 
material on which a given functional circuit is fabricated. [Wikipedia]

Sourcej: http://gamma0burst.tistory.com/m/600 
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Samsung Galaxy S4 inside

Chip Exynos 5410 – here, we see DRAM

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/
pages/computational-photography-part-2
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Samsung Galaxy S4 inside

Chip Exynos 5410

• Note the different sizes of 4 cores 
A7 and 4 cores A15

• On the chip, other components 
are integrated outside the 
processor: the GPU, Video coder 
and decoder, and more. This is 
SoC (System on Chip)

Source: http://www.embedded-vision.com/platinum-members/embedded-vision-alliance/embedded-vision-training/documents/
pages/computational-photography-part-2, http://gamma0burst.tistory.com/m/600 
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Samsung Galaxy S4 inside

Application 
processor:

Exynos
CPU 

Cortex A15 
Quad core

CPU 
Cortex A7 
Quad core

GPU 
SGX544 
Tri core

Camera Display High speed I/F 
(HSIC/ USB)

Memory I/F 
(LPDDR3, eMMC, SD) Peripheral I/F 

NAND flash 
(16GB)

DSP 
processor 
for audio

Audio

ISP

GPSAccelerometer Wi-fi Baseband 
processor
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Common concept

Procesor

Vstup Výstup

Paměť

řadič
ALU

• The processor performs stored memory (ROM, RAM) instructions to 
operate peripherals, to respond to external events and to process data.
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Example of Optimization

Autonomous cars

Source: http://www.nvidia.com/object/autonomous-cars.html

 Many artificial intelligence tasks are based on deep neural networks (deep 
neural networks)
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Neural network passage -> matrix multiplication

 How to increase calculation?

 The results of one of many experiments

 Naive algorithm (3 × for) – 3.6 s = 0.28 FPS

 Optimizing memory access – 195 ms = 5.13 FPS
(necessary knowledge of HW)

 4 cores– 114 ms = 8.77 FPS
(selection of a proper synchronization)

 GPU (256 processors) — 25 ms = 40 FPS
(knowledge of data transfer between CPU and coprocessors)

 Source: Naive algorithm, library Eigen (1 core), 4 cores (2 physical on i7-2520M, compiler 
flags -03), GPU results Joela Matějka, Department of Control Engineering, FEE, CTU 
https://dce.fel.cvut.cz/

 How to speedup?

https://dce.fel.cvut.cz/
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Optimize Memory Accesses

CPU

Main Memory

L2 Cache

L1 Cache

Registers

CPU

Main Memory

L2 Cache

L1 Cache

Registers

CPU

Main Memory

L2 Cache

L1 Cache

Registers

● Algorithm modification with respect to memory hierarchy
● Data from the (buffer) memory near the processor can be 

obtained faster (but fast memory is small in size)
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Prediction of jumps / accesses to memory

●In order to increase average 
performance, the execution of 
instructions is divided into 
several phases => the need to 
read several instructions / data 
in advance

●Every condition (if, loop) means 
a possible jump - poor 
prediction is expensive

●It is good to have an idea of 
how the predictions work and 
what alternatives there are on 
the CPU / HW. (Eg vector / 
multimedia inst.)

Source: https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg

https://commons.wikimedia.org/wiki/File:Plektita_trakforko_14.jpeg
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Parallelization - Multicore Processor

● Synchronization requirements
● Interconnection and communication possibilities between 

processors
● Transfers 

between 
memory levels 
are very 
expensive

● Improper 
sharing/access 
form more cores 
results in slower 
code than on a 
single CPU

Intel Nehalem Processor, Original Core i7
Source: http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg

http://download.intel.com/pressroom/kits/corei7/images/Nehalem_Die_Shot_3.jpg
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Computing Coprocessors - GPU

● Multi-core processor (hundreds)
● Some units and bclocks shared
● For effective use it is necessary to know the basic 

hardware features

Source: https://devblogs.nvidia.com/parallelforall/inside-pascal/

https://devblogs.nvidia.com/parallelforall/inside-pascal/
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GPU – Maxwell

Source: http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

● GM204
● 5200 milins trasistors
● 398 mm2

● PCIe 3.0 x16
● 2048 computation 

units
● 4096 MB
● 1126 MHz
● 7010 MT/s
● 72.1 GP/s
● 144 GT/s
● 224 GB/s

http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3
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FPGA – design/prototyping of own hardware

● Programmable logic arrays
● Well suited for effective implementaion of some digital 

signal manipulation (filters – images, video or audio, FFT 
analysis, custom CPU architecture…)

● Programmer interconnects blcoks available on the chip
● Zynq 7000 FPGA – two ARM cores equipped by FPGA – 

fast and simple access to FPGA/peripherals from own 
program

● (the platform is used for your seminaries but you will use 
only design prepared by us, the FPGA programming/logic 
design is topic for more advance couses)
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Xilinx Zynq 7000 a MicroZed APO

MicroZed

Source: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

Source: http://microzed.org/product/microzed

Source: https://cw.fel.cvut.cz/wiki/courses/b35apo/start

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://microzed.org/product/microzed
https://cw.fel.cvut.cz/wiki/courses/b35apo/start
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MZ_APO board

you will later work with this board
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MZ_APO – features

● The core chip: Zynq-7000 All Programmable SoC
● Typ: Z-7010, device XC7Z010
● CPU: Dual ARM® Cortex™-A9 MPCore™ @ 866 MHz 

(NEON™ & Single / Double Precision Floating Point)
2x L1 32+32 kB, L2 512 KB

● FPGA: 28K Logic Cells (~430K ASIC logic gates, 35 kbit)
● Computational capability of FPGA DSP blocks: 100 GMACs
● Memory for FPGA design: 240 KB
● Memory on MicroZed board: 1GB
● Operating system: GNU/Linux

