
Mouse Drivers

Alan Cox

alan@redhat.com

Mouse Drivers
by Alan Cox

Copyright © 2000 by Alan Cox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more details see the file COPYING in the source distribution of Linux.

Table of Contents
1. Introduction ...1
2. A simple mouse driver...2
3. Debugging the mouse driver..8
4. Asynchronous I/O...11

i

Chapter 1. Introduction

Earlier publication: Parts of this document first appeared in Linux Magazine under a
ninety day exclusivity.

Mice are conceptually one of the simplest device interfaces in the Linux operating
system. Not all mice are handled by the kernel. Instead there is a two layer abstrac-
tion.

The kernel mouse drivers and userspace drivers for the serial mice are all managed
by a system daemon called gpm - the general purpose mouse driver. gpm handles
cutting and pasting on the text consoles. It provides a general library for mouse-
aware applications and it handles the sharing of mouse services with the X Window
System user interface.

Sometimes a mouse speaks a sufficiently convoluted protocol that the protocol is
handled by Gpmitself. Most of the mouse drivers follow a common interface called
the bus mouse protocol.

Each read from a bus mouse interface device returns a block of data. The first three
bytes of each read are defined as follows:

Table 1-1. Mouse Data Encoding

Byte 0 0x80 + the buttons currently down.

Byte 1 A signed value for the shift in X position

Byte 2 A signed value for the shift in Y position

An application can choose to read more than 3 bytes. The rest of the bytes will be
zero, or may optionally return some additional device-specific information.

The position values are truncated if they exceed the 8bit range (that is -127 <= delta
<= 127). While the value -128 does fit into a byte is not allowed.

The buttons are numbered left to right as 0, 1, 2, 3.. and each button sets the relevant
bit. So a user pressing the left and right button of a three button mouse will set bits 0
and 2.

All mice are required to support the poll operation. Indeed pretty much every user
of a mouse device uses poll to wait for mouse events to occur.

Finally the mice support asynchronous I/O. This is a topic we have not yet covered
but which I will explain after looking at a simple mouse driver.

1

Chapter 2. A simple mouse driver

First we will need the set up functions for our mouse device. To keep this simple our
imaginary mouse device has three I/O ports fixed at I/O address 0x300 and always
lives on interrupt 5. The ports will be the X position, the Y position and the buttons
in that order.

#define OURMOUSE_BASE 0x300

static struct miscdevice our_mouse = {
OURMOUSE_MINOR, "ourmouse", &our_mouse_fops

};

__init ourmouse_init(void)
{

if (request_region(OURMOUSE_BASE, 3, "ourmouse") < 0) {
printk(KERN_ERR "ourmouse: request_region failed.\n");

return -ENODEV;
}

if (misc_register(&our_mouse) < 0) {
printk(KERN_ERR "ourmouse: cannot register misc device.\n");
release_region(OURMOUSE_BASE, 3);
return -EBUSY;

}

return 0;
}

The miscdevice is new here. Linux normally parcels devices out by major number,
and each device has 256 units. For things like mice this is extremely wasteful so a de-
vice exists which is used to accumulate all the odd individual devices that computers
tend to have.

Minor numbers in this space are allocated by a central source, although you can look
in the kernel Documentation/devices.txt file and pick a free one for development
use. This kernel file also carries instructions for registering a device. This may change
over time so it is a good idea to obtain a current copy of this file first.

Our code then is fairly simple. We reserve our I/O address space with request_region,
checking to make sure that it succeeded (i.e. the space wasn’t reserved by anyone
else).

Then we ask the misc driver to allocate our minor device number. We also hand it
our name (which is used in /proc/misc) and a set of file operations that are to be
used. The file operations work exactly like the file operations you would register
for a normal character device. The misc device itself is simply acting as a redirector
for requests. Since misc_register can fail, it is important to check for failure and act
accordingly (which in the case of a mouse driver is to abort, since you can’t use the
mouse without a working device node).

