Linux/RT-Linux CAN Driver
(LinCAN)

Linux/RT-Linux CAN Driver (LinCAN)
by Pavel Pisa

Published February 2004
Copyright © 2004 by Ocera

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of LinCAN driver.

Table of Contents

Linux/RT-Linux CAN Driver (LinCAN)

1. LinCAN Summary 1
1.1, SUININATY .ooeeiiiiiieeiiiiieeee ettt e e e e e eeeeeitbaeeeeeeeeeeeseasrsaeeaeaeeeeesansssssseeaaeeeanans 1
2. LinCAN Driver Description 3
2.1, INErOUCHION....cccoiiiiiiiiiiiiiieeeeeeeeeeeee e e e e e e 3
2.2. LinCAN Driver System Level APcoooviiiiiiiiieeeeeeeeeeee e 3
2.2.1. Device Files and Message Structurecccoeeevvviiiiieeeeeieccciiineeeee e, 3
2.2.2. CAN Driver File Operationscccccuvviiieieeieeiiiiiiiieee e e eecivvrreeeee e 4

10 =3 o TR 4

CLOSE i —————————————————————————— 6

Q=Y: 1o PRSPPI 7

L1 1SR 8

SEIUCE CANTIIE_T.enneiiin ettt e et e e et e s et s esaeneeeees 9

IOCTL CANQUE_FILTER........oooiiiieie ettt 10

IOCTL CANQUE_FLUSHooviiiiieeee ettt evaee e e 11

2.3. LINCAN Driver Archit@Ctureoovvvvvvvieiiiiiiiiiiiriiiiiiiceneeseeeeeeeeeeeeeeeens 12
2.4. Driver History and Implementation Issues..........ccccccvveeeiiiieiicciiiiieeeee e 14
2.5. LINCAN Driver INternalsoooviiiviiiiiiiiiiiiiiiiriir e e e e 16
2.5.1. Basic Driver Data Structureseuvvvveveiiiiiiiiiicicceieeeeeeeeeeeeeeeeeen 16
SErUCt CANNATAWATE_ b cooeveiiiiiieieeee ettt e e v eeen 16

SEIUCE CANAEVICE b evveniiiiieeiiieeeeeeee ettt ettt e eeae s e evaneeee 17

SEIUCE CRIP_t e e et are e e 19

Y 0T v 00 1=T=00) o) N RO UPRUURPPRRNt 21

1517 0 [A= B 0 R0 1= 1<) ol FR R 23

SErUCt RWSPECOPS_T.uvviiiiiiiiiiieciieee ettt 24

SEIUCE ChIPSPECOPS_Tuuvvririiieieiiieiiiiiiieeee et e et ee e e eeeeaanes 25

2.5.2. Board Support Functions..........ccceccvviiiieiiiieicciieee e 27
template_requesSt_10.....cccviiiieeeiiieeeiiiiiieeeee e e e e e 27
template_release_10covveeeeeiiieeeiiiiiiieee e e e 28
LeMPLALE_TESEL .oeiiiiiiieiiiieeee e 29
template_init_hw_data...........ccceeeiiiiiiiiiiiiiiee e 30
template_init_chip_data..........cccoeeiiiiiiiiiiiiiiiee e 31
template_init_obj_data.........cccccceeeiiiiiiiiiiiiic e 32
template_Programl_ir(.......ccccceeeeeeeeiiiiiieeeeeeeeeeceirrreeeeeeeeeeeerarrrreeeaaeeeenns 33
template_Write_regiStercccccoveiiiiiiiiiieeee e 34
template_read_register.........ccccceeeiiiiiiiiieeee e 35

2.5.3. Chip Support FUnctions.........cccccceieeieiiiiiiiiiee e, 36
sjal000p_enable_configuration.........ccccccoeeeeiiiiiiieeeeeeeiciiiieeeee e 36
sjal000p_disable_configurationcc.ccceeeeuriiieieeeeeeeiciiirieeeee e eeeeennnns 37
$jal000p_chip_CONTigccceeeeiiiiiiiiiiiiee e e e e 38
5jal000p_extended_masKccccvreeeeeieieiiciiiiiieiee e eeeeirrree e e e e e eeennns 39
Sjal000pP_baud_rate........cceeeeeeeieiiiiiiieeee e e e e 40
SJAL000P_TAdcceeeeeviieieeee et e e e e e e e e e e e e e e e e e ennannans 41
5jal000p_pre_read_configcccccvveieiieiieeiciiiiieeeee e e e e e e 42
$jal000p_pre_write_configccccvieeiririeieciiiiieeee e e e e e e e s 43
SJA1000P_SENA_TNSEZ ...vvvvreireeeeeeiiiiiiiieeeeeeeeeecerrreeeeeeeeeesssnsrsrreeeeessessssnnnnes 44
5jal000p_check_tx_statccoeeeviiiieiieiiieeeee e 45
SJA1000P_SEt_DEregs....uvviiiiiiiieeiiiiiieeee e e e e 46
Sjal000P_Start_Chipcceeiiiiiieeiiiiiiieeee e e e e e e 47
SJAL000P_SEOP_CHIP .vvvieieiiiiieeeiieee ettt e e e 48
§jal000p_remote_request..........cccceeeeiiiiiiiiiieeeeeeeeeeeeeeeeee e 49
§jal000p_standard_maskccccuveeeeeeiieiiiiiiiiieeeeeeeeeeeerreeee e e 50
Sjal000p_clear_0DJECS........cccoeeiiuririieeeeeeeeecireeeee e e eeeeecirree e e e e e e e 51

1414

OCERA. IST 35102

SJA1000P_CONTIG ITGS ..uvvvreiieeeeeeiiiiiiieeeeeeeeeecirteeeeeeeeeesserrrreeeeeeeesssnnennns 52

sjal000p_irq_write_handler............cccceriiriciiiiiiieieeeeecreeee e 53
§jal000p_irg_handlerccccceeeeiiiiiiiieeeieeeciiieeee e e e e e 54
SJAL1000P_WaKEUD_TX..uuiiiiiiiiiiiiieiiiiiieeee e e eeeeciiiieeee e e e e e esseerrreeeeesseesssnnnnnns 55
2.5.4. CAN Queues Common Structures and Functions.............ccceeeeuvvveeen... 56
struct canque_slot_t........ccceiieeiiiiiieiiiie e 56
Struct canqQuUeE_fIf0_tooooeiiiiiiiiiiieiiee e 57
canque_fifo_get_InSIotooeeiiiiiiiiiiiiieeeec e 58
canque_fifo_put_inslot.........cccccoooeeeiiiiiiiiiieieceeceeee e 59
canque_fifo_abort_inSlot...........ccooevveviiiieeiiieieeccieeeeee e 60
canque_fifo_test_outslotcooovviiiiiiiiiiiii e 61
canque_fifo_free_outsSlotccoooeiiiiiiiiiiiiiie e 62
canque_fifo_again_outslotccccouviiiiiiiiiiiiii e 63
Struct CanQUe_EAZEe_t........cooiieeiiiiiiiiiieeee e e 64
struct canque_endS_t......ccccoeeeeiiiiiiiiieee e e 66
canque_NOotify_INeNndsccceeeeiieeeiiiiiiiieee e 68
canque_notify_outendscccccoeeeiiiiiiiiiii e 69
canque_notify_bothendscccooeiiiiiiiiiiiiiee e, 70
canque_activate_ed@eueeiiiiieeiiiiiiiiiee e a e 71
canque_filtid2internalccooooiiiiiiiiii e 72
canque_fifo_flush_slotsccooiiiiiiiiiiiiiiii e 73
canque_fifo_init_slotsccccceiiiiiiiiiii e 74
canque_get_inslotccccviiiiiiiiii e 75
canque_get_inslotdidcccceeiiiieecciiiieeeee e 76
canque_put_iNSlot.......cccouiiiiiiiii i 77
canque_abort_inslot..........cccceiiiiieiciic e 78
canque_filter_msg2edges.......c.ccoeeeeiiiiiiiiiiie e 79
canque_test_outSlotcccvvviiiiiieiic e 80
canque_free_outslotcceeeiiiiieeeci e 81
canque_again_outSIoteeiiiiiiieiiiiiiiiieee e 82
canque_set_filtoooiiiie e 83
CcaNQUE_TTUSIoiiiiiiiic e e 84
canqueue_endsS_INit_ZeN......ccccceerriiuiiiiieiieeiieeiiiiieeeee e e e e eeirrreeeeeeeeeenes 85
canqueue_CONNECE_EAZE.........cceccuviieieiiiiieeeeciieeeeeireeeesreeeeesareeeeeeraeeeeas 86
canqueue_diSCONNECt_EAZE........c.uveeeeeuiieeieiiiieeeeireeeeeireeeeeereeeeevaeeeens 87
canqueue_bloCK_INliSt..........ccceiieiiiiiiiiiiieeee e 88
canqueue_bloCK_oUtlist.............coouriiiiiiiiiiiiiiieeicieeeee e 89
canqueue_ends_Kill_inlistccccooviiiiiiiiiiiiiiiiiiee e 90
canqueue_ends_Kill_outlistccooovviieiiiiiiiiiiiiiiiiiee e, 91
2.5.5. CAN Queues Kernel Specific Functions.........ccccceeveeeiieeiieciieeiecieeeeens 92
canqueue_NOtify_KeIN........ccccccoiiiiiiiiiiiiiiecccceeecceeee e 92
canqueue_endsS_INit_KerN.........cccociiiiiiiiiiiiiieiiiiiieeeee e 93
canque_get_inslot4id_wait_Kern..........cccccccooviiiiiiiiiiiiiiiiiiciiiiieeeee e, 94
canque_get_outslot_wait_Kern............ccccccoiiiiiiiiiiiiiiiiiieeeeeee e, 95
canque_SyNC_Walt_KeITl........cccccceeeiiiiiiiiieie ettt et e e e e 96
canque_fifo_init_Kernccccccoeiiiiiiiiiiiiii e 97
canque_fifo_done_Kernccccooooiiiiiiiiiii i 98
canque_New_edge_Kernccccoooeiiiiiiiiiieee et 99
canqueue_ends_dispose_Kermn...........ccccceeeeeeieiiiiiiiiiieeee e e 100
2.5.6. CAN Queues RT-Linux Specific Functions...........ccccccceeeieeiecnnnnnnnnnnn. 101
canqueue_rtl2lin_check_and_pend..........ccccoccoviiiiiiiiiiniiiiiiiiieeee e, 101
canque_get_inslotdid_wait_rtlccccceeiiiiiiiiiiiiiie e, 102
canque_get_outslot_wait_rtlccooeeeiiiiiiiiii e, 103
canque_syNC_Wait_Itlccccceiiiiniiiiiiiiieee e 104
canque_fifo_init_rtl..........cccociiiiiiiiii e 105
i

canque_fifo_done_rtl.........ccccciiiieiiiiiiieiee e 106

canque_New_edge_Ttl........ccccceiiveiiiiiiiiieeee e 107
canqueue_Notify_rtl.......cccccooiiiiiiiiiii e 108
canqueue_ends_init_1tlccccooieiiiiiiiiiiii e 109
canqueue_ends_diSpose_Ttl........ccccceeeiiiiiieiiiiiieeee e 110
canqueue_rtl_initializecccocovieiieeiiiieieciee e 111
canqueue_rtl_dOmeccvveeieiiiiieiiieiieeee e 112
2.5.7. CAN Queues CAN Chips Specific Functionscccccceeeeeeevennnnnnenn... 113
canqueue_Notify_Chipccoceiiiiiiiiiiiiiieceee e 113
canqueue_ends_init_Chip.........ccccoeiiiiiiiieiiiiiiiiiieeee e 114
canqueue_ends_done_chip.........ccccoviiiieeiiiiiiiiiiieee e 115
2.5.8. CAN Boards and Chip Setup specific Functions...........ccccccvvervennneenn. 116
CaAn_CheCKed TNAII0C ... i e e e e eaeaaaeen 116
CANL_CHECKEA_TTCO ...t e e e e eaeaaaee 117
CaAN_ Al TNEIN_ LIS e e e et e e e aaee 118
CaN_TreqUESt_10_TEZI0M ..ccceeveeieiriiiiiiiiiiieieiiiieee e e e e e e e e es 119
CaN_Telease_10_TeZI0Mcceeiiiieeiiiiiiiiieeeeeeecectiree e e e e e e e eeiarrreeeeaeeeeans 120
can_request_Mem_TegIONeevvverervrereieeerereeeneneneenenneeeeeaaeseaeeeens 121
can_release_mMem_regioN..........ccoccuuiiiiieeeeeeeceiiiiireeeeeeeeeeeernrrreeeeaeeenenns 122
can_base_addr_fiXUp.....cccccceeeeiiiieieiiiieee e 123
register_obj_Structcccvviiiiiiii e 124
register_chip_struct.........ccccceeiiiieic e 125
TNIE W SEIUCT ettt e et e et e s eaaaeeees 126

INIE AEVICE STIUCE e ieeeee ettt e et e e et e eeeeeeeanaeeeees 127
INIt_Chip_sStruct ..ocoooeeeeee e 128

18 a1 7o) o) N1 7 o U U PUURRN 129
INIE_NWSPECODS 1eeiiiiiieeiiiiiieeee e e ettt e e e e e e s trree e e e e e s e eennrarraeeeeeeeeannns 130
INIE_ChIPSPECOPS coiiieieiiiiiiiiiee et e e e e e e e rrree e e e e e eenne 131
can_Chip_Setup_irgccccovieiiiiiiieeiiieeeee e e e ee e e e e e 132
can_Chip_free_irq.....ccccociiiiiiiiieeeceeee e 133
2.5.9. CAN Boards and Chip Finalization Functions..........ccccccceeeeuvrrrnnennn.. 134
1001Td0] o} o (o) o U= SRR 134
CANChIP_dONE.....oiiiiiiiiiii e e e 135
CANAERVICE_AOTIC....ceeveeeeeeeeeeeeeeeee ettt e e e et e e e e e e taareeeeseeenaes 136
CANNATAWATE_AONEeeiiiiiiiieeee ettt e e s e eenae 137

2.6. LINCAN Usage INformationccoooeevivirieeeeeeeeiiiiiiiireeeeeeeeeeeciireeeeeeeeeeeenns 138
2.6.1. Installation PrerequiSitesccccoeeviurrireeeeeeeeeeiciieeeeee e eeeeeerreeeeeee 138
2.6.2. Quick Installation Instructionsccccceeeeeeeeieeiiiiiiieieeeeeeeeecireeeee. 138
2.6.3. Installation INSEIUCEIONScoevviiiiiiiiiiiiiiiriee e 139
2.6.4. SIMPle Utilities....ccouviiieeiiiieieeiiie ettt esrree e e e e erreeeeseareeeens 141
=Y 16 | 100] 142
SEIADUTSE .. ————— 144

v

OCERA. IST 35102

List of Figures

2-1. LINCAN archit@Cturecccieeuiiiiieiiiie ettt tee e e ette e e e vee e e e eaae e e e eeveeas 12
2-2. LinCAN message FIFO implementation............cccccecuveiieiiiieieniiieeeceieee e 13
2-3. LinCAN driver message flow graph edgescccccecvvviieiiiiiineiieiecciee e, 13
2-4. CAN hardware model in the LINCAN drivercccceeeriiieeeeeiieeeeeiieeeeeieee e 14

vi

Linux/RT-Linux CAN Driver (LinCAN)

The LINCAN is an implementation of the Linux device driver supporting more CAN
controller chips and many CAN interface boards. Its implementation has long history
already. The OCERA version of the driver adds new features, continuous enhancements
and reimplementation of structure of the driver. Most important feature is that driver
supports multiple open of one communication object from more Linux and even RT-
Linux applications and threads. The usage of the driver is tightly coupled to the virtual
CAN API interface component which hides driver low level interface to the application
programmers.