● GNU LIBC (libc6) 2.19-18+deb8u7
● Kernel: Linux 4.9.9-rt6-00002-ge6c7d1c
● Distribution: Debian Jessie
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MZ_APO – Logic design done in Xilinx Vivado
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The first seminar – physical address space on MZ_APO

RAM memory

Memory mapped 
Input/Output range

Address 
form 
CPU
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GNU/Linux operating system – from tiny gadgets ...
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Linux – from tiny to supercomputers

● TOP500 https://www.top500.org/   (https://en.wikipedia.org/wiki/TOP500  )
● Actual top one: Summit supercomputer – IBM AC922
● June 2018, US Oak Ridge National Laboratory (ORNL),
● 200 PetaFLOPS, 4600 “nodes”, 2× IBM Power9 CPU +
● 6× Nvidia Volta GV100
● 96 lanes of PCIe 4.0, 400Gb/s
● NVLink 2.0, 100GB/s CPU-to-GPU,
● GPU-to-GPU
● 2TB DDR4-2666 per node
● 1.6 TB NV RAM per node
● 250 PB storage
● POWER9-SO, Global Foundries 14nm FinFET,

 8×109 tran., 17-layer, 24 cores, 96 threads (SMT4)
● 120MB L3 eDRAM (2 CPU 10MB), 256GB/s

● Other example: SGI SSI (single system image) Linux, 2048 Itanium CPU a 4TiB RAM

Source: http://www.tomshardware.com/

https://www.top500.org/
https://en.wikipedia.org/wiki/TOP500
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Linux kernel and open-source

● Linux kernel project
● 13,500 developers from 2005 year
● 10,000 lines of code inserted daily
● 8,000 removed and 1,500 till 1,800 modified
● GIT source control system

● Many successful open-source projects exists
● Open for joining by everybody
● Google Summer of Code for university students

● https://developers.google.com/open-source/gsoc/

Zdroj: https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

https://developers.google.com/open-source/gsoc/
https://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/
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Back to the Motivational Example of Autonomous Driving

The result of a good knowledge of hardware

 Acceleration (in our case 18 × using the same number of cores)

 Reduce the power required

 Energy saving

 Possibility to reduce current solutions

 Using GPUs, we process 40 fps.

 But in an embedded device, 
it is sometimes necessary to 
reduce its consumption and 
cost. There are used very 
simple processors or 
microcontrollers, sometimes 
without real number 
operations, and programmed 
with low-level C language.
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Applicability of Knowledge and Techniques from the Course

●Applications not only in autonomous control
●In any embedded device - reduce size, consumption, 
reliability
●In data sciences - considerably reduce runtime and energy 
savings in calculations
●In the user interface - improving application response
●Practically everywhere…
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Computer 

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

Original 
domain of 
the 
computer 
architects
(‘50s-’80s)

Domain of 
recent computer 
architecture
(‘90s - ???)

Reliability, 
power, …

Parallel 
computing, 
security, …

Reference: John Kubiatowicz: EECS 252 Graduate Computer 
Architecture, Lecture 1. University of California, Berkeley

APO 
course 
interest
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Reasons to study computer architectures

● To invent/design new computer architectures
● To be able to integrate selected architecture into silicon
● To gain knowledge required to design computer hardware/

systems (big ones or embedded)
● To understand generic questions about computers, 

architectures and performance of various architectures
● To understand how to use computer hardware 

efficiently (i.e. how to write good software)
● It is not possible to efficiently use resources provided by any 

(especially by modern) hardware without insight into their 
constraints, resource limits and behavior

● It is possible to write some well paid applications without real 
understanding but this requires abundant resources on the 
hardware level. But no interesting and demanding tasks can 
be solved without this understanding.
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More motivation and examples

● The knowledge is necessary for every programmer who 
wants to work with medium size data sets or solve little more 
demanding computational tasks

● No multimedia algorithm can be implemented well without 
this knowledge

● The 1/3 of the course is focussed even on peripheral access
● Examples

● Facebook – HipHop for PHP  C++/GCC  machine code
● BackBerry (RIM) – our consultations for time source
● RedHat – JAVA JIT for ARM for future servers generation
● Multimedia and CUDA computations
● Photoshop, GIMP (data/tiles organization in memory)
● Knot-DNS (RCU, Copy on write, Cuckoo hashing, )
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The course's background and literature

● Course is based on worldwide recognized book and 
courses; evaluation Graduate Record Examination – GRE

Paterson, D., Henessy, J.: Computer Organization and 
Design, The HW/SW Interface. Elsevier, ISBN: 978-0-12-
370606-5 
● John L. Henessy – president of Stanford University, one of 

founders of MIPS Computer Systems Inc.
● David A. Patterson – leader of Berkeley RISC project and 

RAID disks research
● Our experience even includes distributed systems, 

embedded systems design (of mobile phone like 
complexity), peripherals design, cooperation with 
carmakers, medical and robotics systems design
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Topics of the lectures

● Architecture, structure and organization of computers and its 
subsystems.