Next, in order to be able to use and test our code we need to add some module code
to support it. This too is fairly simple:

#ifdef MODULE

int init_module(void)
{

if(ourmouse_init() <0)
return -ENODEV:

return 0;
}

void cleanup_module(void)
{

misc_deregister(&our_mouse);
free_region(OURMOUSE_BASE, 3);

}

2

Chapter 2. A simple mouse driver
#endif

The module code provides the normal two functions. The init_module function is
called when the module is loaded. In our case it simply calls the initialising func-
tion we wrote and returns an error if this fails. This ensures the module will only be
loaded if it was successfully set up.

The cleanup_module function is called when the module is unloaded. We give the
miscellaneous device entry back, and then free our I/O resources. If we didn’t free
the I/O resources then the next time the module loaded it would think someone else
had its I/O space.

Once the misc_deregister has been called any attempts to open the mouse device
will fail with the error ENODEV (No such device).

Next we need to fill in our file operations. A mouse doesn’t need many of these. We
need to provide open, release, read and poll. That makes for a nice simple structure:

struct file_operations our_mouse_fops = {
owner: THIS_MODULE, /* Automatic usage management */
read: read_mouse, /* You can read a mouse */
write: write_mouse, /* This won’t do a lot */
poll: poll_mouse, /* Poll */
open: open_mouse, /* Called on open */
release: close_mouse, /* Called on close */

};

There is nothing particularly special needed here. We provide functions for all the
relevant or required operations and little else. There is nothing stopping us providing
an ioctl function for this mouse. Indeed if you have a configurable mouse it may be
very appropriate to provide configuration interfaces via ioctl calls.

The syntax we use is not standard C as such. GCC provides the ability to initialise
fields by name, and this generally makes the method table much easier to read than
counting through NULL pointers and remembering the order by hand.

The owner field is used to manage the locking of module load an unloading. It is
obviously important that a module is not unloaded while in use. When your device
is opened the module specified by "owner" is locked. When it is finally released the
module is unlocked.

The open and close routines need to manage enabling and disabling the interrupts
for the mouse as well as stopping the mouse being unloaded when it is no longer
required.

static int mouse_users = 0; /* User count */
static int mouse_dx = 0; /* Position changes */
static int mouse_dy = 0;
static int mouse_event = 0; /* Mouse has moved */

static int open_mouse(struct inode *inode, struct file *file)
{

if(mouse_users++)
return 0;

if(request_irq(mouse_intr, OURMOUSE_IRQ, 0, "ourmouse", NULL))
{

mouse_users--;
return -EBUSY;

}
mouse_dx = 0;
mouse_dy = 0;
mouse_event = 0;
mouse_buttons = 0;

return 0;
}

3

Chapter 2. A simple mouse driverThe open function has to do a small amount of housework. We keep a count of the
number of times the mouse is open. This is because we do not want to request the
interrupt multiple times. If the mouse has at least one user then it is set up and we
simply add to the user count and return 0 for success.

We grab the interrupt and thus start mouse interrupts. If the interrupt has been bor-
rowed by some other driver then request_irq will fail and we will return an error.
If we were capable of sharing an interrupt line we would specify SA_SHIRQinstead
of zero . Provided that everyone claiming an interrupt sets this flag, they get to share
the line. PCI can share interrupts, ISA normally however cannot.

We do the housekeeping. We make the current mouse position the starting point for
accumulated changes and declare that nothing has happened since the mouse driver
was opened.

The release function needs to unwind all these:

static int close_mouse(struct inode *inode, struct file *file)
{

if(--mouse_users)
return 0;

free_irq(OURMOUSE_IRQ, NULL);
return 0;

}

We count off a user and provided that there are still other users need take no further
action. The last person closing the mouse causes us to free up the interrupt. This stops
interrupts from the mouse from using our CPU time, and ensures that the mouse can
now be unloaded.

We can fill in the write handler at this point as the write function for our mouse
simply declines to allow writes:

static ssize_t write_mouse(struct file *file, const char *buffer, size_t
count, loff_t *ppos)

{
return -EINVAL;

}

This is pretty much self-explanatory. Whenever you write you get told it was an in-
valid function.