Chapter 1. LinCAN Summary

1.1. Summary

Name of the component

Linux CAN Driver (LINCAN)
Author

Pavel Pisa
Arnaud Westenberg

Tomasz Motylewski

Maintainer

Pavel Pisa
LinCAN Internet resources

http://www.ocera.org OCERA project home page

http://sourceforge.net/projects/ocera OCERA SourceForge project page. The OCERA
CVS relative path to LinCAN driver sources is

ocera/components/comm/can/lincan

http://cmp.felk.cvut.cz/~pisa/can local testing directory

Reviewer

The previous driver versions were tested by more users. The actual version has been
tested at CTU by more OCERA developers, by Unicontrols and by BFAD GmbH,
which use pre-OCERA and current version of the driver in their products.

List of the cards tested with latest version of the driver:

PC104 Advantech PCM3680 dual channel board on 2.4 RT-Linux enabled kernel
PiKRON ISA card on 2.4.and 2.6 Linux kernels

BfaD DIMM PC card on 2.4 RT-Linux enabled kernel

KVASER pcican-q on 2.6 Linux kernel and on 2.4 RT-Linux enabled kernel

 virtual board tested on all systems as well

Supported layers

» High-level available

Linux device interface available for soft real-time Linux only and for mixed-mode
RT-Linux/Linux driver compilation

» Low-level available

RT-Linux device is registered only for mixed-mode RT-Linux/Linux driver com-
pilation. The driver messages transmition and receiption runs in hard real-time
threads in such case.

Chapter 1. LinCAN Summary

Version

lincan-0.2
Status

Beta
Dependencies

The driver requires CAN interface hardware for access to real CAN bus.

Driver can be used even without hardware if a virtual board is configured. This
setup is useful for testing of interworking of other CAN components.

Linux kernels from 2.2.x, 2.4.x and 2.6.x series are fully supported.

The RT-Linux version 3.2 or OCERA RT-Linux enabled system is required for hard
real-time use.

The RT-Linux version requires RT-Linux malloc , which is part of OCERA RT-Linux
version and can be downloaded for older RT-Linux versions .

The use of VCA API library is suggested for seamless application transitions be-
tween driver kinds and versions.

Supported hardware (some not tested)

Advantech PC-104 PCM3680 dual channel board
PiKRON ISA card

BfaD DIMM PC card

KVASER PClcan-Q, PCIcan-D, PClcan-S

KVASER PCcan-Q, PCcan-D, PCcan-S, PCcan-F
MPL pip5 and pip6

NSI PC-104 board CAN104

Contemporary Controls PC-104 board CAN104
Arcom Control Systems PC-104 board AIM104CAN
IXXAT ISA board PC-I03

SECO PC-104 board M436

Board support template sources for yet unsupported hardware

Virtual board

Release date

February 2004

OCERA. IST 35102

Chapter 2. LinCAN Driver Description

2.1. Introduction

The LinCAN driver is the loadable module for the Linux kernel which implements CAN
driver. The driver communicates and controls one or more CAN controllers chips. Each
chip/CAN interface is represented to the applications as one or more CAN message ob-
jects accessible as character devices. The application can open the character device and
use read /write system calls for CAN messages transmission or reception through the
connected message object. The parameters of the message object can be modified by the
IOCTL system call. The closing of the character device releases resources allocated by
the application. The present version of the driver supports three most common CAN
controllers:

» Intel 182527 chips
¢ Philips 82¢200 chips
e Philips SJA1000 chips in standard and PeliCAN mode

The intelligent CAN/CANopen cards should be supported by in the near future. One
of such cards is P-CAN series of cards produced by Unicontrols. The driver contains
support for more than ten CAN cards basic types with different combinations of the
above mentioned chips. Not all card types are held by OCERA members, but CTU has
and tested more SJA1000 type cards and will test some 182527 cards in near future.

2.2. LinCAN Driver System Level API

2.2.1. Device Files and Message Structure

Each driver is a subsystem which has no direct application level API. The operating
system is responsible for user space calls transformation into driver functions calls or
dispatch routines invocations. The CAN driver is implemented as a character device
with the standard device node names /dev/ican0 ,/dev/canl |, etc. The application pro-
gram communicates with the driver through the standard system low level input/output
primitives (open, close ,read ,write ,select andioctl). The CAN driver convention
of usage of these functions is described in the next subsection.

The read and write functions need to transfer one or more CAN messages. The struc-
ture canmsg_t is defined for this purpose and is defined in include file can/can.h . The
canmsg_t structure has next fields:

struct canmsg_t {
short flags;
int cob;
unsigned long id;
unsigned long timestamp;
unsigned int length;
unsigned char
data[CAN_MSG_LENGTH];
} PACKED;

flags

The flags field holds information about message type. The bit MSG_RTRmnarks re-
mote transmission request messages. Writing of such message into the CAN mes-
sage object handle results in transmission of the RTR message. The RTR message
can be received by the read call if no buffer with corresponding ID is pre-filled in

the driver. The bit MSG_EXTindicates that the message with extended (bit 29 set)
ID will be send or was received. The bit MSG_OVRs intended for fast indication
of the reception message queue overfill. The transmitted messages could be dis-
tributed back to the local clients after transmition to the CAN bus. Such messages
are marked by MSG_LOCADit.

cob

The field reserved for a holding message communication object number. It could
be used for serialization of received messages from more message object into one
message queue in the future.

id
CAN message ID.

timestamp

The field intended for storing of the message reception time.
length

The number of the data bytes send or received in the CAN message. The number of
data load bytes is from O to 8.

data
The byte array holding message data.

As was mentioned above, direct communication with the driver through system calls
is not encouraged because this interface is partially system dependent and cannot be
ported to all environments. The suggested alternative is to use OCERA provided VCA
library which defines the portable and clean interface to the CAN driver implementa-
tion.

The other issue is addition of the support for new CAN interface boards and CAN con-
troller chips. The subsection Board Support Functions describes template functions,
which needs to be implemented for newly supported board. The template of board sup-
port can be found in the file src/template.c

The other task for more brave souls is addition of the support for the unsupported chip
type. The source supporting the SJA1000 chip in the PeliCAN mode can serve as an
example. The full source of this chip support is stored in the file src/sjal000p.c . The
subsection Chip Support Functions describes basic functions necessary for the new chip
support.

2.2.2. CAN Driver File Operations

open

open — message communication object open system call

Synopsis

int open (const char * pathname , int flags);

Arguments

pathname

The path to driver device node is specified there. The conventional device names for
Linux CAN driver are /dev/can0 ,/dev/canl |, etc.

open

flags

flags modifying style of open call. The standard O_RDWRnode should be used for
CAN device. The mode O _NOBLOCKan be used with driver as well. This mode re-
sults in immediate return of read and write

Description

Returns negative number in the case of error. Returns the file descriptor for named CAN
message object in other cases.

OCERA. IST 35102 5

close

close — message communication object close system call

Synopsis

int close (int fd);

Arguments
fd

file descriptor to opened can message communication object

Description

Returns negative number in the case of error.

read

read — reads received CAN messages from message object

Synopsis

ssize_t read (int fd, void * buf, size_t count)

Arguments
fd

file descriptor to opened can message communication object
buf

pointer to array of canmsg_t structures.

count

size of message array buffer in number of bytes

Description

Returns negative value in the case of error else returns number of read bytes which is
multiple of canmsg_t structure size.

write

write — writes CAN messages to message object for transmission
Synopsis

ssize_t write (int fd, const void * buf , size_t count);

Arguments

fd

file descriptor to opened can message communication object
buf

pointer to array of canmsg_t structures.
count
size of message array buffer in number of bytes. The parameter informs driver about

number of messages prepared for transmission and should be multiple of canmsg_t
structure size.

Description

Returns negative value in the case of error else returns number of bytes successfully
stored into message object transmission queue. The positive returned number is multi-
ple of canmsg_t structure size.

struct canfilt_t

struct canfilt_t — structure for acceptance filter setup

Synopsis
struct canfilt_t {
int flags;
int queid;
int cob;

unsigned long id;
unsigned long mask;

Members
flags
message flags
MSG_RTR. message is Remote Transmission Request,
MSG_EXT. message with extended ID,
MSG_OVR indication of queue overflow condition,
MSG_LOCAL message originates from this node.
there are corresponding mask bits MSG_RTR_MASKISG_EXT_MASKISG_LOCAL_MASK

MSG_PROCESSLOCAmables local messages processing in the combination with
global setting

queid

CAN queue identification in the case of the multiple queues per one user (open
instance)

cob

communication object number (not used)
id

selected required value of cared ID id bits
mask

select bits significant for the comparison,;

1 .. take care about corresponding ID bit,

0 .. don’t care

IOCTL CANQUE_FILTER

IOCTL CANQUE_FILTER— Sets acceptance filter for CAN queue connected to client
state

Synopsis

int ioctl (int fd, int command = CANQUE_FILTER, struct canfilt_t * filt);

Arguments
fd

file descriptor to opened can message communication object
command

Denotes CAN queue filter command, CANQUE_FILTER
filt

pointer to the canfilt_t structure.

Description

The CANQUE_FILTERIOCTL invocation sets acceptance mask of associated canqueue to
specified parameters. Actual version of the driver changes filter of the default receiption
queue. The filed queid should be initialized to zero to support compatibility with future
driver versions.

The call returns negative value in the case of error.

10

IOCTL CANQUE_FLUSH

IOCTL CANQUE_FLUSH- Flushes messages from receiption CAN queue

Synopsis

int ioctl (int fd, int command = CANQUE_FLUSH, int queid);

Arguments
fd

file descriptor to opened can message communication object
command

Denotes CAN queue flush command, CANQUE_FLUSH
queid

Should be initialized to zero to support compatibility with future driver versions

Description
The call flushes all messages from the CAN queue.

The call returns negative value in the case of error.

Chapter 2. LinCAN Driver Description

2.3. LInCAN Driver Architecture

The LinCAN provides simultaneous queued communication for more concurrent run-
ning applications.

TCP/1P Testclient |

ol
VCA AP CanMonitor #1|
VCA lib CanMonitor #2|

parser

EDS

CAN driver
* VCA lib l parser.l"r
10 ot MEM comprier

CanDevl
IIIIIII |

File ops (rd, wr, ioctl)

= AN = _
= controller = VCA lib

== or virtual =

- — CanDevl1 |

ITITII |
Figure 2-1. LinCAN architecture

Even each of communication object can be used by one or more applications, which
connects to the communication object internal representation by means of CAN FIFO
queues. This enables to build complex systems based even on card and chips, which
provides only one communication objects (for example SJA1000).

The driver can be configured to provide virtual CAN board (software emulated message
object) to test CAN components on the Linux system without hardware required to con-
nect to the real CAN bus. The example configuration of the CAN network components
connected to one real or virtual communication object of LinCAN driver is shown in
figure Figure 2-1. The communication object is used by the CAN monitor daemon and
two CANopen devices implemented by OCERA CanDev component. The actual system
dependent driver API is hidden to applications under VCA library. The CAN monitor
daemon translates CAN messages to TCP/IP network for Java based platform indepen-
dent CAN monitor and C based test client.

Each communication object is represented as character device file. The devices can be
opened and closed by applications in blocking or non-blocking mode. LinCAN client ap-
plication state, chip and object configurations are controlled by IOCTL system call. One
or more CAN messages can be sent or received through write/read system calls. The
data read from or written to the driver are formed from sequence of fixed size structures
representing CAN messages.

struct canmsg_t {

short flags;

int cob;

unsigned long id;

unsigned long timestamp;

unsigned int length;

unsigned char data[CAN_MSG_LENGTH]J;

The LinCAN driver version 0.2 has rewritten infrastructure based on message FIFOs or-
ganized into oriented edges between chip drivers (structure chip_t) message objects
representations (structure msgobj_t) and open device file instances state (structure
canuser_t). The complete relationship between CAN hardware representation and
open instances is illustrated in the figure Figure 2-4.

OCERA. IST 35102 12

Chapter 2. LinCAN Driver Description

The message FIFO (structure canque_fifo_t) initialization code allocates config-
urable number of slots capable to hold one message.

canqueue_fifo_t
flags
error_code

*head @

k] k{—\

*flist @ v Ja N\

iy & E@ﬁé*é*ﬁ 0
P. 4

Figure 2-2. LinCAN message FIFO implementation

e

The all slots are linked to the free list after initialization. The slot can be requested by
FIFO input side by function canque_fifo_get_inslot . The slot is filled by message
data and is linked into FIFO queue by function canque_fifo_put_inslot . If previ-
ously requested slot is not successfully filled by data, it can be released by canque_fifo_abort_inslot
The output side of the FIFO tests presence of ready slots by function canque_fifo_test_outslot
If the slot is returned by this function, it is processed and released by function canque_fifo_free_outslot
The processing can be postponed in the case of bus error or higher priority message pro-
cessing request by canque_fifo_again_outslot function. All these functions are op-
timized to be fast and short, which enables to synchronize them by spin-lock semaphores
and guarantee atomic nature of them. The FIFO implementation is illustrated in the fig-
ure Figure 2-2.

App/Userl

edges ends
with _Haciivel] |
w FOFOs
ends . 1.
—
App/User2

ends
LA

CAN
controller
or virtual

L
Figure 2-3. LinCAN driver message flow graph edges

The low level message FIFOs are wrapped by CAN edges structures (canque_edge t),
which are used for message passing between all components of the driver. The actual ver-
sion of LinCAN driver uses oriented edges to connect Linux and RT-Linux clients/users
with chips and communication objects. Each entity, which is able to hold edge ends,
has to be equipped by canque_ends_t structure. The input ends of edges/FIFOs are
held on inlist . The inactive/empty out ends of the edges are held on a idle list
and active out ends are held on a active list corresponding to the edge priority. The
canque_fifo_test_outslot function can determine by examination of active lists
if there is message to accept/process. This concept makes possible to use same type
of edges for outgoing and incoming directions. The concept of edges can be even used
for message filtering by priority or acceptance masks. It is prepared for future target-
ing messages to predefined message objects according to their priority or type and for
redundant and fault tolerant message distribution into more CAN buses. Message con-

OCERA. IST 35102 13

Chapter 2. LinCAN Driver Description

centration, virtual nodes and other special processing can be implemented above this
concept as well. The example of interconnection of one communication object with two
users/open instances is illustrated in the picture Figure 2-3. Three edges/FIFOs are in
the active state and one edge/FIFO is empty in the shown example.

canhardware_t

/\

| candevice_t | | candev1ce_t|

'

msgobj_t | [msgobj_t | | msgobj_t | | msgobj_t | | msgobj_t
gends gends gends gends gends
gends gends gends gends gends

canuser_t | [canuser_t| [canuser_t | |canuser_t| |canuser_t

Figure 2-4. CAN hardware model in the LinCAN driver

The figure Figure 2-4 is example of object inside LinCAN driver representing system
with two boards, three chips and more communication objects. Some of these objects
are used by one or more applications. The object open instances are represented as
canuser_t structures.