● Floating point representation
● Central Processing Unit (CPU)
● Memory
● Pipelined instruction execution
● Input/output subsystem of the computer
● Input/output subsystem (part 2)
● External events processing and protection
● Processors and computers networks
● Parameter passing
● Classic register memory-oriented CISC architecture
● INTEL x86 processor family
● CPU concepts development (RISC/CISC) and examples
● Multi-level computer organization, virtual machines
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Topics of seminaries

● 1 - Introduction to the lab
● 2 - Data representation in memory and floating point
● 3 - Processor instruction set and algorithm rewriting
● 4 - Hierarchical concept of memories, cache - part 1
● 5 - Hierarchical concept of memories, cache - part 2
● 6 - Pipeline and gambling
● 7 - Jump prediction, code optimization
● 8 - I / O space mapped to memory and PCI bus
● 9 - HW access from C language on MZ_APO
● Semestral work
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Classification and Conditions to Pass the Subject

Category Points
Required
minimum

Remark

4 homeworks 36 12 3 of 4

Activity 8 0

Team project 24 5

Sum 60 
(68)

30

Category Points Required 
minimum

Written exam part 30 15

Oral exam part +/- 10 0

Conditions for  assessment:

Exam:

Grade
Points 
range

A
90 and 
more

B 80 - 89

C 70 - 79

D 60 - 69

E 50 - 59

F
less than 
50
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The 1. lecture contents

● Number representation in computers
● numeral systems
● integer numbers, unsigned and signed
● boolean values

● Basic arithmetic operations and their implementation
● addition, subtraction
● shift right/left
● multiplication and division
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Motivation: What is the output of next code snippet?

int main() {
  int a = -200; 
  printf("value: %u = %d = %f = %c \n", a, a, 
*((float*)(&a)), a);

  return 0;
}

value: 4294967096 = -200 = nan = 8

and memory content is: 0x38 0xff 0xff 0xff
when run on little endian 32 bit CPU.



1st lecture

• How they are stored on your computer 
• INTEGER numbers, with or without sign?

• How to perform basic operations
• Adding, Subtracting,
• Multiplying

AE0B36APO   Computer Architectures 54



Non-positional numbers 

AE0B36APO   Computer Architectures 55

The value is the sum: 1 333 331

http://diameter.si/sciquest/E1.htm
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Terminology basics

 Positional (place-value) notation
 Decimal/radix point
 z … base of numeral system
 smallest representable number
 Module =      , one increment/unit 

higher than biggest representable 
number for given encoding/notation

 A, the representable number for given 
n and m selection, where k is natural 
number in range 0,zn+m+1 -1

 The representation and value

radix point

a
n

a
n-1

a
0

a
-1

a
-m

n -m-10

… …



Unsigned integers

Language C:

unsigned int

AE0B36APO   Computer Architectures
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Integer number representation (unsigned, non-negative)

 The most common numeral system base in computers is 
z=2

 The value of ai is in range {0,1,…z-1}, i.e. {0,1} for base 2
 This maps to true/false and unit of information (bit)
 We can represent number 0 … 2n-1 when n bits are used
 Which range can be represented by one byte?

1B (byte) … 8 bits, 28 = 256d combinations, values 0 … 255d = 
0b11111111b

 Use of multiple consecutive bytes
 2B … 216 = 65536d, 0 … 65535d = 0xFFFFh  ,(h … 

hexadecimal, base 16, a in range 0, … 9, A, B, C, D, E, F)
 4B … 232 = 4294967296d, 0 … 4294967295d = 

0xFFFFFFFFh



Unsigned integer
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binary value unsigned int

00000000 0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 128(10)

10000001 129(10)

10000010 130(10)

⋮ ⋮

11111101 253(10)

11111110 254(10)

11111111 255(10)

X
M0

A(X)

1 00..000
11..111

…
00..100
00..011
00..010
00..001
00..000



Unsigned 4-bit numbers

[Seungryoul Maeng:Digital Systems]

Cumbersome subtraction

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7+8

+9

+10

+11

+12

+13

+14

+15

0 100 = + 4 
 
1 100 = 12

MSB

MSB

Assumptions:we'll assume a 4 bit machine word
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Signed numbers

Language C:

int

signed int
AE0B36APO   Computer Architectures



Two's Complement.

• The most frequent code

• The sum of two opposite numbers with the same absolute value is 00000000H!
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Decimal value 4 bit two’s compliment

6 0110

-6 1010



Two's Complement

Dvojkový doplněk – pokračování…

• Pokud N bude počet bitů: 

<-2N-1 , 2N-1 -1>
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Binární hodnota Dvojkový 
doplněk

00000000 0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 -128(10)

10000001 -127(10)

10000010 -126(10)

⋮ ⋮

11111101 -3(10)

11111110 -2(10)

11111111 -1(10)

X

M/20

A(X)

-M/2

M

M/2



Two's complement - examples

• Examples:
• 0D = 00000000H,
• 1D = 00000001H,  ●      -1D = FFFFFFFFH,
• 2D = 00000002H,  ●      -2D = FFFFFFFEH,
• 3D = 00000003H,                                   ●      -3D = FFFFFFFDH,
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Twos Complement
(In Czech: Druhý doplněk)

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4 
 
1 100 = - 4

+

-

Number Representations

Only one representation for 0

One more negative number than positive number
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Two's complement – addition and subtraction

 Addition
   0000000 0000 0111B ≈ 7D        Symbols use: 0=0H, 0=0B 

  

 + 0000000 0000 0110B ≈  6D

   0000000 0000 1101B ≈ 13D

 Subtraction can be realized as addition of 
negated number
   0000000 0000 0111B ≈ 7D

 + FFFFFFF 1111 1010B ≈  -6D

   0000000 0000 0001B  ≈ 1D

 Question for revision: how to obtain negated number in two's complement 
binary arithmetics?



Other Possibilities
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Integer – biased representation

 Known as excess-K or offset binary as well
 Transform to the representation

D(A) = A+K
 Usually K=Z/2
 Advantages

 Preserves order of original set in mapped 
set/representation

 Disadvantages
 Needs adjustment by -K after addition and +K after 

subtraction processed by unsigned arithmetic unit
 Requires full transformation before and after multiplication

-K … 0 … 2n-1-K



Excess-K, offset binary or biased representation

Number Systems

One 0 representation, we can select count of negative numbers - 
used e.g. for exponents of real numbers..