To make the poll and read functions work we have to consider how we handle the
mouse interrupt.

static struct wait_queue *mouse_wait;
static spinlock_t mouse_lock = SPIN_LOCK_UNLOCKED;

static void ourmouse_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

char delta_x;
char delta_y;
unsigned char new_buttons;

delta_x = inb(OURMOUSE_BASE);
delta_y = inb(OURMOUSE_BASE+1);
new_buttons = inb(OURMOUSE_BASE+2);

if(delta_x || delta_y || new_buttons != mouse_buttons)
{

/* Something happened */

spin_lock(&mouse_lock);
mouse_event = 1;
mouse_dx += delta_x;
mouse_dy += delta_y;
mouse_buttons = new_buttons;
spin_unlock(&mouse_lock);

wake_up_interruptible(&mouse_wait);

4

Chapter 2. A simple mouse driver}
}

The interrupt handler reads the mouse status. The next thing we do is to check
whether something has changed. If the mouse was smart it would only interrupt us if
something had changed, but let’s assume our mouse is stupid as most mice actually
tend to be.

If the mouse has changed we need to update the status variables. What we don’t
want is the mouse functions reading these variables to read them during a change.
We add a spinlock that protects these variables while we play with them.

If a change has occurred we also need to wake sleeping processes, so we add a
wakeup call and a wait_queue to use when we wish to await a mouse event.

Now we have the wait queue we can implement the poll function for the mouse
relatively easily:

static unsigned int mouse_poll(struct file *file, poll_table *wait)
{

poll_wait(file, &mouse_wait, wait);
if(mouse_event)

return POLLIN | POLLRDNORM;
return 0;

}

This is fairly standard poll code. First we add the wait queue to the list of queues we
want to monitor for an event. Secondly we check if an event has occurred. We only
have one kind of event - the mouse_event flag tells us that something happened.
We know that this something can only be mouse data. We return the flags indicating
input and normal reading will succeed.

You may be wondering what happens if the function returns saying ’no event yet’.
In this case the wake up from the wait queue we added to the poll table will cause
the function to be called again. Eventually we will be woken up and have an event
ready. At this point the poll call will exit back to the user.

After the poll completes the user will want to read the data. We now need to think
about how our mouse_read function will work:

static ssize_t mouse_read(struct file *file, char *buffer,
size_t count, loff_t *pos)

{
int dx, dy;
unsigned char button;
unsigned long flags;
int n;

if(count <3)
return -EINVAL;

/*
* Wait for an event

*/

while(!mouse_event)
{

if(file- >f_flags&O_NDELAY)
return -EAGAIN;

interruptible_sleep_on(&mouse_wait);
if(signal_pending(current))

return -ERESTARTSYS;
}

We start by validating that the user is reading enough data. We could handle partial
reads if we wanted but it isn’t terribly useful and the mouse drivers don’t bother to
try.

5

Chapter 2. A simple mouse driverNext we wait for an event to occur. The loop is fairly standard event waiting in Linux.
Having checked that the event has not yet occurred, we then check if an event is
pending and if not we need to sleep.

A user process can set the O_NDELAYflag on a file to indicate that it wishes to be told
immediately if no event is pending. We check this and give the appropriate error if
so.

Next we sleep until the mouse or a signal awakens us. A signal will awaken us as
we have used wakeup_interruptible . This is important as it means a user can kill
processes waiting for the mouse - clearly a desirable property. If we are interrupted
we exit the call and the kernel will then process signals and maybe restart the call
again - from the beginning.

This code contains a classic Linux bug. All will be revealed later in this article as well
as explanations for how to avoid it.

/* Grab the event */

spinlock_irqsave(&mouse_lock, flags);

dx = mouse_dx;
dy = mouse_dy;
button = mouse_buttons;

if(dx <=-127)
dx=-127;

if(dx >=127)
dx=127;

if(dy <=-127)
dy=-127;

if(dy >=127)
dy=127;

mouse_dx -= dx;
mouse_dy -= dy;

if(mouse_dx == 0 && mouse_dy == 0)
mouse_event = 0;

spin_unlock_irqrestore(&mouse_lock, flags);

This is the next stage. Having established that there is an event going, we capture
it. To be sure that the event is not being updated as we capture it we also take the
spinlock and thus prevent parallel updates. Note here we use spinlock_irqsave . We
need to disable interrupts on the local processor otherwise bad things will happen.