2.4. Driver History and Implementation Issues

The development of the CAN drivers for Linux has long history. We have been faced
before two basic alternatives, start new project from scratch or use some other project
as basis of our development. The first approach could lead faster to more simple and
clean internal architecture but it would mean to introduce new driver with probably
incompatible interface unusable for already existing applications. The support of many
types of cards is thing which takes long time as well. More existing projects aimed to
development of a Linux CAN driver has been analyzed:

Original LDDK CAN driver project

The driver project aborted on the kernel evolution and LDDK concept. The LDDK
tried to prepare infrastructure for development of the kernel version independent
character device drivers written in meta code. The goal was top-ranking, but it
proves, that well written "C" language driver can be more portable than the LDDK
complex infrastructure.

can4linux-0.9 by PORT GmbH
This is version of the above LDDK driver maintained by Port GmbH. The card type

is hard compiled into the driver by selected defines and only Philips 82¢200 chips
are supported.

CanFestival

The big advantage of this driver is an integrated support for the RT-Linux, but
driver implementation is highly coupled to one card. Some concepts of the driver
are interesting but the driver has the hard-coded number of message queues.

OCERA. IST 35102 14

Chapter 2. LinCAN Driver Description

can-0.7.1 by Arnaud Westenberg

This driver has its roots in the LDDK project as well. The original LDDK concept
has been eliminated in the driver source and necessary adaptation of the driver
for the different Linux kernel versions is achieved by the controllable number of
defines and conditional compilation. There is more independent contributors. The
main advantages of the driver are support of many cards working in parallel, IO
and memory space chip connection support and more cards of different types can
be selected at module load time. There exist more users and applications compat-
ible with the driver interface. Disadvantages of the original version of this driver
are non-optimal infrastructure, non-portable make system and lack of the select
support.

The responsible OCERA developers selected the can-0.7.1 driver as a base of their de-
velopment for next reasons:

» Best support for more cards in system
» Supports for many types of cards
» The internal abstraction of the peripheral access method and the chip support

The most important features added by OCERA development team are:

» Added the select system call support

e The support for our memory mapped ISA card added, which proved simplicity of ad-
dition of the support for new type of CAN cards

» Added devfs support
» Revised and bug-fixed the IRQ support in the first phase
e Added support for 2.6.x kernels

» Rebuilt the make system to compile options fully follow the running kernel options,
cross-compilation still possible when the kernel location and compiler is specified. The
driver checked with more 2.2.x, 2.4.x and 2.6.x kernels and hardware configurations.

» Cleaned-up synchronization required to support 2.6.x SMP kernels and enhanced
2.4.x kernels performance

e The deeper rebuilt of the driver infrastructure to enable porting to more systems (most
important RT-Linux). The naive FIFO implementation has been replaced by robust
CAN queues, edges and ends framework. The big advantage of continuous develop-
ment is ability to keep compatibility with many cards and applications

» The infrastructure rewrite enabled to support multiple opening of the single minor
device

» Support for individual queues message acceptance filters added

e The driver setup functions modified to enable PCI and USB hardware hot-swapping
and PnP recognition in the future

* Added support for KVASER PCI cards family

¢ Added support for virtual can board for more CAN/CANopen components interwork-
ing testing on single computer without real CAN hardware.

» The conditional compilation mode for Linux/RT-Linux support has been added. The
driver manipulates with chips and boards from RT-Linux hard real-time worker threads
in that compilation mode. The POSIX device file interface is provided for RT-Linux
threads in parallel to the standard Linux device interface.

» Work on support for first of intelligent CAN/CANopen cards has been started

OCERA. IST 35102 15

The possible future enhancements

¢ Cleanup and enhance RTR processing. Add some support for emulated RTR process-
ing for SJA1000 chips

« Enhance clients API to gain full advantages of possibility to connect more CAN queues
with different priorities to the one user state structure

» Add support for more CAN cards and chips (82C900 comes to mind)

» Add support for XILINX FPGA based board in development at CTU. There already
exists VHDL source for the chip core, connect it to PC-104 bus and LinCAN driver

* Do next steps in the PCI cards support cleanup and add Linux 2.6.x sysfs support

2.5. LInCAN Driver Internals

2.5.1. Basic Driver Data Structures

struct canhardware_t

struct canhardware t — structure representing pointers to all CAN boards

Synopsis
struct canhardware_t {
int nr_boards;
struct rtr_id * rtr_queue;

can_spinlock_t rtr_lock;
struct candevice_t * * candevice;

Members

nr_boards

number of present boards

rtr_queue

RTR - remote transmission request queue (expect some changes there)
rtr_lock

locking for RTR queue

candevice

array of pointers to CAN devices/boards

16

struct candevice_t

struct candevice t — CAN device/board structure

Synopsis

struct candevice_t {
char * hwname;
int candev_idx;
unsigned long io_addr;
unsigned long res_addr;
unsigned long dev_base_addr;
unsigned int flags;
int nr_all_chips;
int nr_82527_chips;
int nr_sjal000_chips;
struct chip_t * * chip;
struct hwspecops_t * hwspecops;
struct canhardware_t * hosthardware_p;
union sysdevptr;

Members

hwname

text string with board type
candev_idx

board index in canhardware_t.candevicel[]

io_addr
10/physical MEM address
res_addr

optional reset register port
dev_base_addr

CPU translated IO/virtual MEM address
flags

board flags: PROGRAMMABLE_IRQ interrupt number can be programmed into

board
nr_all_chips
number of chips present on the board
nr_82527_chips
number of Intel 8257 chips
nr_sjal000_chips
number of Philips SJA100 chips
chip
array of pointers to the chip structures
hwspecops
pointer to board specific operations
hosthardware_p
pointer to the root hardware structure
sysdevptr

union reserved for pointer to bus specific device structure (case pcidev
PCI devices)

is used for

17

struct candevice_t

Description

The structure represent configuration and state of associated board. The driver in-
frastructure prepares this structure and calls board type specific board_register
function. The board support provided register function fills right function pointers in

hwspecops structure. Then driver setup calls functions init_hw_data , init_chip_data
init_chip_data , init_obj_data and program_irq . Function init_hw_data and
init_chip_data have to specify number and types of connected chips or objects respec-

tively. The use of nr_all_chips is preferred over use of fields nr_82527 chips and
nr_sjal000_chips in the board non-specific functions. The io_addr and dev_base_ addr
is filled from module parameters to the same value. The request_io function can fix-up
dev_base addr field if virtual address is different than bus address.

OCERA. IST 35102 18

struct chip_t

struct chip_t — CAN chip state and type information

Synopsis

struct chip_t {
char * chip_type;
int chip_idx;
int chip_irg;
unsigned long chip_base_addr;
unsigned int flags;
long clock;
long baudrate;
void (* write_register (unsigned char data,unsigned long address);
unsigned (* read_register (unsigned long address);
unsigned short sja_cdr_reg;
unsigned short sja_ocr_reg;
unsigned short int_cpu_reg;
unsigned short int_clk_reg;
unsigned short int_bus_reg;
struct msgobj_t * * msgobj;
struct chipspecops_t * chipspecops;
struct candevice_t * hostdevice;
int max_objects;
can_spinlock_t chip_lock;
#ifdef CAN_WITH_RTLpthread_t worker_thread;
unsigned long pend_flags;

Members

chip_type

text string describing chip type
chip_idx

index of the chip in candevice_t.chip[] array
chip_irq

chip interrupt number if any

chip_base_addr

chip base address in the CPU IO or virtual memory space
flags
chip flags: CHIP_CONFIGURED. chip is configured, CHIP_SEGMENTELD access to
the chip is segmented (mainly for i82527 chips)
clock

chip base clock frequency in Hz
baudrate

selected chip baudrate in Hz
write_register

write chip register function copy -
read_register

read chip register function copy
sja_cdr_reg

SJA specific register - holds hardware specific options for the Clock Divider register.
Options defined in the sja1000.h file: CDR_CLKOUT_MASKDR_CLK_OFFCDR_RXINPEN
CDR_CBPCDR_PELICAN

19

struct chip_t

sja_ocr_reg

SJA specific register - hold hardware specific options for the Output Control reg-
ister. Options defined in the sja1000.h file: OCR_MODE_BIPHASEDCR_MODE_TEST
OCR_MODE_NORMACR_MODE_CLOQBCR_TX0 LHOCR_TX1 ZZ

int_cpu_reg
Intel specific register - holds hardware specific options for the CPU Interface regis-

ter. Options defined in the i82527.h file: ICPU_CEN iCPU_MUXICPU_SLP,iCPU_PWD
iCPU_DMG iCPU_DSG, iCPU_RST.

int_clk_reg
Intel specific register - holds hardware specific options for the Clock Out register.

Options defined in the i82527.h file: iCLK_CDO, iCLK_CD1, iCLK_CD2, iCLK_CD3,
iCLK_SLO , iCLK_SL1.

int_bus_reg
Intel specific register - holds hardware specific options for the Bus Configuration

register. Options defined in the i82527.h file: iBUS DRO, iBUS DR1, iBUS DT1,
iBUS_POL, iBUS_CBY.

msgobj

array of pointers to individual communication objects
chipspecops

pointer to the set of chip specific object filled by init_chip_data function
hostdevice

pointer to chip hosting board
max_objects

maximal number of communication objects connected to this chip

chip_lock
reserved for synchronization of the chip supporting routines (not used in the cur-
rent driver version)

worker_thread

chip worker thread ID (RT-Linux specific field)

pend_flags
holds information about pending interrupt and tx_wake operations (RT-Linux spe-
cific field). Masks values: MSGOBJ_TX_REQUESTsome of the message objects re-
quires tx_wake call, MSGOBJ_IRQ_REQUEST chip interrupt processing required

MSGOBJ_WORKER_WAKmarks, that worker thread should be waked for some of
above reasons

Description

The fields write_register and read_register are copied from corresponding fields
from hwspecops structure (chip->hostdevice->hwspecops->write_register and chip->hostdevice-
>hwspecops->read_register) to speedup can_write_reg and can_read_reg functions.

OCERA. IST 35102 20

struct msgobj_t

struct msgobj_t — structure holding communication object state

Synopsis

struct msgobj_t {
unsigned long obj_base_addr;
unsigned int minor;
unsigned int object;
unsigned long obj_flags;
int ret;
struct canque_ends_t * gends;
struct canque_edge_t * tx_qgedge;
struct canque_slot_t * tx_slot;
int tx_retry_cnt;
struct timer_list tx_timeout;
struct canmsg_t rx_msg;
struct chip_t * hostchip;
atomic_t obj_used;
struct list_head obj_users;

Members

obj_base_addr

minor

associated device minor number
object
object number in chip_t structure +1
obj_flags
message object specific flags. Masks values: MSGOBJ_TX_ REQUESTthe message

object requests TX activation MSGOBJ_TX_LOCK some IRQ routine or callback on
some CPU is running inside TX activation processing code

ret
field holding status of the last Tx operation
gends
pointer to message object corresponding ends structure
tx_qedge
edge corresponding to transmitted message
tx_slot
slot holding transmitted message, slot is taken from canque_test outslot call
and is freed by canque_free outslot or rescheduled canque_again_outslot

tx_retry_cnt

transmission attempt counter

tx_timeout

can be used by chip driver to check for the transmission timeout
rx_msg

temporary storage to hold received messages before calling to canque_filter_msg2edges
hostchip

pointer to the &chip_t structure this object belongs to

21

struct msgobj_t

obj_used

counter of users (associated file structures for Linux userspace clients) of this object
obj_users

list of user structures of type &canuser_t.

OCERA. IST 35102 22

struct canuser_t

struct canuser_t — structure holding CAN user/client state

Synopsis

struct canuser_t {
unsigned long flags;
struct list_head peers;
struct canque_ends_t * gends;
struct msgobj_t * msgobj;
struct canque_edge_t * rx_edge0;
union userinfo;
int magic;

Members
flags

used to distinguish Linux/RT-Linux type
peers

for connection into list of object users
gends

pointer to the ends structure corresponding for this user
msgobj

communication object the user is connected to
rx_edge0

default receive queue for filter IOCTL

userinfo

stores user context specific information. The field fileinfo file holds pointer to
open device file state structure for the Linux user-space client applications

magic

magic number to check consistency when pointer is retrieved from file private field

23

struct hwspecops_t

struct hwspecops_t — hardware/board specific operations

Synopsis

struct hwspecops_t {

int (*
int (*
int (*
int (*
int (*
int (*
int (*

request_io (struct candevice_t *candev);

release_io (struct candevice_t *candev);

reset (struct candevice_t *candev);

init_hw_data (struct candevice_t *candev);
init_chip_data (struct candevice_t *candev, int chipnr);
init_obj_data (struct chip_t *chip, int objnr);
program_irg (struct candevice_t *candev);

void (* write_register (unsigned char data,unsigned long address);
unsigned (* read_register (unsigned long address);

Members

request_io

reserve io or memory range for can board

release_io

free reserved io memory range

reset

hardware reset routine

init_hw_data

called to initialize &candevice_t structure, mainly res_add , nr_all_chips

nr_sjal000_chips and flags fields

init_chip_data

called initialize each &chip_t structure, mainly chip_type

, Chip_base_addr

,nNr_82527_chips

b

clock and chip specific registers. It is responsible to setup &chip_t->chipspecops

functions for non-standard chip types (type other than “i82527”, “sja1000” or “sja1000p”)

init_obj_data

called initialize each &msgobj_t structure, mainly obj _base_ addr

program_irq

program interrupt generation hardware of the board if flag PROGRAMMABLE IR

present for specified device/board

write_register

low level write register routine

read_register

low level read register routine

24

J

struct chipspecops_t

struct chipspecops_t — can controller chip specific operations

Synopsis

struct chipspecops_t {
int (* chip_config (struct chip_t *chip);
int (* baud_rate (struct chip_t *chip, int rate, int clock, int sjw,int sampl_pt, int flags);
int (* standard_mask (struct chip_t *chip, unsigned short code,unsigned short mask);
int (* extended_mask (struct chip_t *chip, unsigned long code,unsigned long mask);
int (* messagel5 _mask (struct chip_t *chip, unsigned long code,unsigned long mask);
int (* clear_objects (struct chip_t *chip);
int (* config_irgs (struct chip_t *chip, short irgs);
int (* pre_read_config (struct chip_t *chip, struct msgobj_t *obj);
int (* pre_write_config (struct chip_t *chip, struct msgobj_t *obj,struct canmsg_t *msg);
int (* send_msg (struct chip_t *chip, struct msgobj_t *obj,struct canmsg_t *msg);
int (* remote_request (struct chip_t *chip, struct msgobj_t *obj);
int (* check_tx_stat (struct chip_t *chip);
int (* wakeup_tx (struct chip_t *chip, struct msgobj_t *obj);
int (* enable_configuration (struct chip_t *chip);
int (* disable_configuration (struct chip_t *chip);
int (* set_btregs (struct chip_t *chip, unsigned short btrO,unsigned short btrl);
int (* start_chip (struct chip_t *chip);
int (* stop_chip (struct chip_t *chip);
can_irgreturn_t (* irg_handler (int irq, void *dev_id, struct pt_regs *regs);