Integer arithmetic unit are not designed to calculate with Excess-K numbers

69

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

-8
-7

-6

-5

-4

-3

-2

-10

1

2

3

4

5

6

7

0 100 = - 4 
 
1 100 = + 4

+

-

[Seungryoul Maeng:Digital Systems]
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Integer – sign-magnitude code

 Sign and magnitude of the value (absolute 
value)

 Natural to humans -1234, 1234
 One (usually most significant – MSB) bit of 

the memory location is used to represent 
the sign

 Bit has to be mapped to meaning
 Common use 0 ≈ “+”, 1 ≈ “-”
 Disadvantages:

 When location is k bits long then only k-1 
bits hold magnitude and each operation has 
to separate sign and magnitude

 Two representations of the value 0

-2n-1+1 … 0 … 2n-1-1



Sign and Magnitude Representation.

<-2N-1 -1, 2N-1 -1>

AE0B36APO   Computer Architectures 71

Binary value Code

00000000 +0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 -0(10)

10000001 -1(10)

10000010 -2(10)

⋮ ⋮

11111101 -125(10)

11111110 -126(10)

11111111 -127(10)

X

M/20

A(X)

-M/2

M



Sign and Magnitude Representation

Number Systems

[Seungryoul Maeng:Digital Systems]

Cumbersome addition/subtraction
Sign+Magnitude usually used only 
   for float point numbers

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4 
 
1 100 = - 4

+

-

72



73AE0B36APO   Computer Architectures

Integers – ones' complement

 Transform to the representation
D(A) = A   iff A≥0
D(A) = Z-1-∣A∣   iff A<0  (i.e. subtract from all ones)

 Advantages
 Symmetric range
 Almost continuous, requires hot one addition when sign 

changes
 Disadvantage

 Two representations of value 0
 More complex hardware

 Negate (-A) value can be computed by bitwise 
complement (flipping) of each bit in representation

-2n-1+1 … 0 … 2n-1-1



Ones Complement

<-2N-1 -1, 2N-1 -1>
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Binary value Code

00000000 0(10)

00000001 1(10)

⋮ ⋮

01111101 125(10)

01111110 126(10)

01111111 127(10)

10000000 -127(10)

10000001 -126(10)

10000010 -125(10)

⋮ ⋮

11111101 -2(10)

11111110 -1(10)

11111111 -0(10)

X

M/20

A(X)

-M/2

M

M/2



Ones Complement
(In Czech: První doplněk)

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4 
 
1 011 = - 4

+

-

Number Systems

Still two representations of 0!  This causes some problems
Some complexities in addition, nowadays nearly not used

75
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OPERATION WITH INTEGERS
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Number of logic operations
bit width for calculating sum

1 3
2 22
3 89
4 272
5 727
6 1567
7 3287
8 7127
9 17623
10 53465
11 115933

The calculation was performed by BOOM logic minimizer 
created at the Department of Computer Science CTU-FEE

Direct realization of adder as logical function

AE0B36APO   Computer Architectures

Complexity is higher than O(2n)



1bit Full Adder

78

   A  0  0 1 1 0 0 1 1

+B  0  1 0 1 0 1 0 1

Sum 00 01 01 10 00 01 01 10

+ Carry-In  0  0 0 0 1 1 1 1

CarryOut Sum 00 01 01 10 01 10 10 11

A B

CinCout

S

+



A B

CinCout

S

S1

A1 B1

Adder

A B

CinCout

S

S0

A0 B0

A B

CinCout

S

S2

A2 B2

A B

CinCout

S

S3

A3 B3

Carry
++++

1bit full adder



Simple Adder

Simplest N-bit adder 
we chain 1-bit full adders

"Carry" ripple through their chain

Minimal number of logical elements

Delay is given by the last Cout - 2*(N-1)+ 3 gates of the 
last adder 
= (2 N+1) times propagation delay of 1 gate

80

A31 B31

Cout31

S31

+

A30 B30

S30

+

A29 B29

S29

+

A1 B1

S1

+

A0 B0

S0

+
Cout1

Cin29=Cout28

Cin0



32bit  CLA "carry look-ahead" adder
The carry-lookahead adder calculates one or more carry bits before the sum, 

which reduces the wait time to calculate the result of the larger value bits

81

S3

+

S2

+

S1

+

A3 B3 A2 B2 A1 B1 A0 B0

S0

+
Cin0

A4 B4

S4

+
Cin4=Cout3

A5 B5

S5

+

Static "carry look ahead (CLA)" unit for 4 bits
C

ou
t 2

C
ou

t 1

C
ou

t 0

C
ou

t 3

C
ou

t 1

C
ou

t 0



Increment / Decrement

AE0B36APO   Computer Architectures

Dec. Binary
8 4 2 1

+1 Binary
8 4 2 1

-1

0 0000 0001 0000 1111

1 0001 0010 0001 0000

2 0010 0011 0010 0001

3 0011 0100 0011 0010

4 0100 0101 0100 0011

5 0101 0110 0101 0100

6 0110 0111 0110 0101

7 0111 1000 0111 0110

8 1000 1001 1000 0111

9 1001 1010 1001 1000

10 1010 1011 1010 1001

11 1011 1100 1011 1010

12 1100 1101 1100 1011

13 1101 1110 1101 1100

14 1110 1111 1110 1101

15 1111 0000 1111 1110

Very fast operations that do 
not need an adder!
The last bit is always negated, 
and the previous ones are 
negated according to the end 
1 / 0



Special Case +1/-1

83

The number of circuits is given by the arithmetic series, with the complexity O (n2) where n is 
the number of bits. The operation can be performed in parallel for all bits, and for the both 
+1/-1 operations, we use a circuit that differs only by negations.