What will occur is that we take the spinlock. While we hold the lock an interrupt will
occur. At this point our interrupt handler will try and take the spinlock. It will sit in a
loop waiting for the read routine to release the lock. However because we are sitting
in a loop in the interrupt handler we will never release the lock. The machine hangs
and the user gets upset.

By blocking the interrupt on this processor we ensure that the lock holder will always
give the lock back without deadlocking.

There is a little cleverness in the reporting mechanism too. We can only report a move
of 127 per read. We don’t however want to lose information by throwing away further
movement. Instead we keep returning as much information as possible. Each time we
return a report we remove the amount from the pending movement in mouse_dx and
mouse_dy . Eventually when these counts hit zero we clear the mouse_event flag as
there is nothing else left to report.

if(put_user(button|0x80, buffer))
return -EFAULT;

if(put_user((char)dx, buffer+1))
return -EFAULT;

if(put_user((char)dy, buffer+2))
return -EFAULT;

for(n=3; n < count; n++)

6

Chapter 2. A simple mouse driverif(put_user(0x00, buffer+n))
return -EFAULT;

return count;
}

Finally we must put the results in the user supplied buffer. We cannot do this while
holding the lock as a write to user memory may sleep. For example the user memory
may be residing on disk at this instant. Thus we did our computation beforehand
and now copy the data. Each put_user call is filling in one byte of the buffer. If it
returns an error we inform the program that it passed us an invalid buffer and abort.

Having written the data we blank the rest of the buffer that was read and report the
read as being successful.

7

Chapter 3. Debugging the mouse driver

We now have an almost perfectly usable mouse driver. If you were to actually try
and use it however you would eventually find a couple of problems with it. A few
programs will also not work with as it does not yet support asynchronous I/O.

First let us look at the bugs. The most obvious one isn’t really a driver bug but a fail-
ure to consider the consequences. Imagine you bumped the mouse hard by accident
and sent it skittering across the desk. The mouse interrupt routine will add up all that
movement and report it in steps of 127 until it has reported all of it. Clearly there is a
point beyond which mouse movement isn’t worth reporting. We need to add this as
a limit to the interrupt handler:

static void ourmouse_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

char delta_x;
char delta_y;
unsigned char new_buttons;

delta_x = inb(OURMOUSE_BASE);
delta_y = inb(OURMOUSE_BASE+1);
new_buttons = inb(OURMOUSE_BASE+2);

if(delta_x || delta_y || new_buttons != mouse_buttons)
{

/* Something happened */

spin_lock(&mouse_lock);
mouse_event = 1;
mouse_dx += delta_x;
mouse_dy += delta_y;

if(mouse_dx < -4096)
mouse_dx = -4096;

if(mouse_dx > 4096)
mouse_dx = 4096;

if(mouse_dy < -4096)
mouse_dy = -4096;

if(mouse_dy > 4096)
mouse_dy = 4096;

mouse_buttons = new_buttons;
spin_unlock(&mouse_lock);

wake_up_interruptible(&mouse_wait);
}

}

By adding these checks we limit the range of accumulated movement to something
sensible.

The second bug is a bit more subtle, and that is perhaps why this is such a common
mistake. Remember, I said the waiting loop for the read handler had a bug in it. Think
about what happens when we execute:

while(!mouse_event)
{

and an interrupt occurs at this point here. This causes a mouse movement and wakes
up the queue.

interruptible_sleep_on(&mouse_wait);

Now we sleep on the queue. We missed the wake up and the application will not see
an event until the next mouse event occurs. This will lead to just the odd instance
when a mouse button gets delayed. The consequences to the user will probably be

8

Chapter 3. Debugging the mouse driveralmost undetectable with a mouse driver. With other drivers this bug could be a lot
more severe.

There are two ways to solve this. The first is to disable interrupts during the testing
and the sleep. This works because when a task sleeps it ceases to disable interrupts,
and when it resumes it disables them again. Our code thus becomes:

save_flags(flags);
cli();

while(!mouse_event)
{

if(file- >f_flags&O_NDELAY)
{

restore_flags(flags);
return -EAGAIN;

}
interruptible_sleep_on(&mouse_wait);
if(signal_pending(current))
{

restore_flags(flags);
return -ERESTARTSYS;

}
}
restore_flags(flags);

This is the sledgehammer approach. It works but it means we spend a lot more time
turning interrupts on and off. It also affects interrupts globally and has bad properties
on multiprocessor machines where turning interrupts off globally is not a simple
operation, but instead involves kicking each processor, waiting for them to disable
interrupts and reply.