Members

chip_config

CAN chip configuration
baud_rate

set communication parameters

standard_mask

setup of mask for message filtering

extended_mask

setup of extended mask for message filtering
messagel5_mask

set mask of 182527 message object 15
clear_objects

clears state of all message object residing in chip
config_irgs

tunes chip hardware interrupt delivery
pre_read_config

prepares message object for message reception
pre_write_config

prepares message object for message transmission
send_msg

initiate message transmission

remote_request

configures message object and asks for RTR message
check tx_stat

checks state of transmission engine

25

struct chipspecops_t

wakeup_tx

wakeup TX processing
enable_configuration

enable chip configuration mode
disable_configuration

disable chip configuration mode
set_btregs

configures bitrate registers
start_chip

starts chip message processing
stop_chip

stops chip message processing
irq_handler

interrupt service routine

OCERA. IST 35102 26

2.5.2. Board Support Functions

The functions, which should be implemented for each supported board, are described in
the next section. The functions are prefixed by boardname. The prefix template has
been selected for next description.

template_request_io

template_request_io — reserve io or memory range for can board
Synopsis

int template_request_io (struct candevice_t * candev);

Arguments

candev

pointer to candevice/board which asks for io. Field io_addr of candev is used in
most cases to define start of the range

Description

The function template_request_io is used to reserve the io-memory. If your hard-
ware uses a dedicated memory range as hardware control registers you will have to add
the code to reserve this memory as well. IO_RANGEis the io-memory range that gets
reserved, please adjust according your hardware. Example: #define IO_RANGE 0x100
for 182527 chips or #define IO_RANGE 0x20 for sja1000 chips in basic CAN mode.

Return Value

The function returns zero on success or -ENODEVon failure

File

src/template.c

27

template_release_io

template_release_io — free reserved io memory range
Synopsis

int template_release_io (struct candevice_t * candev);
Arguments

candev

pointer to candevice/board which releases io

Description

The function template_release_io is used to free reserved io-memory. In case you
have reserved more io memory, don’t forget to free it here. IO_RANGE is the io-memory
range that gets released, please adjust according your hardware. Example: #define IO_RANGE
0x100 for 182527 chips or #define IO_RANGE 0x20 for sja1000 chips in basic CAN mode.

Return Value

The function always returns zero

File

src/template.c

28

template_reset

template_reset — hardware reset routine
Synopsis

int template_reset (struct candevice_t * candev);
Arguments

candev

Pointer to candevice/board structure

Description

The function template_reset is used to give a hardware reset. This is rather hardware
specific so I haven’t included example code. Don’t forget to check the reset status of the
chip before returning.

Return Value

The function returns zero on success or -ENODEVon failure

File

src/template.c

29

template_init_hw_data

template_init_hw_data — Initialize hardware cards
Synopsis

int template_init_hw_data (struct candevice_t * candev);
Arguments

candev

Pointer to candevice/board structure

Description

The function template_init_hw_data is used to initialize the hardware structure
containing information about the installed CAN-board. RESET ADDRepresents the io-
address of the hardware reset register. NR_82527 represents the number of Intel 82527
chips on the board. NR_SJA1000 represents the number of Philips sjal1000 chips on the
board. The flags entry can currently only be CANDEV_PROGRAMMABLE_IRQindicate
that the hardware uses programmable interrupts.

Return Value

The function always returns zero

File

src/template.c

30

template_init_chip_data

template_init_chip_data — Initialize chips

Synopsis

int template_init_chip_data (struct candevice_t * candev , int chipnr);
Arguments

candev

Pointer to candevice/board structure
chipnr

Number of the CAN chip on the hardware card

Description

The function template_init_chip_data is used to initialize the hardware structure
containing information about the CAN chips. CHIP_TYPE represents the type of CAN
chip. CHIP_TYPE can be “i82527” or “sjal000”. The chip_base_addr entry represents
the start of the ’official’ memory map of the installed chip. It’s likely that this is the same

as the io_addr argument supplied at module loading time. The clock entry holds the
chip clock value in Hz. The entry sja_cdr_reg holds hardware specific options for
the Clock Divider register. Options defined in the sjal000 .h file: CDR_CLKOUT_MASK
CDR_CLK_OFFCDR_RXINPENCDR_CBPCDR_PELICANThe entry sja_ocr reg holds
hardware specific options for the Output Control register. Options defined in the sjal000 .h
file: OCR_MODE_BIPHASBCR_MODE_TESDCR_MODE_NORMAICR_MODE_CLOQBCR_TX0_LH
OCR_TX1_ZZ The entry int_clk_reg holds hardware specific options for the Clock
Out register. Options defined in the 82527 .h file: iCLK_CDO, iCLK_CD1, iCLK_CD?2,
iCLK_CD3, iCLK_SLO,iCLK_SL1. The entry int_bus reg holds hardware specific op-
tions for the Bus Configuration register. Options defined in the i82527 .h file: iBUS_DRO,
iBUS_DR1, iBUS_DT1,iBUS_POL, iBUS_CBY. The entry int_cpu_reg holds hardware
specific options for the cpu interface register. Options defined in the 82527 .h file:
iCPU_CEN iCPU_MUX iCPU_SLP, iCPU_PWDICPU_DMGCiCPU_DSC, iCPU_RST.

Return Value

The function always returns zero

File

src/template.c

31

template_init_obj_data

template_init_obj_data — Initialize message buffers
Synopsis

int template_init_obj_data (struct chip_t * chip , int objnr);
Arguments

chip

Pointer to chip specific structure
objnr

Number of the message buffer

Description

The function template_init_obj_data is used to initialize the hardware structure
containing information about the different message objects on the CAN chip. In case
of the sjal000 there’s only one message object but on the 182527 chip there are 15.
The code below is for a 182527 chip and initializes the object base addresses The en-
try obj_base_addr represents the first memory address of the message object. In case
of the sja1000 obj_base_addr is taken the same as the chips base address. Unless the
hardware uses a segmented memory map, flags can be set zero.

Return Value

The function always returns zero

File

src/template.c

32

template_program_irq

template_program_irg — program interrupts
Synopsis

int template_program_irq (struct candevice_t * candev);
Arguments

candev

Pointer to candevice/board structure

Description

The function template_program_irq is used for hardware that uses programmable
interrupts. If your hardware doesn’t use programmable interrupts you should not set
the candevices t ->flags entry to CANDEV_PROGRAMMABLE_IRGM leave this func-
tion unedited. Again this function is hardware specific so there’s no example code.

Return value

The function returns zero on success or -ENODEVon failure

File

src/template.c

33

template_write_register

template_write_register — Low level write register routine
Synopsis

void template_write_register (unsigned char data , unsigned long address);
Arguments

data

data to be written
address

memory address to write to

Description

The function template_write_register is used to write to hardware registers on the
CAN chip. You should only have to edit this function if your hardware uses some specific
write process.

Return Value

The function does not return a value

File

src/template.c

34

template_read_register

template_read_register — Low level read register routine
Synopsis

unsigned template_read_register (unsigned long address);
Arguments

address

memory address to read from

Description

The function template_read_register is used to read from hardware registers on
the CAN chip. You should only have to edit this function if your hardware uses some
specific read process.

Return Value

The function returns the value stored in address

File

src/template.c

35

2.5.3. Chip Support Functions

The controller chip specific functions are described in the next section. The functions
should be prefixed by chip type. Because documentation of chip functions has been re-
trieved from the actual SJA1000 PeliCAN support, the function prefix is sjal000p .

sjal000p_enable_configuration

sjal000p_enable_configuration — enable chip configuration mode
Synopsis

int sjal000p_enable_configuration (struct chip_t * chip);

Arguments

chip

pointer to chip state structure

36

sjal000p_disable_configuration

sjal000p_disable_configuration — disable chip configuration mode
Synopsis

int sjal000p_disable_configuration (struct chip_t * chip);

Arguments

chip

pointer to chip state structure

37

sjal000p_chip_config

sja1000p_chip_config — can chip configuration
Synopsis

int sjal000p_chip_config (struct chip_t * chip);
Arguments

chip

pointer to chip state structure

Description

This function configures chip and prepares it for message transmission and reception.
The function resets chip, resets mask for acceptance of all messages by call to sjal000p_extended mask
function and then computes and sets baudrate with use of function sjal000p_baud_rate

Return Value

negative value reports error.

File
src/sjal000p.c

38

sjal000p_extended_mask

sjal000p_extended_mask — setup of extended mask for message filtering
Synopsis

int sjal000p_extended_mask (struct chip_t * chip , unsigned long code, unsigned long mask);
Arguments

chip

pointer to chip state structure
code

can message acceptance code
mask

can message acceptance mask

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_baud_rate

sjal000p_baud_rate — set communication parameters.
Synopsis
int sjal000p_baud_rate (struct chip_t * chip , int rate , int clock , int sjw, int samplpt , int flags);
Arguments
chip
pointer to chip state structure
rate
baud rate in Hz
clock
frequency of sja1000 clock in Hz (ISA osc is 14318000)
sjw
synchronization jump width (0-3) prescaled clock cycles
sampl_pt
sample point in % (0-100) sets (TSEG1+1)/(TSEG1+TSEG2+2) ratio
flags

fields BTR1._SAMOCMODECPOLOCTR OCTN CLK_OFF, CBP

Return Value

negative value reports error.

File
src/sjal000p.c

40

sjal000p_read

sjal000p_read — reads and distributes one or more received messages
Synopsis
void sjal000p_read (struct chip_t * chip , struct msgobj_t * obj);
Arguments
chip
pointer to chip state structure
obj
pinter to CAN message queue information
File
src/sjal000p.c

41

sjal000p_pre_read_config

sjal000p_pre_read_config — prepares message object for message reception
Synopsis

int sjal000p_pre_read_config (struct chip_t * chip , struct msgobj_t * obj);
Arguments

chip

pointer to chip state structure
obj

pointer to message object state structure

Return Value

negative value reports error. Positive value indicates immediate reception of message.

File
src/sjal000p.c

42

sjal000p_pre_write_config

sjal000p_pre_write_config — prepares message object for message transmission
Synopsis
int sjal000p_pre_write_config (struct chip_t * chip , struct msgobj_t * obj , struct canmsg_t * msg);
Arguments
chip
pointer to chip state structure
obj
pointer to message object state structure
msg
pointer to CAN message
Description

This function prepares selected message object for future initiation of message trans-
mission by sjal000p_send msg function. The CAN message data and message ID are
transfered from msg slot into chip buffer in this function.

Return Value

negative value reports error.

File
src/sjal000p.c

43

sjal000p_send_msg

sjal000p_send_msg — initiate message transmission

Synopsis

int sjal000p_send_msg (struct chip_t * chip , struct msgobj_t * obj , struct canmsg_t * msg);
Arguments

chip

pointer to chip state structure
obj

pointer to message object state structure
msg

pointer to CAN message

Description

This function is called after sjal000p_pre_ write_config function, which prepares
data in chip buffer.

Return Value

negative value reports error.

File
src/sjal000p.c

44

sjal000p_check_tx_stat

sjal000p_check_tx_stat — checks state of transmission engine
Synopsis

int sjal000p_check_tx_stat (struct chip_t * chip);

Arguments

chip

pointer to chip state structure

Return Value

negative value reports error. Positive return value indicates transmission under way
status. Zero value indicates finishing of all issued transmission requests.

File
src/sjal000p.c

45

sjal000p_set_btregs

sjal000p_set btregs

Synopsis

int sjal000p_set_btregs

Arguments
chip

— configures bitrate registers

(struct chip_t * chip , unsigned short

pointer to chip state structure

btrO

bitrate register 0
btrl

bitrate register 1

Return Value

negative value reports error.

File
src/sjal000p.c

btrO

, unsigned short

btrl);

46

sjal000p_start_chip

sjal000p_start_chip — starts chip message processing
Synopsis

int sjal000p_start_chip (struct chip_t * chip);

Arguments

chip

pointer to chip state structure

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_stop_chip

sjal000p_stop_chip — stops chip message processing
Synopsis

int sjal000p_stop_chip (struct chip_t * chip);
Arguments

chip

pointer to chip state structure

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_remote_request

sjal000p_remote_request — configures message object and asks for RTR message
Synopsis

int sjal000p_remote_request (struct chip_t * chip , struct msgobj_t * obj);

Arguments

chip

pointer to chip state structure
obj

pointer to message object structure

Return Value

negative value reports error.

File
src/sjal000p.c

49

sjal000p_standard_mask

sjal000p_standard_mask

Synopsis

int sjal000p_standard_mask

Arguments
chip

— setup of mask for message filtering

(struct chip_t * chip , unsigned short code, unsigned short

pointer to chip state structure

code

can message acceptance code

mask

can message acceptance mask

Return Value

negative value reports error.

File
src/sjal000p.c

mask);

50

sjal000p_clear_objects

sjal000p_clear_objects — clears state of all message object residing in chip
Synopsis

int sjal000p_clear_objects (struct chip_t * chip);

Arguments

chip

pointer to chip state structure

Return Value

negative value reports error.

File
src/sjal000p.c

51

sjal000p_config_irqs

sjal000p_config_irgs — tunes chip hardware interrupt delivery
Synopsis

int sjal000p_config_irgs (struct chip_t * chip , short irgs);
Arguments

chip

pointer to chip state structure
irgs

requested chip IRQ configuration

Return Value

negative value reports error.

File
src/sjal000p.c

sjal000p_irq_write_handler

sjal000p_irg_write_handler — part of ISR code responsible for transmit events
Synopsis
void sjal000p_irg_write_handler (struct chip_t * chip , struct msgobj_t * obj);
Arguments
chip
pointer to chip state structure
obj
pointer to attached queue description
Description

The main purpose of this function is to read message from attached queues and transfer
message contents into CAN controller chip. This subroutine is called by sjal000p_irq_write_handler
for transmit events.

File
src/sjal000p.c

53

sjal000p_irq_handler

sjal000p_irg_handler — interrupt service routine

Synopsis

can_irgreturn_t sja1000p_irg_handler (int irg , void * dev_id , struct pt_regs * regs);
Arguments

irq

interrupt vector number, this value is system specific
dev_id

driver private pointer registered at time of request_irq call. The CAN driver uses
this pointer to store relationship of interrupt to chip state structure - struct chip_t

regs

system dependent value pointing to registers stored in exception frame

Description

Interrupt handler is activated when state of CAN controller chip changes, there is mes-
sage to be read or there is more space for new messages or error occurs. The receive
events results in reading of the message from CAN controller chip and distribution of
message through attached message queues.