1

A
S+

S0=not A0

S1=A1 xor A0

S2=A2 xor (A1 and A0)

Eq: Si = Ai  xor (Ai-1 and Ai-2 and … A1 and A0); i=0..n-1

-1

A
S+

S0=not A0

S1=A1 xor (not A0)

S2=A2 xor (not A1 and not A0)

Eq: Si = Ai  xor (not Ai-1 and … and not A0); i=0..n-1



Addition / Subtraction HW
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SUB
ADD

negation

Source: X36JPO, A. Pluháček

fast operation

slower operation
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Unsigned binary numbers multiplication
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Sequential hardware multiplier (32b case)

AC                  MQ

The speed of the multiplier is horrible
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Algorithm for Multiplication

A = multiplicand; 
MQ = multiplier; 
AC = 0; 

for( int i=1; i <= n; i++)    //  n – represents number of bits

{
if(MQ0 = = 1)  AC = AC + A;   //  MQ0 = LSB of MQ

SR (shift AC MQ by one bit right and insert information about 
carry from the MSB from previous step)
}
end.

when loop ends AC MQ holds 64-bit result
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Example of the multiply X by Y

i operation AC MQ A comment

000 101 110 initial setup

1 AC = AC+MB 110 101 start of the cycle

SR 011 010
2 nothing 011 010 because of MQ0 = = 0

SR 001 101
3 AC = AC+MB 111 101

SR 011 110 end of the cycle

Multiplicand x=110 and multiplier y=101.

The whole operation: xy = 110101 = 011110, ( 65 = 30 )



Multiplication in two’s compliment

Can be implemented, but there is a problem ...
The intended product is generally not the same as the product of two’s 

numbers!

Details are already outside the intended APO range.

The best way is the multiplication of their absolute values and decision 
about its sign.
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Wallace tree based multiplier

Q=X .Y,   X and Y are considered as and 8bit unsigned numbers 

( x7 x6 x5 x4 x 3 x2 x1 x0). (y7 y6 y5 y4 y3 y2 y1 y0) =

0 0 0 0 0 0 0 0 x7y0 x6y0 x5y0 x4y0 x3y0 x2y0 x1y0 x0y0 P0

0 0 0 0 0 0 0 x7y1 x6y1 x5y1 x4y1 x3y1 x2y1 x1y1 x0y1 0 P1

0 0 0 0 0 0 x7y2 x6y2 x5y2 x4y2 x3y2 x2y2 x1y2 x0y2 0 0 P2

0 0 0 0 0 x7y3 x6y3 x5y3 x4y3 x3y3 x2y3 x1y3 x0y3 0 0 0 P3

0 0 0 0 x7y4 x6y4 x5y4 x4y4 x3y4 x2y4 x1y4 x0y4 0 0 0 0 P4

0 0 0 x7y5 x6y5 x5y5 x4y5 x3y5 x2y5 x1y5 x0y5 0 0 0 0 0 P5

0 0 x7y6 x6y6 x5y6 x4y6 x3y6 x2y6 x1y6 x0y6 0 0 0 0 0 0 P6

0 x7y7 x6y7 x5y7 x4y7 x3y7 x2y7 x1y7 x0y7 0 0 0 0 0 0 0 P7

Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

The sum of P0+P1+...+P7 gives result of X and Y multiplication. 
 Q = X .Y =  P0 + P1 + ... + P7



Parallel adder of 9 numbers
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91

82

73

38

47

56

61

52

41

173

111

103

113

284

216

257

541

We get intermediate results that we do not need at all,
but we still wait for the sum of them to finish!



Decadic Carry-save adder
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91

82

73

38

47

56

61

52

41

+ orders 46_    

Carry 200

+ orders 21_

Carry 120

+ pozic 54_

Carry 100

+ orders 11_

Carry 110

+ orders 420

Carry 0000

+ orders 530

Carry 0000

+

541

Here, we wait only 
for adder carries



1bit Carry Save Adder

93

   A  0  0 1 1 0 0 1 1

+B  0  1 0 1 0 1 0 1

Z=Carry-In  0  0 0 0 1 1 1 1

Sum 0 1 1 0 1 0 0 1

C=Cout 0 0 0 1 0 1 1 1

A B Z

C S

+




& & &

1

S C



3-bit Carry-save adder
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A0 B0  Z0

C0
S0

+

A1 B1  Z1

C1
S1

+

A2 B2  Z2

C2
S2

+

A3 B3  Z3

C3
S3

+
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Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

S = Sb + C 

Sb
i = xi  yi  zi

Ci+1 = xi yi + yi zi + 

zi xi





& & &

1
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Terminology basics

● Positional (place-value) notation
● Decimal/radix point
● z … base of numeral system
● smallest representable number
● Module =      , one increment/unit 

higher than biggest representable 
number for given encoding/notation

● A, the representable number for given 
n and m selection, where k is natural 
number in range 0,zn+m+1 -1

● The representation and value

radix point

a
n

a
n-1

a
0

a
-1

a
-m

n -m-10

… …
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Integer number representation (unsigned, non-negative)

● The most common numeral system base in computers is 
z=2

● The value of ai is in range {0,1,…z-1}, i.e. {0,1} for base 2
● This maps to true/false and unit of information (bit)
● We can represent number 0 … 2n-1 when n bits are used
● Which range can be represented by one byte?