The real problem is the race between the event testing and the sleeping. We can avoid
that by using the scheduling functions more directly. Indeed this is the way they
generally should be used for an interrupt.

struct wait_queue wait = { current, NULL };

add_wait_queue(&mouse_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);

while(!mouse_event)
{

if(file- >f_flags&O_NDELAY)
{

remove_wait_queue(&mouse_wait, &wait);
set_current_state(TASK_RUNNING);
return -EWOULDBLOCK;

}
if(signal_pending(current))
{

remove_wait_queue(&mouse_wait, &wait);
current- >state = TASK_RUNNING;
return -ERESTARTSYS;

}
schedule();
set_current_state(TASK_INTERRUPTIBLE);

}

remove_wait_wait(&mouse_wait, &wait);
set_current_state(TASK_RUNNING);

At first sight this probably looks like deep magic. To understand how this works you
need to understand how scheduling and events work on Linux. Having a good grasp
of this is one of the keys to writing clean efficient device drivers.

add_wait_queue does what its name suggests. It adds an entry to the mouse_wait
list. The entry in this case is the entry for our current process (current is the current
task pointer).

9

Chapter 3. Debugging the mouse driverSo we start by adding an entry for ourself onto the mouse_wait list. This does not put
us to sleep however. We are merely tagged onto the list.

Next we set our status to TASK_INTERRUPTIBLE. Again this does not mean we are
now asleep. This flag says what should happen next time the process sleeps.
TASK_INTERRUPTIBLE says that the process should not be rescheduled. It will run
from now until it sleeps and then will need to be woken up.

The wakeup_interruptible call in the interrupt handler can now be explained in
more detail. This function is also very simple. It goes along the list of processes on
the queue it is given and any that are marked as TASK_INTERRUPTIBLEit changes to
TASK_RUNNINGand tells the kernel that new processes are runnable.

Behind all the wrappers in the original code what is happening is this

1. We add ourself to the mouse wait queue

2. We mark ourself as sleeping

3. We ask the kernel to schedule tasks again

4. The kernel sees we are asleep and schedules someone else.

5. The mouse interrupt sets our state to TASK_RUNNINGand makes a note that the
kernel should reschedule tasks

6. The kernel sees we are running again and continues our execution

This is why the apparent magic works. Because we mark ourself as
TASK_INTERRUPTIBLEand as we add ourselves to the queue before we check if there
are events pending, the race condition is removed.

Now if an interrupt occurs after we check the queue status and before we call the
schedule function in order to sleep, things work out. Instead of missing an event,
we are set back to TASK_RUNNINGby the mouse interrupt. We still call schedule but
it will continue running our task. We go back around the loop and this time there
may be an event.

There will not always be an event. Thus we set ourselves back to
TASK_INTERRUPTIBLEbefore resuming the loop. Another process doing a read may
already have cleared the event flag, and if so we will need to go back to sleep again.
Eventually we will get our event and escape.

Finally when we exit the loop we remove ourselves from the mouse_wait queue
as we are no longer interested in mouse events, and we set ourself back to
TASK_RUNNABLEas we do not wish to go to sleep again just yet.

Note: This isn’t an easy topic. Don’t be afraid to reread the description a few times and
also look at other device drivers to see how it works. Finally if you can’t grasp it just yet,
you can use the code as boilerplate to write other drivers and trust me instead.

10

Chapter 4. Asynchronous I/O

This leaves the missing feature - Asynchronous I/O. Normally UNIX programs use
the poll call (or its variant form select) to wait for an event to occur on one of
multiple input or output devices. This model works well for most tasks but because
poll and select wait for an event isn’t suitable for tasks that are also continually
doing computation work. Such programs really want the kernel to kick them when
something happens rather than watch for events.