File
src/sjal000p.c

54

sjal000p_wakeup_tx

sjal000p_wakeup_tx

Synopsis

int sjal000p_wakeup_tx

Arguments
chip

— wakeups TX processing

(struct chip_t * chip , struct msgobj_t *

pointer to chip state structure

obj

pointer to message object structure

Return Value

negative value reports error.

File
src/sjal000p.c

obj);

55

2.5.4. CAN Queues Common Structures and Functions

This part of the driver implements basic CAN queues infrastructure. It is written as
much generic as possible and then specialization for each category of CAN queues clients
is implemented in separate subsystem. The only synchronization mechanism required
from target system are spin-lock synchronization and atomic bit manipulation. Locked
sections are narrowed to the short operations. Even can message 8 bytes movement is
excluded from the locked sections of the code.

struct canque_slot_t
struct canque_slot t — one CAN message slot in the CAN FIFO queue

Synopsis
struct canque_slot_t {
struct canque_slot_t * next;
unsigned long slot_flags;

struct canmsg_t msg;

I8

Members

next

pointer to the next/younger slot
slot_flags

space for flags and optional command describing action associated with slot data
msg

space for one CAN message

Description
This structure is used to store CAN messages in the CAN FIFO queue.

56

struct canque_fifo_t

struct canque_fifo_t — CAN FIFO queue representation

Synopsis

struct canque_fifo_t {
unsigned long fifo_flags;
unsigned long error_code;
struct canque_slot_t * head;
struct canque_slot_t ** tail;
struct canque_slot_t * flist;
struct canque_slot_t * entry;
can_spinlock_t fifo_lock;
int slotsnr;

Members

fifo_flags

this field holds global flags describing state of the FIFO. CAN_FIFOF_ERRORs
set when some error condition occurs. CAN_FIFOF_ERR2BLOCHefines, that error
should lead to the FIFO block state. CAN_FIFOF BLOCKstate blocks insertion of
the next messages. CAN_FIFOF_OVERRUMNttempt to acquire new slot, when FIFO
is full. CAN_FIFOF_FULLindicates FIFO full state. CAN_FIFOF_EMPT\indicates no
allocated slot in the FIFO. CAN_FIFOF_DEADxondition indication. Used when FIFO
is beeing destroyed.

error_code

futher description of error condition
head
pointer to the FIFO head, oldest slot
tail
pointer to the location, where pointer to newly inserted slot should be added
flist
pointer to list of the free slots associated with queue
entry

pointer to the memory allocated for the list slots.
fifo_lock

the lock to ensure atomicity of slot manipulation operations.

slotsnr

number of allocated slots
Description

This structure represents CAN FIFO queue. It is implemented as a single linked list of
slots prepared for processing. The empty slots are stored in single linked list (flist).

57

canque_fifo_get_inslot

canque_fifo_get_inslot — allocate slot for the input of one CAN message
Synopsis

int canque_fifo_get_inslot (struct canque_fifo_t * fifo , struct canque_slot_t ** slotp , int cmd);
Arguments

fifo

pointer to the FIFO structure
slotp

pointer to location to store pointer to the allocated slot.
cmd

optional command associated with allocated slot.

Return Value

The function returns negative value if there is no free slot in the FIFO queue.

58

canque_fifo_put_inslot

canque_fifo_put_inslot — releases slot to further processing
Synopsis

int canque_fifo_put_inslot (struct canque_fifo_t * fifo , struct canque_slot_t *
Arguments

fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_get inslot

Return Value

slot);

The nonzero return value indicates, that the queue was empty before call to the function.

The caller should wake-up output side of the queue.

59

canque_fifo_abort_inslot

canque_fifo_abort_inslot — release and abort slot

Synopsis

int canque_fifo_abort_inslot (struct canque_fifo_t * fifo , struct canque_slot t *
Arguments

fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_get inslot

Return Value

The nonzero value indicates, that fifo was full

slot);

60

canque_fifo_test_outslot

canque_fifo_test_outslot — test and get ready slot from the FIFO
Synopsis

int canque_fifo_test_outslot (struct canque_fifo_t * fifo , struct canque_slot_t ** slotp);
Arguments

fifo

pointer to the FIFO structure
slotp

pointer to location to store pointer to the oldest slot from the FIFO.

Return Value

The negative value indicates, that queue is empty. The positive or zero value represents
command stored into slot by the call to the function canque_fifo_get_inslot . The
successfully acquired FIFO output slot has to be released by the call canque_fifo_free_outslot
or canque_fifo_again_outslot

61

canque_fifo_free_outslot

canque_fifo_free outslot — free processed FIFO slot

Synopsis

int canque_fifo_free_outslot (struct canque_fifo_t * fifo , struct canque_slot t * slot);
Arguments

fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_test outslot

Return Value

The returned value informs about FIFO state change. The mask CAN_FIFOF_FULL in-
dicates, that the FIFO was full before the function call. The mask CAN_FIFOF_EMPTY
informs, that last ready slot has been processed.

62

canque_fifo_again_outslot

canque_fifo_again_outslot — interrupt and postpone processing of the slot
Synopsis

int canque_fifo_again_outslot (struct canque_fifo_t * fifo , struct canque_slot t * slot);
Arguments

fifo

pointer to the FIFO structure
slot

pointer to the slot previously acquired by canque_fifo_test outslot

Return Value

The function cannot fail..

63

struct canque_edge_t

struct canque_edge t — CAN message delivery subsystem graph edge

Synopsis

struct canque_edge_t {
struct canque_fifo_t fifo;
unsigned long filtid;
unsigned long filtmask;
struct list_head inpeers;
struct list_head outpeers;
struct list_head activepeers;
struct canque_ends_t * inends;
struct canque_ends_t * outends;
atomic_t edge_used;
int edge_prio;
int edge_num;
#ifdef CAN_WITH_RTLstruct list_head pending_peers;
unsigned long pending_inops;
unsigned long pending_outops;

Members
fifo

place where primitive struct canque_fifo_t FIFO is located.
filtid

the possible CAN message identifiers filter.
filtmask

the filter mask, the comparison considers only filtid bits corresponding to set

bits in the filtmask field.
inpeers

the lists of all peers FIFOs connected by their input side (inends) to the same
terminal (struct canque_ends_t).

outpeers

the lists of all peers FIFOs connected by their output side (outends) to the same
terminal (struct canque_ends_t).

activepeers

the lists of peers FIFOs connected by their output side (outends) to the same
terminal (struct canque_ends_t) with same priority and active state.

inends

the pointer to the FIFO input side terminal (struct canque_ends_t).
outends

the pointer to the FIFO output side terminal (struct canque_ends_t).
edge_used

the atomic usage counter, mainly used for safe destruction of the edge.
edge_prio

the assigned queue priority from the range 0 to CANQUEUE_PRIO_NR-1
edge_num

edge sequential number intended for debugging purposes only
pending_peers

edges with pending delayed events (RTL->Linux calls)

64

struct canque_edge_t

pending_inops
bitmask of pending operations
pending_outops

bitmask of pending operations

Description

This structure represents one direction connection from messages source (inends) to
message consumer (outends) fifo ends hub. The edge contains &struct canque_fifo_t for
message fifo implementation.

OCERA. IST 35102 65

struct canque_ends_t

struct canque_ends_t — CAN message delivery subsystem graph vertex (FIFO
ends)

Synopsis

struct canque_ends_t {
unsigned long ends_flags;
struct list_head * active;
struct list_head idle;
struct list_head inlist;
struct list_head outlist;
can_spinlock_t ends_lock;
void (* notify (struct canque_ends_t *gends, struct canque_edge_t *gedge, int what);
void * context;
union endinfo;
struct list_head dead_peers;

Members

ends_flags
this field holds flags describing state of the ENDS structure.
active
the array of the lists of active edges directed to the ends structure with ready
messages. The array is indexed by the edges priorities.
idle
the list of the edges directed to the ends structure with empty FIFOs.
inlist
the list of outgoing edges input sides.
outlist
the list of all incoming edges output sides. Each of there edges is listed on one of
active oridle lists.
ends_lock
the lock synchronizing operations between threads accessing same ends structure.
notify
pointer to notify procedure. The next state changes are notified. CANQUEUE_NOTIFY_EMPTY
(out->in call) - all slots are processed by FIFO out side. CANQUEUE_NOTIFY_SPACE
(out->in call) - full state negated => there is space for new message. CANQUEUE_NOTIFY_PROC
(in->out call) - empty state negated => out side is requested to process slots. CANQUEUE_NOTIFY_N
(both) - notify, that the last user has released the edge usage called with some lock
to prevent edge disappear. CANQUEUE_NOTIFY_DEAoth) - edge is in progress
of deletion. CANQUEUE_NOTIFY_ATAQHoth) - new edge has been attached to end.

CANQUEUE_NOTIFY_FILTCKbut->in call) - edge filter rules changed CANQUEUE_NOTIFY_ERROR
(out->in call) - error in messages processing.

context

space to store ends user specific information
endinfo

space to store some other ends usage specific informations mainly for waking-up by
the notify calls.

dead_peers

used to chain ends wanting for postponed destruction

66

struct canque_ends_t

Description

Structure represents place to connect edges to for CAN communication entity. The zero,
one or more incoming and outgoing edges can be connected to this structure.

OCERA. IST 35102 67

canque_notify_inends

canque_notify_inends — request to send notification to the input ends
Synopsis

void canque_notify_inends (struct canque_edge_t * gedge, int what);
Arguments

gedge

pointer to the edge structure
what

notification type

68

canque_notify_outends

canque_notify_outends — request to send notification to the output ends
Synopsis

void canque_notify_outends (struct canque_edge_t * gedge, int what);
Arguments

gedge

pointer to the edge structure
what

notification type

69

canque_notify_bothends

canque_notify _bothends — request to send notification to the both ends
Synopsis

void canque_notify_bothends (struct canque_edge_t * gedge, int what);
Arguments

gedge

pointer to the edge structure
what

notification type

70

canque_activate_edge

canque_activate_edge — mark output end of the edge as active
Synopsis

void canque_activate_edge (struct canque_ends_t * inends , struct canque_edge_t *
Arguments

inends

input side of the edge
gedge

pointer to the edge structure

Description

Function call moves output side of the edge from idle onto active edges list.

gedge);

71

canque_filtid2internal

canque_filtid2internal — converts message ID and filter flags into internal
format

Synopsis

unsigned int canque_filtid2internal (unsigned long id , int filtflags);

Arguments
id

CAN message 11 or 29 bit identifier
filtflags

CAN message flags

Description

This function maps message ID and MSG_RTRMSG_EXTand MSG_LOCAIlnto one 32 bit
number

72

canque_fifo_flush_slots

canque_fifo_flush_slots — free all ready slots from the FIFO
Synopsis

int canque_fifo_flush_slots (struct canque_fifo_t * fifo);
Arguments

fifo

pointer to the FIFO structure

Description

The caller should be prepared to handle situations, when some slots are held by input
or output side slots processing. These slots cannot be flushed or their processing inter-
rupted.

Return Value

The nonzero value indicates, that queue has not been empty before the function call.

73

canque_fifo_init_slots

canque_fifo_init_slots — initializes slot chain of one CAN FIFO
Synopsis

int canque_fifo_init_slots (struct canque_fifo_t * fifo);

Arguments

fifo

pointer to the FIFO structure

Return Value

The negative value indicates, that there is no memory to allocate space for the requested
number of the slots.

74

canque_get_inslot

canque_get_inslot — finds one outgoing edge and allocates slot from it
Synopsis
int canque_get_inslot (struct canque_ends_t * gends, struct canque_edge_t ** gedgep, struct canque_slot_t

** slotp , int cmd);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot
Description
Function looks for the first non-blocked outgoing edge in qends structure and tries to

allocate slot from it.

Return Value

If there is no usable edge or there is no free slot in edge negative value is returned.

75

canque_get_inslot4id

canque_get_inslot4id — finds best outgoing edge and slot for given ID
Synopsis

int canque_get_inslot4id (struct canque_ends_t * gends, struct canque_edge_t ** gedgep, struct
canque_slot_t ** slotp , int cmd, unsigned long id, int prio);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot

communication ID of message to send into edge
prio

optional priority of message

Description

Function looks for the non-blocked outgoing edge accepting messages with given ID. If
edge is found, slot is allocated from that edge. The edges with non-zero mask are pre-
ferred over edges open to all messages. If more edges with mask accepts given message
ID, the edge with highest priority below or equal to required priority is selected.

Return Value

If there is no usable edge or there is no free slot in edge negative value is returned.

76

canque_put_inslot

canque_put_inslot — schedules filled slot for processing

Synopsis

int canque_put_inslot (struct canque_ends_t * gends, struct canque_edge_t * gedge, struct canque_slot_t
* slot);

Arguments

gends

ends structure belonging to calling communication object
gedge

edge slot belong to
slot

pointer to the prepared slot
Description
Puts slot previously acquired by canque_get_inslot or canque_get_inslot4id func-

tion call into FIFO queue and activates edge processing if needed.

Return Value

Positive value informs, that activation of output end has been necessary

77

canque_abort_inslot

canque_abort_inslot — aborts preparation of the message in the slot

Synopsis

int canque_abort_inslot (struct canque_ends_t * gends, struct canque_edge_t * gedge, struct canque_slot_t
* slot);

Arguments

gends

ends structure belonging to calling communication object
gedge

edge slot belong to
slot

pointer to the previously allocated slot
Description
Frees slot previously acquired by canque_get_inslot or canque_get inslot4id

function call. Used when message copying into slot fails.

Return Value

Positive value informs, that queue full state has been negated.

78

canque_filter_msg2edges

canque_filter_msg2edges — sends message into all edges which accept its ID
Synopsis

int canque_filter_msg2edges (struct canque_ends_t * gends, struct canmsg_t * msg);
Arguments

gends

ends structure belonging to calling communication object

msg

pointer to CAN message
Description
Sends message to all outgoing edges connected to the given ends, which accepts message

communication ID.

Return Value

Returns number of edges message has been send to

79

canque_test_outslot

canque_test_outslot — test and retrieve ready slot for given ends

Synopsis

int canque_test_outslot (struct canque_ends_t * gends, struct canque_edge_t ** gedgep, struct canque_slot_t
** slotp);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to received slot

Description

Function takes highest priority active incoming edge and retrieves oldest ready slot from
it.

Return Value

Negative value informs, that there is no ready output slot for given ends. Positive value
is equal to the command slot has been allocated by the input side.

80

canque_free_outslot

canque_free_outslot — frees processed output slot

Synopsis

int canque_free_outslot (struct canque_ends_t * gends, struct canque_edge_t * gedge, struct canque_slot_t
* slot);

Arguments

gends

ends structure belonging to calling communication object
gedge

edge slot belong to
slot

pointer to the processed slot
Description
Function releases processed slot previously acquired by canque_test outslot func-

tion call.