1B (byte) … 8 bits, 28 = 256d combinations, values 0 … 
255d = 0b11111111b

● Use of multiple consecutive bytes
● 2B … 216 = 65536d, 0 … 65535d = 0xFFFFh  ,(h … 

hexadecimal, base 16, a in range 0, … 9, A, B, C, D, E, F)
● 4B … 232 = 4294967296d, 0 … 4294967295d = 

0xFFFFFFFFh
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Signed integer numbers

● Work with negative numbers is required for many 
applications

● When appropriate representation is used then same 
hardware (with minor extension) can be used for many 
operations with signed and unsigned numbers

● Possible representations
● sign-magnitude code, direct representation, sign bit
● two's complement
● ones' complement
● excess-K, offset binary or biased representation
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Integer – sign-magnitude code

● Sign and magnitude of the value (absolute 
value)

● Natural to humans -1234, 1234
● One (usually most significant – MSB) bit of 

the memory location is used to represent 
the sign

● Bit has to be mapped to meaning
● Common use 0 ≈ “+”, 1 ≈ “-”
● Disadvantages:

● When location is k bits long then only k-1 
bits hold magnitude and each operation has 
to separate sign and magnitude

● Two representations of the value 0

-2n-1+1 … 0 … 2n-1-1
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Integer – two's complement

● Other option is to designate one half of 
range/combinations for non-negative 
numbers and other one for positive numbers

● Transform to the representation
D(A) = A iff A≥0
D(A) = Z-∣A∣ iff A<0

● Advantages
● Continuous range when cyclic arithmetics is 

considered
● Single and one to one mapping of value 0
● Same HW for signed and unsigned adder

● Disadvantage
● Asymmetric range (-(-1/2Z))

-2n-1 … 0 … 2n-1-1
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Integers – ones' complement

● Transform to the representation
D(A) = A   iff A≥0
D(A) = Z-1-∣A∣  iff A<0  (i.e. subtract from all ones)

● Advantages
● Symmetric range
● Almost continuous, requires hot one addition when sign 

changes
● Disadvantage

● Two representations of value 0
● More complex hardware

● Negate (-A) value can be computed by bitwise 
complement (flipping) of each bit in representation

-2n-1+1 … 0 … 2n-1-1
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Integer – biased representation

● Known as excess-K or offset binary as well
● Transform to the representation

D(A) = A+K
● Usually K=Z/2
● Advantages

● Preserves order of original set in mapped 
set/representation

● Disadvantages
● Needs adjustment by -K after addition and +K after 

subtraction processed by unsigned arithmetic unit
● Requires full transformation before and after multiplication

-K … 0 … 2n-1-K
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Back to two's complement and the C language

● Two's complement is most used signed integer numbers 
representation in computers

● Complement arithmetic is often used as its synonym
● “C” programing language speaks about integer numeric type 

without sign as unsigned integers and they are declared in 
source code as unsigned int.

● The numeric type with sign is simply called integers and is 
declared as signed int.

● Examples of the values representations when 32 bits are used:
● 0D = 00000000H,
● 1D = 00000001H,  -1D = FFFFFFFFH,
● 2D = 00000002H,  -2D = FFFFFFFEH,
● 3D = 00000003H,  -3D = FFFFFFFDH,

● Considerations about value overflow and underflow from order grit are discussed 
later. 
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Two's complement – addition and subtraction

● Addition
●   0000000 0000 0111B ≈ 7D        Symbols use: 0=0H, 0=0B 

  

● + 0000000 0000 0110B ≈  6D

●   0000000 0000 1101B ≈ 13D

● Subtraction can be realized as addition of 
negated number
●   0000000 0000 0111B ≈ 7D

● + FFFFFFF 1111 1010B ≈  -6D

●   0000000 0000 0001B  ≈ 1D

● Question for revision: how to obtain negated number in 
two's complement binary arithmetics?
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Binary adder hadrwareHardware of ripple-carry adder

Common symbol for adder 

Internal structure

Realized by 1-bit 
full adders

where half 
adder is

  x  
y

z

w

w = x  yz = x . y
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Fast parallel adder realization and limits

● The previous, cascade based adder is slow – carry 
propagation delay

● The parallel adder is combinatorial circuit, it can be 
realized through sum of minterms (product of sums), two 
levels of gates (wide number of inputs required)

● But for 64-bit adder 1020 gates is required

Solution #1
● Use of carry-lookahead circuits in adder combined with 

adders without carry bit

Solution #2
● Cascade of adders with fraction of the required width

Combination (hierarchy) of #1 and #2 can be used for wider 
inputs
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Speed of the adder

● Parallel adder is combinational logic/circuit. Is there any 
reason to speak about its speed? Try to describe!

● Yes, and it is really slow. Why?
● Possible enhancement – adder with carry-lookahead 

(CLA) logic!

carry-lookahead
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CLA – carry-lookahead

● Adder combined with CLA provides enough speedup 
when compared with parallel ripple-carry adder and yet 
number of additional gates is acceptable

● CLA for 64-bit adder increases hardware price for about 
50% but the speed is increased (signal propagation time 
decreased) 9 times.

● The result is significant speed/price ratio enhancement.
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The basic equations for the CLA logic

● Let:
● the generation of carry on position (bit) j is defined as:

● the need for carry propagation from previous bit:

● Then:
● the result of sum for bit j is given by: 

● and carry to the higher order bit (j+1) is given by:

jjj yxg 

jjjjjjj yxyxyxp 

    jjjjjjjjjjjjj cppcpcyxcyxcs 

  jjjjjjjjj cpgcyxyxc 1
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CLA

The carry can be computed as:

c1 = g0  p0c0

c2 = g1  p1c1 = g1  p1(g0  p0c0) = g1  p1g0  p1p0c0

c3 = g2  p2c2 = g2  p2(g1  p1g0  p1p0c0) = g2  p2g1  p2p1g0  p2p1p0c0

c4 = g3  p3c3 = ... = g3  p3g2  p3p2g1  p3p2p1g0  p3p2p1p0c0

c5 = ...