Poll is akin to having a row of lights in front of you. You can see at a glance which
ones if any are lit. You cannot however get anything useful done while watching
them. Asynchronous I/O uses signals which work more like a door bell. Instead of
you watching, it tells you that something is up.

Asynchronous I/O sends the signal SIGIO to a user process when the I/O events
occur. In this case that means when people move the mouse. The SIGIO signal causes
the user process to jump to its signal handler and execute code in that handler before
returning to whatever was going on previously. It is the application equivalent of an
interrupt handler.

Most of the code needed for this operation is common to all its users. The kernel
provides a simple set of functions for managing asynchronous I/O.

Our first job is to allow users to set asynchronous I/O on file handles. To do that we
need to add a new function to the file operations table for our mouse:

struct file_operations our_mouse_fops = {
owner: THIS_MODULE
read: read_mouse, /* You can read a mouse */
write: write_mouse, /* This won’t do a lot */
poll: poll_mouse, /* Poll */
open: open_mouse, /* Called on open */
release: close_mouse, /* Called on close */
fasync: fasync_mouse, /* Asynchronous I/O */

};

Once we have installed this entry the kernel knows we support asynchronous I/O
and will allow all the relevant operations on the device. Whenever a user adds or
removes asynchronous I/O notification on a file handle it calls our fasync_mouse
routine we just added. This routine uses the helper functions to keep the queue of
handles up to date:

static struct fasync_struct *mouse_fasync = NULL;

static int fasync_mouse(int fd, struct file *filp, int on)
{

int retval = fasync_helper(fd, filp, on, &mouse_fasync);

if (retval < 0)
return retval;

return 0;
}

The fasync helper adds and deletes entries by managing the supplied list. We also
need to remove entries from this list when the file is closed. This requires we add one
line to our close function:

static int close_mouse(struct inode *inode, struct file *file)
{

fasync_mouse(-1, file, 0)
if(--mouse_users)

return 0;
free_irq(OURMOUSE_IRQ, NULL);
MOD_DEC_USE_COUNT;
return 0;

}

11

Chapter 4. Asynchronous I/OWhen we close the file we now call our own fasync handler as if the user had re-
quested that this file cease to be used for asynchronous I/O. This rather neatly cleans
up any loose ends. We certainly don’t wait to deliver a signal for a file that no longer
exists.

At this point the mouse driver supports all the asynchronous I/O operations, and
applications using them will not error. They won’t however work yet. We need to
actually send the signals. Again the kernel provides a function for handling this.

We update our interrupt handler a little:

static void ourmouse_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

char delta_x;
char delta_y;
unsigned char new_buttons;

delta_x = inb(OURMOUSE_BASE);
delta_y = inb(OURMOUSE_BASE+1);
new_buttons = inb(OURMOUSE_BASE+2);

if(delta_x || delta_y || new_buttons != mouse_buttons)
{

/* Something happened */

spin_lock(&mouse_lock);
mouse_event = 1;
mouse_dx += delta_x;
mouse_dy += delta_y;

if(mouse_dx < -4096)
mouse_dx = -4096;

if(mouse_dx > 4096)
mouse_dx = 4096;

if(mouse_dy < -4096)
mouse_dy = -4096;

if(mouse_dy > 4096)
mouse_dy = 4096;

mouse_buttons = new_buttons;
spin_unlock(&mouse_lock);

/* Now we do asynchronous I/O */
kill_fasync(&mouse_fasync, SIGIO);

wake_up_interruptible(&mouse_wait);
}

}

The new code simply calls the kill_fasync routine provided by the kernel if the
queue is non-empty. This sends the required signal (SIGIO in this case) to the process
each file handle says should be informed about the exciting new mouse movement
that just happened.

With this in place and the bugs in the original version fixed, you now have a
fully functional mouse driver using the bus mouse protocol. It will work with
the X window system , will work with GPMand should work with every other
application you need. Doomis of course the ideal way to test your new mouse driver
is functioning properly. Be sure to test it thoroughly.

12

	Table of Contents
	Chapter 1. Introduction
	Chapter 2. A simple mouse driver
	Chapter 3. Debugging the mouse driver
	Chapter 4. Asynchronous I/O