Return Value

Return value informs if input side has been notified to know about change of edge state

81

canque_again_outslot

canque_again_outslot — reschedule output slot to process it again later

Synopsis

int canque_again_outslot (struct canque_ends_t * gends, struct canque_edge_t * gedge, struct canque_slot_t
* slot);

Arguments

gends

ends structure belonging to calling communication object
gedge

edge slot belong to
slot

pointer to the slot for re-processing
Description
Function reschedules slot previously acquired by canque_test_outslot function call

for second time processing.

Return Value

Function cannot fail.

82

canque_set_filt

canque_set filt — sets filter for specified edge
Synopsis
int canque_set_filt (struct canque_edge_t * gedge, unsigned long filtid

int filtflags);

Arguments

gedge

pointer to the edge
filtid

ID to set for the edge
filtmask

mask used for ID match check
filtflags

required filer flags

Return Value

Negative value is returned if edge is in the process of delete.

, unsigned long

filtmask

83

canque_flush

canque_flush — fluesh all ready slots in the edge
Synopsis

int canque_flush (struct canque_edge_t * gedge);
Arguments

gedge

pointer to the edge

Description

Tries to flush all allocated slots from the edge, but there could exist some slots associ-
ated to edge which are processed by input or output side and cannot be flushed at this
moment.

Return Value

The nonzero value indicates, that queue has not been empty before the function call.

84

canqueue_ends_init_gen

canqueue_ends_init_gen — subsystem independent routine to initialize ends state
Synopsis

int canqueue_ends_init_gen (struct canque_ends_t * gends);

Arguments

gends

pointer to the ends structure

Return Value

Cannot fail.

85

canqueue_connect_edge

canqueue_connect_edge — connect edge between two communication entities
Synopsis
int canqueue_connect_edge (struct canque_edge_t * gedge, struct canque_ends_t * inends

canque_ends_t * outends);

Arguments
gedge

pointer to edge
inends

pointer to ends the input of the edge should be connected to
outends

pointer to ends the output of the edge should be connected to

Return Value

Negative value informs about failed operation.

struct

86

canqueue_disconnect_edge

canqueue_disconnect_edge — disconnect edge from communicating entities
Synopsis

int canqueue_disconnect_edge (struct canque_edge_t * gedge);

Arguments

gedge

pointer to edge
Return Value

Negative value means, that edge is used by somebody other and cannot be disconnected.
Operation has to be delayed.

87

canqueue_block_inlist

canqueue_block_inlist — block slot allocation of all outgoing edges of specified
ends

Synopsis

void canqueue_block_inlist (struct canque_ends_t * gends);

Arguments

gends

pointer to ends structure

canqueue_block_outlist

canqueue_block_outlist — block slot allocation of all incoming edges of specified
ends

Synopsis

void canqueue_block_outlist (struct canque_ends_t * gends);

Arguments

gends

pointer to ends structure

89

canqueue_ends_Kkill_inlist

canqueue_ends_Kkill_inlist — sends request to die to all outgoing edges
Synopsis

int canqueue_ends_Kkill_inlist (struct canque_ends_t * gends, int send_rest);
Arguments

gends

pointer to ends structure
send_rest

select, whether already allocated slots should be processed by FIFO output side
Return Value

Non-zero value means, that not all edges could be immediately disconnected and that
ends structure memory release has to be delayed

90

canqueue_ends_Kkill_outlist

canqueue_ends_Kkill_outlist — sends request to die to all incoming edges
Synopsis

int canqueue_ends_kill_outlist (struct canque_ends_t * gends);

Arguments

gends

pointer to ends structure
Return Value

Non-zero value means, that not all edges could be immediately disconnected and that
ends structure memory release has to be delayed

91

2.5.5. CAN Queues Kernel Specific Functions

canqueue_notify_kern

canqueue_notify_kern — notification callback handler for Linux userspace clients
Synopsis

void canqueue_notify_kern (struct canque_ends_t * gends, struct canque_edge_t * gedge, int what);
Arguments

gends

pointer to the callback side ends structure
gedge

edge which invoked notification
what

notification type

Description

The notification event is handled directly by call of this function except case, when called

from RT-Linux context in mixed mode Linux/RT-Linux compilation. It is not possible to

directly call Linux kernel synchronization primitives in such case. The notification re-

quest is postponed and signaled by pending_inops flags by call canqueue_rtl2lin_check and_pend
function. The edge reference count is increased until until all pending notifications are
processed.

92

canqueue_ends_init_kern

canqueue_ends_init_kern — Linux userspace clients specific ends initialization
Synopsis

int canqueue_ends_init_kern (struct canque_ends_t * gends);

Arguments

gends

pointer to the callback side ends structure

93

canque_get_inslot4id_wait_kern

canque_get_inslot4id_wait_kern — find or wait for best outgoing edge and slot
for given ID

Synopsis

int canque_get_inslot4id_wait_kern (struct canque_ends_t * gends, struct canque_edge_t ** gedgep ,
struct canque_slot_t ** slotp , int cmd, unsigned long id , int prio);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot

id
communication ID of message to send into edge
prio
optional priority of message
Description
Same as canque_get_inslot4id , except, that it waits for free slot in case, that queue

is full. Function is specific for Linux userspace clients.

Return Value

If there is no usable edge negative value is returned.

94

canque_get_outslot_wait_kern

canque_get_outslot_wait_kern — receive or wait for ready slot for given ends
Synopsis

int canque_get_outslot_wait_kern (struct canque_ends_t * gends, struct canque_edge_t ** gedgep ,
struct canque_slot_t ** slotp);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to received slot

Description

The same as canque_test_outslot , except it waits in the case, that there is no ready
slot for given ends. Function is specific for Linux userspace clients.

Return Value

Negative value informs, that there is no ready output slot for given ends. Positive value
is equal to the command slot has been allocated by the input side.

95

canque_sync_wait_kern

canque_sync_wait_kern — wait for all slots processing

Synopsis

int canque_sync_wait_kern (struct canque_ends_t * gends, struct canque_edge_t * gedge);
Arguments

gends

ends structure belonging to calling communication object
gedge

pointer to edge

Description

Functions waits for ends transition into empty state.
Return Value

Positive value indicates, that edge empty state has been reached. Negative or zero value
informs about interrupted wait or other problem.

96

canque_fifo_init_kern

canque_fifo_init_kern — initialize one CAN FIFO
Synopsis

int canque_fifo_init_kern (struct canque_fifo_t * fifo , int slotsnr);
Arguments

fifo

pointer to the FIFO structure
slotsnr

number of requested slots
Return Value

The negative value indicates, that there is no memory to allocate space for the requested
number of the slots.

97

canque_fifo_done_kern

canque_fifo_done_kern — frees slots allocated for CAN FIFO
Synopsis

int canque_fifo_done_kern (struct canque_fifo_t * fifo);
Arguments

fifo

pointer to the FIFO structure

canque_new_edge_kern

canque_new_edge_kern — allocate new edge structure in the Linux kernel context
Synopsis

struct canque_edge_t * canque_new_edge_kern (int slotsnr);

Arguments

slotsnr

required number of slots in the newly allocated edge structure
Return Value

Returns pointer to allocated slot structure or NULL if there is not enough memory to
process operation.

99

canqueue_ends_dispose_kern

canqueue_ends_dispose_kern — finalizing of the ends structure for Linux kernel
clients

Synopsis

int canqueue_ends_dispose_kern (struct canque_ends_t * gends, int sync);

Arguments

gends

pointer to ends structure
sync

flag indicating, that user wants to wait for processing of all remaining messages

Return Value

Function should be designed such way to not fail.

100

2.5.6. CAN Queues RT-Linux Specific Functions

canqueue_rtl2lin_check_and_pend

canqueue_rtl2lin_check_and_pend — postpones edge notification if called from
RT-Linux

Synopsis

int canqueue_rtl2lin_check_and_pend (struct canque_ends_t * gends, struct canque_edge_ t * gedge,
int what);

Arguments

gends

notification target ends
gedge

edge delivering notification

what

notification type

Return Value

if called from Linux context, returns 0 and lefts notification processing on caller re-
sponsibility. If called from RT-Linux contexts, schedules postponed event delivery and
returns 1

101

canque_get_inslot4id_wait_rtl

canque_get_inslot4id_wait_rtl — find or wait for best outgoing edge and slot for
given ID

Synopsis

int canque_get_inslot4id_wait_rtl (struct canque_ends_t * gends, struct canque_edge_t ** gedgep ,
struct canque_slot_t ** slotp , int cmd, unsigned long id , int prio);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to allocated slot
cmd

command type for slot

id
communication ID of message to send into edge
prio
optional priority of message
Description
Same as canque_get_inslot4id , except, that it waits for free slot in case, that queue

is full. Function is specific for Linux userspace clients.

Return Value

If there is no usable edge negative value is returned.

102

canque_get_outslot_wait_rtl

canque_get_outslot_wait_rtl — receive or wait for ready slot for given ends

Synopsis

int canque_get_outslot_wait_rtl (struct canque_ends_t * gends, struct canque_edge_t ** gedgep ,
struct canque_slot_t ** slotp);

Arguments

gends

ends structure belonging to calling communication object
gedgep

place to store pointer to found edge
slotp

place to store pointer to received slot

Description

The same as canque_test_outslot , except it waits in the case, that there is no ready
slot for given ends. Function is specific for Linux userspace clients.

Return Value

Negative value informs, that there is no ready output slot for given ends. Positive value
is equal to the command slot has been allocated by the input side.

103

canque_sync_wait_rtl

canque_sync_wait_rtl — wait for all slots processing

Synopsis

int canque_sync_wait_rtl (struct canque_ends_t * gends, struct canque_edge_t * gedge);
Arguments

gends

ends structure belonging to calling communication object
gedge

pointer to edge

Description

Functions waits for ends transition into empty state.
Return Value

Positive value indicates, that edge empty state has been reached. Negative or zero value
informs about interrupted wait or other problem.

104

canque_fifo_init_rtl

canque_fifo_init_rtl — initialize one CAN FIFO
Synopsis

int canque_fifo_init_rtl (struct canque_fifo_t * fifo , int slotsnr);
Arguments

fifo

pointer to the FIFO structure
slotsnr

number of requested slots
Return Value

The negative value indicates, that there is no memory to allocate space for the requested
number of the slots.

105

canque_fifo_done_rtl

canque_fifo_done_rtl — frees slots allocated for CAN FIFO
Synopsis

int canque_fifo_done_rtl (struct canque_fifo_t * fifo);
Arguments

fifo

pointer to the FIFO structure

106

canque_new_edge_rtl

canque_new_edge_rtl — allocate new edge structure in the RT-Linux context
Synopsis

struct canque_edge_t * canque_new_edge_rtl (int slotsnr);

Arguments

slotsnr

required number of slots in the newly allocated edge structure
Return Value

Returns pointer to allocated slot structure or NULL if there is not enough memory to
process operation.

107

canqueue_notify_rtl

canqueue_notify_rtl — notification callback handler for Linux userspace clients
Synopsis

void canqueue_notify_rtl (struct canque_ends_t * gends, struct canque_edge_t * gedge, int what);
Arguments

gends

pointer to the callback side ends structure
gedge
edge which invoked notification

what

notification type

108

canqueue_ends_init_rtl

canqueue_ends_init_rtl — RT-Linux clients specific ends initialization
Synopsis

int canqueue_ends_init_rtl (struct canque_ends_t * gends);

Arguments

gends

pointer to the callback side ends structure

109

canqueue_ends_dispose_rtl

canqueue_ends_dispose_rtl — finalizing of the ends structure for Linux kernel
clients

Synopsis

int canqueue_ends_dispose_rtl (struct canque_ends_t * gends, int sync);

Arguments

gends

pointer to ends structure
sync

flag indicating, that user wants to wait for processing of all remaining messages

Return Value

Function should be designed such way to not fail.

110

canqueue_rtl_initialize

canqueue_rtl_initialize — initialization of global RT-Linux specific features
Synopsis

void canqueue_rtl_initialize (void);

Arguments
void

no arguments

111

canqueue_rtl_done

canqueue_rtl_done — finalization of glopal RT-Linux specific features
Synopsis

void canqueue_rtl_done (void);

Arguments

void

no arguments

112

2.5.7. CAN Queues CAN Chips Specific Functions

canqueue_notify_chip

canqueue_notify_chip — notification callback handler for CAN chips ends of queues
Synopsis

void canqueue_notify_chip (struct canque_ends_t * gends, struct canque_edge_t * gedge, int what);
Arguments

gends

pointer to the callback side ends structure
gedge

edge which invoked notification
what

notification type

Description

This function has to deal with more possible cases. It can be called from the kernel or
interrupt context for Linux only compilation of driver. The function can be called from
kernel context or RT-Linux thread context for mixed mode Linux/RT-Linux compilation.

113

canqueue_ends_init_chip

canqueue_ends_init_chip — CAN chip specific ends initialization

Synopsis

int canqueue_ends_init_chip (struct canque_ends_t * gends, struct chip_t * chip , struct msgobj_t
* obj);

Arguments

gends

pointer to the ends structure
chip

pointer to the corresponding CAN chip structure
obj

pointer to the corresponding message object structure

114

canqueue_ends_done_chip

canqueue_ends_done_chip — finalizing of the ends structure for CAN chips
Synopsis

int canqueue_ends_done_chip (struct canque_ends_t * gends);

Arguments

gends

pointer to ends structure

Return Value

Function should be designed such way to not fail.

115

2.5.8. CAN Boards and Chip Setup specific Functions

can_checked_malloc

can_checked _malloc — memory allocation with registering of requested blocks
Synopsis

void * can_checked_malloc (size_t size);

Arguments

size

size of the requested block
Description
The function is used in the driver initialization phase to catch possible memory leaks

for future driver finalization or case, that driver initialization fail.

Return Value

pointer to the allocated memory or NULL in the case of fail

116

can_checked_free

can_checked_free = — free memory allocated by can_checked_malloc
Synopsis

int can_checked_free (void * address_p);

Arguments

address_p

pointer to the memory block

117

can_del_mem_list

can_del_mem_list — check for stale memory allocations at driver finalization
Synopsis

int can_del_mem_list (void);

Arguments

void

no arguments

Description

Checks, if there are still some memory blocks allocated and releases memory occupied
by such blocks back to the system

118

can_request_io_region

can_request_io_region — request 10 space region

Synopsis

int can_request_io_region (unsigned long start , unsigned long n, const char * name);

Arguments

start
the first IO port address

number of the consecutive 10 port addresses
name

name/label for the requested region

Description

The function hides system specific implementation of the feature.

Return Value

returns positive value (1) in the case, that region could be reserved for the driver. Re-
turns zero (0) if there is collision with other driver or region cannot be taken for some
other reason.

119

can_release_io_region

can_release_io_region — release 10 space region

Synopsis

void can_release_io_region (unsigned long start , unsigned long n);

Arguments

start
the first IO port address

number of the consecutive 10 port addresses

120

can_request_mem_region

can_request_mem_region = — request memory space region

Synopsis

int can_request_mem_region (unsigned long start , unsigned long n, const char * name);
Arguments

start

the first memory port physical address

number of the consecutive memory port addresses
name

name/label for the requested region

Description

The function hides system specific implementation of the feature.