  Description of the equation for c3 as an example:

The carry input for bit 3 is active when carry is generated in bit 2 or carry 
propagates condition holds for bit 2 and carry is generated in the bit 1 or 
both bits 2 and 1 propagate carry and carry is generated in bit 0
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Arithmetic unit for add/subtract operations

SUB
ADD

bitwise not

Inspiration: X36JPO, A. Pluháček
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Arithmetic overflow (underflow)

● Result of the arithmetic operation is 
incorrect because, it does not fit into 
selected number of the 
representation bits (width)

● But for the signed arithmetics, it is not 
equivalent to the carry from the most 
significant bit.

● The arithmetic overflow is signaled if 
result sign is different from operand 
signs if both operands have same 
sign

● or can be detected with exclusive-OR 
of carry to and from the most 
significant bit
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Arithmetic shift to the left and to the right

● arithmetic shift by one to the left/right is equivalent to 
signed multiply/divide by 2 (digits movement in positional 
(place-value) representation)

● Notice difference between arithmetic, logic and cyclic shift 
operations

loss of the
precision

● Remark: Barrel shifter can be used for fast variable shifts
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Addition and subtraction for the biased representation

● Short note about other signed number representation

● Overflow detection
● for addition:

same sign of addends and different result sign
● for subtraction:

signs of minuend and subtrahend are opposite and sign of 
the result is opposite to the sign of minuend
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Unsigned binary numbers multiplication
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Sequential hardware multiplier (32b case)

AC                  MQ

The speed of the multiplier is horrible
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Algorithm for multiplication

A = multiplicand; 
MQ = multiplier; 
AC = 0; 

for( int i=1; i <= n; i++)    //  n – represents number of bits

{
if(MQ0 = = 1)  AC = AC + A;   //  MQ0 = LSB of MQ

SR (shift AC MQ by one bit right and insert information about 
carry from the MSB from previous step)

}
end.

when loop ends AC MQ holds 64-bit result
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Example of the multiply X by Y

i operation AC MQ A comment

000 101 110 initial setup

1 AC = AC+MB 110 101 start of the cycle

SR 011 010
2 nothing 011 010 because of MQ0 = = 0

SR 001 101
3 AC = AC+MB 111 101

SR 011 110 end of the cycle

Multiplicand x=110 and multiplier y=101.

The whole operation: xy = 110101 = 011110, ( 65 = 30 )
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Signed multiplication by unsigned HW for two's complement

One possible solution

C = A • B
Let A and B representations are n bits and result is 2n bits

D(C) = D(A) • D(B)
– (D(B)<<n) if A < 0
– (D(A)<<n) if B < 0

Consider for negative numbers

(2n+A) • (2n+B) = 22n+2n A + 2n B + A•B

where 22n is out of the result representation, next two elements 
have to be eliminated if input is negative
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Wallace tree based multiplier

Q=X .Y,   X and Y are considered as and 8bit unsigned numbers 

( x7 x6 x5 x4 x 3 x2 x1 x0). (y7 y6 y5 y4 y3 y2 y1 y0) =

0 0 0 0 0 0 0 0 x7y0 x6y0 x5y0 x4y0 x3y0 x2y0 x1y0 x0y0 P0

0 0 0 0 0 0 0 x7y1 x6y1 x5y1 x4y1 x3y1 x2y1 x1y1 x0y1 0 P1

0 0 0 0 0 0 x7y2 x6y2 x5y2 x4y2 x3y2 x2y2 x1y2 x0y2 0 0 P2

0 0 0 0 0 x7y3 x6y3 x5y3 x4y3 x3y3 x2y3 x1y3 x0y3 0 0 0 P3

0 0 0 0 x7y4 x6y4 x5y4 x4y4 x3y4 x2y4 x1y4 x0y4 0 0 0 0 P4

0 0 0 x7y5 x6y5 x5y5 x4y5 x3y5 x2y5 x1y5 x0y5 0 0 0 0 0 P5

0 0 x7y6 x6y6 x5y6 x4y6 x3y6 x2y6 x1y6 x0y6 0 0 0 0 0 0 P6

0 x7y7 x6y7 x5y7 x4y7 x3y7 x2y7 x1y7 x0y7 0 0 0 0 0 0 0 P7

Q15 Q14 Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

The sum of P0+P1+...+P7 gives result of X and Y multiplication. 
 Q = X .Y =  P0 + P1 + ... + P7
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Wallace tree based fast multiplier

The basic element is an CSA circuit (Carry Save Adder)

S = Sb + C 

Sb
i = xi  yi  zi

Ci+1 = xi yi + yi zi + 

zi xi





& & &

1
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Hardware divider

negate
hot one

reminder

return

quotient
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Hardware divider logic (32b case)

divident = quotient  divisor + reminder

AC                  MQ

negate
hot one

return

reminder quotient
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Algorithm of the sequential division

MQ = dividend;
B = divisor; (Condition: divisor is not 0!)
AC = 0;

for( int i=1; i <= n; i++) {
   SL (shift AC MQ by one bit to the left, the LSB bit is kept on zero)

   if(AC >= B)   {
AC = AC – B;
MQ0 = 1; // the LSB of the MQ register is set to 1

    }
}

 Value of MQ register represents quotient and AC remainder
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Example of X/Y division

i operation AC MQ B comment
0000 1010 0011 initial setup

1 SL 0001 0100

nothing 0001 0100 the if condition not true

2 SL 0010 1000

0010 1000 the if condition not true

3 SL 0101 0000 r  y

AC = AC – B;   MQ0 = 1;
0010 0001

4 SL 0100 0010 r  y

AC = AC – B;   MQ0 = 1;
0001 0011 end of the cycle

Dividend x=1010 and divisor y=0011

x : y = 1010 : 0011 = 0011 reminder 0001,   (10 : 3 = 3 reminder 1)
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Higher dynamic range for numbers (REAL/float)

● Scientific notation, semilogarithmic, floating point
● The value is represented by:

– EXPONENT (E) – represents scale for given value
– MANTISSA (M) – represents value in that scale
– the sign(s) are usually separated as well

● Normalized notation
● The exponent and mantissa are adjusted such way, that 

mantissa is held in some standard range. 〈0.5, 1) or 〈1, 2) for 
considered base z=2

● Generally: the first digit is non-zero or mantissa range is 〈1, z)
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Standardized format for REAL type numbers

● Standard IEEE-754 defines next REAL representation 
and precision
● single-precision – in the C language declared as float
● double-precision – C language double
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Examples of (de)normalized numbers in base 10 and 2

binary

The radix point position for E and M

Sign of M
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The representation/encoding of floating point number

● Mantissa encoded as the sign and absolute value 
(magnitude) – equivalent to the direct representation

● Exponent encoded in biased representation (K=127 for 
single precision)

● The implicit leading one can be omitted due to 
normalization of m ∈ 1, 2) 〈  – 23+1 implicit bit for single

Radix point position for E and M

Sign of M

X = -1s 2A(E)-127 m where m ∈ 1, 2)〈
m = 1 + 2-23 M
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Implied (hidden) leading 1 bit

● Most significant bit of the mantissa is one for each 
normalized number and it is not stored in the 
representation for the normalized numbers

● If exponent representation is zero then encoded value is 
zero or denormalized number which requires to store 
most significant bit

● Denormalized numbers allow to keep resolution in the 
range from the smallest normalized number to zero
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Underflow/lost of the precision for IEEE-754 representation

● The case where stored number value is not zero but it is 
smaller than smallest number which can be represented 
in the normalized form

● The direct underflow to the zero can be prevented by 
extension of the representation range by denormalized 
numbers

smallest representable number
denormalized

0

underflow

normalized

normalized numbers



132B35APO   Computer Architectures

ANSI/IEEE Std 754-1985 – 32b a 64b formats

ANSI/IEEE Std 754-1985 — double precision format — 64b

g . . . 11b f . . . 52b

ANSI/IEEE Std 754-1985 — single precision format — 32b

fraction point
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Representation of the fundamental values

Zero

Infinity

Representation corner values

Positive zero 0 00000000 00000000000000000000000 +0.0

Negative zero 1 00000000 00000000000000000000000 -0.0

Positive infinity 0 11111111 00000000000000000000000 +Inf

Negative infinity 1 11111111 00000000000000000000000 -Inf

Smallest 
normalized

* 00000001 00000000000000000000000 ±2(1-127)

±1.1755 10-38

Biggest 
denormalized

* 00000000 11111111111111111111111 ±(1-2-23)2(1-126)

Smallest 
denormalized

* 00000000 00000000000000000000001 ±2-232-126

±1.4013 10-45

Max. value 0 11111110 11111111111111111111111 (2-2-23)2(127)

+3.4028 10+38
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Not a number (NaN)

● All ones in the exponent
● Mantissa not equal to the zero
● Used, where no other value fits (i.e. +Inf + -Inf, 0/0)
● Compare to (X+ +Inf) where +Inf is sane result
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IEEE-754 special values summary

sign bit Exponent 
representation

Mantissa Represented value/meaning

0 0<e<255 any value normalized positive number

1 0<e<255 any value normalized negative number

0 0 >0 denormalized positive number

1 0 >0 denormalized  negative number

0 0 0 positive zero

1 0 0 negative zero

0 255 0 positive infinity

1 255 0 negative infinity

0 255 ≠0 NaN – does not represent a number

1 255 ≠0 NaN – does not represent a number
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Comparison

● Comparison of the two IEEE-754 encoded numbers 
requires to solve signs separately but then it can be 
processed by unsigned ALU unit on the representations

   A ≥ B  A − B ≥ 0  D(A) − D(B) ≥ 0⇐⇒ ⇐⇒
● This is advantage of the selected encoding and reason 

why sign is not placed at start of the mantissa
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Addition of floating point numbers

● The number with bigger exponent value is selected
● Mantissa of the number with smaller exponent is shifted 

right – the mantissas are then expressed at same scale
● The signs are analyzed and mantissas are added (same 

sign) or subtracted (smaller number from bigger)
● The resulting mantissa is shifted right (max by one) if 

addition overflows or shifted left after subtraction until all 
leading zeros are eliminated

● The resulting exponent is adjusted according to the shift
● Result is normalized after these steps
● The special cases and processing is required if inputs are 

not regular normalized numbers or result does not fit into 
normalized representation 
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Hardware of the floating point adder
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Multiplication of floating point numbers

● Exponents are added and signs xor-ed
● Mantissas are multiplied
● Result can require normalization

max 2 bits right for normalized numbers
● The result is rounded

● Hardware for multiplier is of the same or even lower 
complexity as the adder hardware – only adder part is 
replaced by unsigned multiplier
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Floating point arithmetic operations overview

Addition: A⋅za , B⋅zb , b < a unify exponents
                         B⋅zb = (B⋅zb-a)⋅zb-(b-a) by shift of mantissa

  A⋅za + B⋅zb = [A+(B⋅zb-a)]⋅za sum  + normalization

Subtraction: unification of exponents, subtraction and 
normalization

Multiplication: A⋅za ⋅ B⋅zb = A⋅B⋅za+b

                 A⋅B - normalize if required
 A⋅B⋅za+b = A⋅B⋅z⋅za+b-1 - by left shift

Division:          A⋅za/B⋅zb = A/B⋅za-b

                 A/B  - normalize if required
                          A/B⋅za-b = A/B⋅z⋅za-b+1 - by right shift
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