Return Value

returns positive value (1) in the case, that region could be reserved for the driver. Re-
turns zero (0) if there is collision with other driver or region cannot be taken for some
other reason.

121

can_release_mem_region

can_release_mem_region — release memory space region
Synopsis

void can_release_mem_region (unsigned long start , unsigned long n);
Arguments

start

the first memory port physical address

number of the consecutive memory port addresses

122

can_base_addr_fixup

can_base_addr_fixup — relocates board physical memory addresses to the CPU
accessible ones

Synopsis

int can_base_addr_fixup (struct candevice_t * candev , unsigned long new_base);

Arguments

candev

pointer to the previously filled device/board, chips and message objects structures
new_base

candev new base address

Description

This function adapts base addresses of all structures of one board to the new board base
address. It is required for translation between physical and virtual address mappings.
This function is prepared to simplify board specific xxx_request_io function for mem-
ory mapped devices.

123

register_obj_struct

register_obj_struct — registers message object into global array
Synopsis

int register_obj_struct (struct msgobj_t * obj , int minorbase);
Arguments

obj

the initialized message object being registered
minorbase

wanted minor number, if (-1) automatically selected

Return Value

returns negative number in the case of fail

124

register_chip_struct

register_chip_struct — registers chip into global array
Synopsis

int register_chip_struct (struct chip_t * chip , int minorbase);
Arguments

chip

the initialized chip structure being registered
minorbase

wanted minor number base, if (-1) automatically selected

Return Value

returns negative number in the case of fail

125

init_hw_struct

init_hw_struct — initializes driver hardware description structures
Synopsis

int init_hw_struct (void);

Arguments

void

no arguments

Description

The function init_hw_struct is used to initialize the hardware structure.

Return Value

returns negative number in the case of fail

126

init_device_struct

init_device_struct — initializes single CAN device/board

Synopsis

int init_device_struct (int card , int * chan_param_idx_p , int * irq_param_idx_p);
Arguments

card

index into hardware_p HW description
chan_param_idx_p

pointer to the index into arrays of the CAN channel parameters
irg_param_idx_p

pointer to the index into arrays of the per CAN channel IRQ parameters

Description

The function builds representation of the one board from parameters provided

in the module parameters arrays

hw[card] .. hardware type, i0 [card] .. base IO address, baudrate [chan_param_idx].. per
channel baudrate, minor [chan_param_idx] .. optional specification of requested channel
minor base, irq [irq_param_idx] .. one or more board/chips IRQ parameters. The indexes
are advanced after consumed parameters if the registration is successful.

The hardware specific operations of the device/board are initialized by call to init_hwspecops
function. Then board data are initialized by board specific init_hw_data function.
Then chips and objects representation is build by init_chip_struct function. If all
above steps are successful, chips and message objects are registered into global arrays.

Return Value

returns negative number in the case of fail

127

init_chip_struct

init_chip_struct — initializes one CAN chip structure

Synopsis

int init_chip_struct (struct candevice_t * candev , int chipnr , int irg , long baudrate);
Arguments

candev

pointer to the corresponding CAN device/board
chipnr

index of the chip in the corresponding device/board structure
irq

chip IRQ number or (-1) if not appropriate

baudrate

baudrate in the units of 1Bd

Description

Chip structure is allocated and chip specific operations are filled by call to board specific
init_chip_data function and generic init_chipspecops function. The message ob-
jects are generated by calls to init_obj_struct function.

Return Value

returns negative number in the case of fail

128

init_obj_struct

init_obj_struct — initializes one CAN message object structure

Synopsis

int init_obj_struct (struct candevice_t * candev , struct chip_t * hostchip , int objnr);
Arguments

candev

pointer to the corresponding CAN device/board
hostchip

pointer to the chip containing this object
objnr
index of the builded object in the chip structure
Description
The function initializes message object structure and allocates and initializes CAN queue

chip ends structure.

Return Value

returns negative number in the case of fail

129

init_hwspecops

init_hwspecops — finds and initializes board/device specific operations
Synopsis

int init_hwspecops (struct candevice_t * candev , int * irgnum_p);
Arguments

candev

pointer to the corresponding CAN device/board
irgnum_p
optional pointer to the number of interrupts required by board
Description
The function searches board hwname in the list of supported boards types. The board

type specific board_register function is used to initialize hwspecops operations.

Return Value

returns negative number in the case of fail

130

init_chipspecops

init_chipspecops — fills chip specific operations for board for known chip types
Synopsis

int init_chipspecops (struct candevice_t * candev , int chipnr);

Arguments

candev

pointer to the corresponding CAN device/board
chipnr

index of the chip in the device/board structure

Description

The function fills chip specific operations for next known generic chip types “i82527”,
“sja1000”, “sja1000p” (PeliCAN). Other non generic chip types operations has to be ini-
tialized in the board specific init_chip_data function.

Return Value

returns negative number in the case of fail

131

can_chip_setup_irq

can_chip_setup_irq — attaches chip to the system interrupt processing
Synopsis

int can_chip_setup_irq (struct chip_t * chip);

Arguments

chip

pointer to CAN chip structure

Return Value

returns negative number in the case of fail

132

can_chip_free_irq

can_chip_free_irq — unregisters chip interrupt handler from the system
Synopsis

void can_chip_free_irq (struct chip_t * chip);

Arguments

chip

pointer to CAN chip structure

133

2.5.9. CAN Boards and Chip Finalization Functions

msgobj_done

msgobj_done — destroys one CAN message object

Synopsis

void msgobj_done (struct msgobj_t * obj);
Arguments

obj

pointer to CAN message object structure

134

canchip_done

canchip_done — destroys one CAN chip representation
Synopsis

void canchip_done (struct chip_t * chip);

Arguments

chip

pointer to CAN chip structure

135

candevice_done

candevice_done — destroys representation of one CAN device/board
Synopsis

void candevice_done (struct candevice_t * candev);

Arguments

candev

pointer to CAN device/board structure

136

canhardware_done

canhardware_done — destroys representation of all CAN devices/boards
Synopsis

void canhardware_done (struct canhardware_t * canhw);

Arguments

canhw

pointer to the root of all CAN hardware representation

137

Chapter 2. LinCAN Driver Description

2.6. LinCAN Usage Information

2.6.1. Installation Prerequisites

The next basic conditions are necessary for the LinCAN driver usage

» some of supported types of CAN interface boards (high or low speed). Not required for
virtual board setup.

 cables and at least one device compatible with the board or the second computer with
an another CAN interface board. Not required for virtual board setup. Even more
clients can communicate each with another if process local is enabled for real chip
driver.

» working Linux system with any recent 2.6.x, 2.4.x or 2.2.x kernel (successfully tested
on 2.4.18,2.4.22,2.2.19, 2.2.20, 2.2.22, 2.6.0 kernels) or working setup for kernel cross-
compilation

+ installed native and or target specific development tools (GCC and binutils) and pre-
configured kernel sources corresponding to the running kernel or intended target for
cross-compilation

Every non-archaic Linux distribution should provide good starting point for the LinCAN
driver installation.

If mixed mode compilation for Linux/RT-Linux is required, additional conditions has to
be fulfilled:

e RT-Linux version 3.2 or higher is required and RT-Linux enabled Linux kernel sources
and configuration has to be prepared. The recommended is use of OCERA Linux/RT-
Linux release (http://www.ocera.org).

e RT-Linux real-time malloc support. It is already included in the OCERA release. It
can be downloaded from OCERA web site for older RT-Linux releases as well (http://www.ocera.org/dov

The RT-Linux specific Makefiles infrastructure is not distributed with the current stan-
dard LinCAN distribution yet. Please, download full OCERA-CAN package or retrieve
sources from CVS by next command:

cvs -d:pserver:anonymous@ecvs.ocera.sourceforge.net:/cvsroot/ocera login
cvs -z3 -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera co ocera/components/comm/can

2.6.2. Quick Installation Instructions

Change current directory into the LinCAN driver source root directory
cd lincan-dir
invoke make utility. Just type ‘'make’ at the command line and driver should compile

without errors
make

If there is problem with compilation, look at first lines produced by ‘'make’ command or
store make output in file. More about possible problems and more complex compilation
examples is in the next subsection.

Install built LinCAN driver object file (can.o) into Linux kernel loadable module di-
rectory (/lib/modules/2. x. ylkernel/drivers/char). This and next commands
needs root privileges to proceed successfully.

make install

OCERA. IST 35102 138

Chapter 2. LinCAN Driver Description

If device filesystem (devfs) is not used on the computer, device nodes have to be created
manually.

mknod -m666 /dev/canO0 ¢ 91 0
mknod -m666 /dev/canl ¢ 91 1

mknod -m666 /dev/can7 ¢ 97 7

The parameters, IO address and interrupt line of inserted CAN interface card need to be
determined and configured. The manual driver load can be invoked from the command
line with parameters similar to example below

insmod can.o hw=pip5 irqg=4 i0=0x8000

This commands loads module with selected one card support for PIP5 board type with
IO port base address 0x8000 and interrupt line 4. The full description of module pa-
rameters is in the next subsection. If module starts correctly utilities from utils subdi-
rectory can be used to test CAN message interchange with device or another computer.
The parameters should be written into file /etc/modules.conf for subsequent mod-
ule startup by modprobe command.

Line added to file /etc/modules.conf follows
options can hw=pip5 irg=4 i0=0x8000

The module dependencies should be updated by command
depmod -a

The driver can be now stopped and started by simple modprobe command
modprobe -r can modprobe can

2.6.3. Installation instructions

The LinCAN make solutions tries to fully automate native kernel out of tree module
compilation. Make system recurses through kernel Makefile to achieve selection of
right preprocessor, compiler and linker directives. The description of make targets after
make invocation in driver top directory follows

lincan-drv/Makefile (all)

LinCAN driver top makefile
lincan-drv/src/Makefile (default or all -> make_this_module)

Needs to resolve target system kernel sources location. This can be selected manu-
ally by uncommenting the Makefile definition KERNEL_LOCATION=/usr/src/linux-
2.2.22. The default behavior is to find the running kernel version and look for path

to sources of found kernel version in /lib/modules/2. X.y/build directory. If
no such directory exists, older version of kernel is assumed and makefile tries the
usr/src/linux directory.

lib/modules/2.x .y /build/Makefile SUBDIRS=.../lincan-drv/src (modules)

The kernel supplied Makefile is responsible for defining of right defines for pre-
processor, compiler and linker. If the Linux kernel is cross-compiled, Linux kernel
sources root Makefile needs be edited before Linux kernel compilation. The vari-
able CROSS_COMPILE should contain development tool-chain prefix, for exam-
ple arm-linux-. The Linux kernel make process recurses back into LinCAN driver
src/Makefile

OCERA. IST 35102 139

Chapter 2. LinCAN Driver Description

lincan-drv/src/Makefile (modules)
This pass starts real LinCAN driver build actions.

If there is problem with automatic build process, the next commands can help to diag-
nose the problem.

make clean make >make.out 2>&1

The first lines of file make.out indicates auto-detected values and can help with resolv-
ing of possible problems.

make -C src default ;

make -C utils default ;

make[1]: /scripts/pathdown.sh: Command not found

make[1]: Entering directory ‘/usr/src/can-0.7.1-pi3.4/src’

echo >.supported_cards.h echo \#define ENABLE_CARD_pip 1 >>.supported_cards.h ; ...
Linux kernel version 2.4.19

echo Linux kernel sources /lib/modules/2.4.19/build

Linux kernel sources /lib/modules/2.4.19/build

echo Module target can.o

Module target can.o

echo Module objects proc.o pip.o pccan.o smartcan.o nsi.o ...
make[2]: Entering directory ‘/usr/src/linux-2.4.19’

The driver size can be decreased by restricting of number of supported types of boards.
This can be done by editing of definition for SUPPORTED_CARDS variable.

There is complete description of driver supported parameters.

insmod can.o hw= ‘your hardware’ irg= 'irqg number’ io="io address’ <more options>

The more values can be specified for hw, irq and i0o parameters if more cards is used.
Values are separated by commas in such case. The hw argument can be one of:

» pip5 , for the pip5 computer by MPL

 pip6 , for the pip6 computer by MPL

e pccan-q , for the PCcan-Q ISA card by KVASER

e pccan-f | for the PCcan-F ISA card by KVASER

e pccan-s , for the PCcan-S ISA card by KVASER

» pccan-d , for the PCcan-D ISA card by KVASER

e pcican-q , for the PCIcan-Q PCI card by KVASER (4x SJA1000)

« pcican-d , for the PCIcan-D PCI card by KVASER (2x SJA1000)

« pcican-s , for the PCIcan-S PCI card by KVASER (1x SJA1000)

» nsican , for the CAN104 PC/104 card by NSI

e ccl04 , for the CAN104 PC/104 card by Contemporary Controls

« aim104 , for the AIM104CAN PC/104 card by Arcom Control Systems
e pc-i03 , for the PC-103 ISA card by IXXAT

» pcm3680, for the PCM-3680 PC/104 card by Advantech

» m437, for the M436 PC/104 card by SECO

« bfadcan for sjal000 CAN embedded card made by BFAD GmbH

» pikronisa for ISA memory mapped sjal000 CAN card made by PiIKRON Ltd.

» template , for yet unsupported hardware (you need to edit src/template.c)

OCERA. IST 35102 140

Chapter 2. LinCAN Driver Description

o virtual , virtual/dummy board support for testing of driver and software devices and
applications

The lists of values for board hardware type (hw) and board base IO address (io) pa-
rameters have to contain same number of values. If the value of io has no meaning for
specified hardware type (virtual or PCI board), it has to be substituted by 0.

The number of required irq values per board is variable. The virtual and PCI board
demands no value, most of the other boards requires one irq value per each chip/channel.

The <more options> can be one or more of:

e major =<nr> , major specifies the major number of the driver. Default value is 91

e minor =<nr> , you can specify which base minor number the driver should use for each
can channel/chip. Consecutive numbers are taken in the case, that chip supports more
communication objects. The values for channels are separated by comas

e extended =[1| 0], enables automatic switching to extended format if ID>2047, se-
lects extended frames reception for i82527

» pelican =[1] 0], unused parameter, PeliCAN used by default for sjal1000p chips now
e baudrate =<nr>, baudrate for each channel in step of 1kBd
e clock_freq =<nr>, the frequency of the CAN quartz for BfaD board
» stdmask =<nr>, default standard mask for some (i82527) chips
» extmask =<nr>, default extended mask for some (i82527) chips
« mol5mask=<nr> , sets the mask for message object 15 (182527 only)
« processlocal =<nr>, select post-processing/loop-back of transmitted messages
0 .. disabled
1 .. can be enabled by application by FIFO filter setup
2 .. enabled by default

can_rtl_priority =<nr> , select priority of chip worker thread for driver compiled
with RT-Linux support

Actual list of supported CAN module parameters and short description can be reached
by invocation of the command

modinfo can

2.6.4. Simple Utilities

The simple test utilities can be found in the utils subdirectory of the LinCAN driver
source subtree. These utilities can be used as base for user programs directly communi-
cating with the LinCAN driver. We do not suggest to build applications directly depen-
dent on the driver operating system specific interface. We suggest to use the VCA API
library for communication with the driver which brings higher level of system interface
abstraction and ensures compatibility with the future versions of LinCAN driver and
RT-Linux driver clone versions. The actual low level RT-Linux API to LinCAN driver
closely matches open/close ,read /write andioctl interface. Only select cannot be
provided directly by RT-Linux API.

The basic utilities provided with LinCAN driver are:

OCERA. IST 35102 141

rxtx
the simple utility to receive or send message which guides user through operation,
the message type, the message ID and the message contents by simple prompts
send

even more simplistic message sending program
readburst
the utility for continuous messages reception and printing of the message contents.
This utility can be used as an example of the select system call usage.
sendburst
the periodic message generator. Each message is filled by the constant pattern and

the message sequence number. This utility can be used for throughput and message
drops tests.

can-proxy
the simple TCP/IP to CAN proxy. The proxy receives simple commands from IP

datagrams and processes command sending and state manipulations. Received mes-
sages are packed into IP datagrams and send back to the client.

readburst

readburst — the utility for continuous messages reception and printing of the
message contents

Synopsis
readburst [-d candev][-m mask][-i id][-f flags 1[-w sec][-p prefix 1[-VII[-h]

Description

The utility readburst can be used to monitor or log CAN messages received by one CAN
message communication object. Even outgoing transmitted messages can be logged if
process local is globally or explicitly enabled.

OPTIONS
-d --device
This options selects readburst target CAN device. If the option is not specified,

default device name /dev/can0 1is used.
-m --mask

This option enables to change default mask accepting all messages to the speci-
fied CAN message id mask. The hexadecimal value has to be prefixed by prefix 0x.
Numeric value without any prefix is considered as decimal one.

-i --id
This option specifies CAN message identifier in the acceptance mask. The accepted
CAN messages are then printed by readburst command. Only bits corresponding
to the non-zero bits of acceptance mask are compared. Hexadecimal value has to be

prefixed by any prefix Ox. Numeric value without prefix is considered as decimal
one.

142

readburst

-f --flags

Specification of modifiers flags of receiption CAN queur. Hexadecimal value has to
be prefixed by prefix Ox. Numeric value without any prefix is considered as decimal

one.
Bit name Bit Mask Description
num-
ber
MSG_RTR 0x1 Receive RTR or non-RTR messages

0
MSG_EXT 2 0x4 Receive extended/standard messages
MSG_LOCAL 3 0x8 Receive local or external messages
8

MSG_RTR_MASK 0x100 Take care about MSG_RThit else RTR and
non-RTR messages are accepted

MSG_EXT_MASK 10 0x400 Take care about MSG_EXTbit else extended
and standard messages are accepted

MSG_LOCAL_MASK 11 0x800 Take care about MSG_LOCADbit else both
local and external messages are accepted

MSG_PROCESSLOCAI9 0x200 Enable processing of the local messages if
not explicitly enabled globally or disabled
globally.

-w --wait
The number of second the readburst waits in the select call.
-p --prefix

The prefix string can is added at beginning of each printed line. The format
specifies %scould be used to add device name into prefix.

-V --version

Print command version.
-h --help

Print command usage information

OCERA. IST 35102 143

sendburst

sendburst — the utility for continuous messages reception and printing of the
message contents

Synopsis

sendburst [-d candev][-i id 1[-s][-f flags]1[-w sec][-b blocksize][-c count][-p
prefix T[-VI1[-h]

Description

The utility sendburst generates blocks of messages with specified CAN message ID.
The burst block of blocksize messages is generated and pushed into can device. If
count is specified, the command stops and exits after count of message blocks send.

OPTIONS

-d --device
This options selects sendburst target CAN device. If the option is not specified,
default device name /dev/can0 is used.

-i --id
This option specifies which CAN message ID is used for transmitted blocks of mes-

sages. Hexadecimal value has to be prefixed by prefix Ox. Numeric value without
any prefix is considered as decimal one.

-f --flags

Specification of modifiers flags of the send message. Hexadecimal value has to be
prefixed by prefix Ox. Numeric value without prefix is considered as decimal one.

Bit name Bit Mask Description
number
MSG_RTR 0 0x1 Generate RTR messages if specified
MSG_EXT 2 0x4 Use extended messages identifiers if specified
-S --sync

Open device in the synchronous mode. The send and close blocks until message
is sent to to CAN bus.

-w --wait
The number of second the sendburst waits between sending burst blocks.
-b --block
The number of messages in the one burst block. Default value is 10.
-c --count
The number of block send after command invocation. If specified, command finishes

and returns after specified number of blocks. If unspecified, the sendburst runs for
infinite time.

-p --prefix

The prefix string can is added at beginning of each printed line. The format
specifies %scould be used to add device name into prefix.

-V --version

Print command version.
-h --help

Print command usage information

144

	
	Linux/RTLinux CAN Driver (LinCAN)
	Table of Contents
	List of Figures
	Linux/RTLinux CAN Driver (LinCAN)
	Chapter 1. LinCAN Summary
	1.1. Summary
	Chapter 2. LinCAN Driver Description
	2.1. Introduction
	2.2. LinCAN Driver System Level API
	2.2.1. Device Files and Message Structure
	2.2.2. CAN Driver File Operations
	open
	Synopsis
	Arguments
	Description

	close
	Synopsis
	Arguments
	Description

	read
	Synopsis
	Arguments
	Description

	write
	Synopsis
	Arguments
	Description

	struct canfiltt
	Synopsis
	Members

	IOCTL CANQUEFILTER
	Synopsis
	Arguments
	Description

	IOCTL CANQUEFLUSH
	Synopsis
	Arguments
	Description

	2.3. LinCAN Driver Architecture
	2.4. Driver History and Implementation Issues
	2.5. LinCAN Driver Internals
	2.5.1. Basic Driver Data Structures
	struct canhardwaret
	Synopsis
	Members

	struct candevicet
	Synopsis
	Members
	Description

	struct chipt
	Synopsis
	Members
	Description

	struct msgobjt
	Synopsis
	Members

	struct canusert
	Synopsis
	Members

	struct hwspecopst
	Synopsis
	Members

	struct chipspecopst
	Synopsis
	Members

	2.5.2. Board Support Functions
	templaterequestio
	Synopsis
	Arguments
	Description
	Return Value
	File

	templatereleaseio
	Synopsis
	Arguments
	Description
	Return Value
	File

	templatereset
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateinithwdata
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateinitchipdata
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateinitobjdata
	Synopsis
	Arguments
	Description
	Return Value
	File

	templateprogramirq
	Synopsis
	Arguments
	Description
	Return value
	File

	templatewriteregister
	Synopsis
	Arguments
	Description
	Return Value
	File

	templatereadregister
	Synopsis
	Arguments
	Description
	Return Value
	File

	2.5.3. Chip Support Functions
	sja1000penableconfiguration
	Synopsis
	Arguments

	sja1000pdisableconfiguration
	Synopsis
	Arguments

	sja1000pchipconfig
	Synopsis
	Arguments
	Description
	Return Value
	File

	sja1000pextendedmask
	Synopsis
	Arguments
	Return Value
	File

	sja1000pbaudrate
	Synopsis
	Arguments
	Return Value
	File

	sja1000pread
	Synopsis
	Arguments
	File

	sja1000pprereadconfig
	Synopsis
	Arguments
	Return Value
	File

	sja1000pprewriteconfig
	Synopsis
	Arguments
	Description
	Return Value
	File

	sja1000psendmsg
	Synopsis
	Arguments
	Description
	Return Value
	File

	sja1000pchecktxstat
	Synopsis
	Arguments
	Return Value
	File

	sja1000psetbtregs
	Synopsis
	Arguments
	Return Value
	File

	sja1000pstartchip
	Synopsis
	Arguments
	Return Value
	File

	sja1000pstopchip
	Synopsis
	Arguments
	Return Value
	File

	sja1000premoterequest
	Synopsis
	Arguments
	Return Value
	File

	sja1000pstandardmask
	Synopsis
	Arguments
	Return Value
	File

	sja1000pclearobjects
	Synopsis
	Arguments
	Return Value
	File

	sja1000pconfigirqs
	Synopsis
	Arguments
	Return Value
	File

	sja1000pirqwritehandler
	Synopsis
	Arguments
	Description
	File

	sja1000pirqhandler
	Synopsis
	Arguments
	Description
	File

	sja1000pwakeuptx
	Synopsis
	Arguments
	Return Value
	File

	2.5.4. CAN Queues Common Structures and Functions
	struct canqueslott
	Synopsis
	Members
	Description

	struct canquefifot
	Synopsis
	Members
	Description

	canquefifogetinslot
	Synopsis
	Arguments
	Return Value

	canquefifoputinslot
	Synopsis
	Arguments
	Return Value

	canquefifoabortinslot
	Synopsis
	Arguments
	Return Value

	canquefifotestoutslot
	Synopsis
	Arguments
	Return Value

	canquefifofreeoutslot
	Synopsis
	Arguments
	Return Value

	canquefifoagainoutslot
	Synopsis
	Arguments
	Return Value

	struct canqueedget
	Synopsis
	Members
	Description

	struct canqueendst
	Synopsis
	Members
	Description

	canquenotifyinends
	Synopsis
	Arguments

	canquenotifyoutends
	Synopsis
	Arguments

	canquenotifybothends
	Synopsis
	Arguments

	canqueactivateedge
	Synopsis
	Arguments
	Description

	canquefiltid2internal
	Synopsis
	Arguments
	Description

	canquefifoflushslots
	Synopsis
	Arguments
	Description
	Return Value

	canquefifoinitslots
	Synopsis
	Arguments
	Return Value

	canquegetinslot
	Synopsis
	Arguments
	Description
	Return Value

	canquegetinslot4id
	Synopsis
	Arguments
	Description
	Return Value

	canqueputinslot
	Synopsis
	Arguments
	Description
	Return Value

	canqueabortinslot
	Synopsis
	Arguments
	Description
	Return Value

	canquefiltermsg2edges
	Synopsis
	Arguments
	Description
	Return Value

	canquetestoutslot
	Synopsis
	Arguments
	Description
	Return Value

	canquefreeoutslot
	Synopsis
	Arguments
	Description
	Return Value

	canqueagainoutslot
	Synopsis
	Arguments
	Description
	Return Value

	canquesetfilt
	Synopsis
	Arguments
	Return Value

	canqueflush
	Synopsis
	Arguments
	Description
	Return Value

	canqueueendsinitgen
	Synopsis
	Arguments
	Return Value

	canqueueconnectedge
	Synopsis
	Arguments
	Return Value

	canqueuedisconnectedge
	Synopsis
	Arguments
	Return Value

	canqueueblockinlist
	Synopsis
	Arguments

	canqueueblockoutlist
	Synopsis
	Arguments

	canqueueendskillinlist
	Synopsis
	Arguments
	Return Value

	canqueueendskilloutlist
	Synopsis
	Arguments
	Return Value

	2.5.5. CAN Queues Kernel Specific Functions
	canqueuenotifykern
	Synopsis
	Arguments
	Description

	canqueueendsinitkern
	Synopsis
	Arguments

	canquegetinslot4idwaitkern
	Synopsis
	Arguments
	Description
	Return Value

	canquegetoutslotwaitkern
	Synopsis
	Arguments
	Description
	Return Value

	canquesyncwaitkern
	Synopsis
	Arguments
	Description
	Return Value

	canquefifoinitkern
	Synopsis
	Arguments
	Return Value

	canquefifodonekern
	Synopsis
	Arguments

	canquenewedgekern
	Synopsis
	Arguments
	Return Value

	canqueueendsdisposekern
	Synopsis
	Arguments
	Return Value

	2.5.6. CAN Queues RTLinux Specific Functions
	canqueuertl2lincheckandpend
	Synopsis
	Arguments
	Return Value

	canquegetinslot4idwaitrtl
	Synopsis
	Arguments
	Description
	Return Value

	canquegetoutslotwaitrtl
	Synopsis
	Arguments
	Description
	Return Value

	canquesyncwaitrtl
	Synopsis
	Arguments
	Description
	Return Value

	canquefifoinitrtl
	Synopsis
	Arguments
	Return Value

	canquefifodonertl
	Synopsis
	Arguments

	canquenewedgertl
	Synopsis
	Arguments
	Return Value

	canqueuenotifyrtl
	Synopsis
	Arguments

	canqueueendsinitrtl
	Synopsis
	Arguments

	canqueueendsdisposertl
	Synopsis
	Arguments
	Return Value

	canqueuertlinitialize
	Synopsis
	Arguments

	canqueuertldone
	Synopsis
	Arguments

	2.5.7. CAN Queues CAN Chips Specific Functions
	canqueuenotifychip
	Synopsis
	Arguments
	Description

	canqueueendsinitchip
	Synopsis
	Arguments

	canqueueendsdonechip
	Synopsis
	Arguments
	Return Value

	2.5.8. CAN Boards and Chip Setup specific Functions
	cancheckedmalloc
	Synopsis
	Arguments
	Description
	Return Value

	cancheckedfree
	Synopsis
	Arguments

	candelmemlist
	Synopsis
	Arguments
	Description

	canrequestioregion
	Synopsis
	Arguments
	Description
	Return Value

	canreleaseioregion
	Synopsis
	Arguments

	canrequestmemregion
	Synopsis
	Arguments
	Description
	Return Value

	canreleasememregion
	Synopsis
	Arguments

	canbaseaddrfixup
	Synopsis
	Arguments
	Description

	registerobjstruct
	Synopsis
	Arguments
	Return Value

	registerchipstruct
	Synopsis
	Arguments
	Return Value

	inithwstruct
	Synopsis
	Arguments
	Description
	Return Value

	initdevicestruct
	Synopsis
	Arguments
	Description
	in the module parameters arrays
	Return Value

	initchipstruct
	Synopsis
	Arguments
	Description
	Return Value

	initobjstruct
	Synopsis
	Arguments
	Description
	Return Value

	inithwspecops
	Synopsis
	Arguments
	Description
	Return Value

	initchipspecops
	Synopsis
	Arguments
	Description
	Return Value

	canchipsetupirq
	Synopsis
	Arguments
	Return Value

	canchipfreeirq
	Synopsis
	Arguments

	2.5.9. CAN Boards and Chip Finalization Functions
	msgobjdone
	Synopsis
	Arguments

	canchipdone
	Synopsis
	Arguments

	candevicedone
	Synopsis
	Arguments

	canhardwaredone
	Synopsis
	Arguments

	2.6. LinCAN Usage Information
	2.6.1. Installation Prerequisites
	2.6.2. Quick Installation Instructions
	2.6.3. Installation instructions
	2.6.4. Simple Utilities
	readburst
	Synopsis
	Description
	OPTIONS

	sendburst
	Synopsis
	Description
	OPTIONS

