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Abstract. Two novel problems straddling the boundary between image retrieval
and data mining are formulated: for every pixel in the query image, (i) find the
database image with the maximum resolution depicting the pixel and (ii) find the
frequency with which it is photographed in detail.
An efficient and reliable solution for both problems is proposed based on two
novel techniques, the hierarchical query expansion that exploits the document at
a time (DAAT) inverted file and a geometric consistency verification sufficiently
robust to prevent topic drift within a zooming search.
Experiments show that the proposed method finds surprisingly fine details on
landmarks, even those that are hardly noticeable for humans.

1 Introduction

Visual image and specific object search engines have gone through a rapid develop-
ment in the past decade. Methods that evolved from the bag of visual words [26] show
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Fig. 1: Top five ranked images (right, 2nd row) automatically retrieved by the highest
resolution transform. Compare the resolution of the corresponding parts (right, 1st row)
of the query image (left, top). The difference in resolution is best appreciated in the
visualization on selected details (right, 3rd and 4th row). The scaling factor achieved at
each pixel is shown below the query image.
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Fig. 2: The number of images showing a pixel (three images on the right) of the As-
tronomical clock query (left) only covering a small percentage of the original query:
0–1%, 1–3%, 3–10%, from left to right respectively. The percentage is related to the
size of the detail photographed.

considerable diversity and differ significantly from the original, e.g. those aggregating
local descriptors like Fischer kernel [23] or VLAD [12]. But all the approaches attempt
to rank images according to the similarity to the query image or region.

Finding and displaying the most similar images in a large dataset, however, may
neither be the most exciting user experience nor useful for solving a particular search
task since near duplicates or very similar images are retrieved, see Figure 9. This was
recently pointed out by Mikulik et al. [18] who propose a different search task: given a
user-specified region in the query image, find the most detailed images in the database,
or more precisely, images having the largest number of pixels within the query region.

In this work, we generalize the approach to the following formulation: given a query
image, automatically, without any user specified hint, find all ”interesting” parts within
the spatial extent of the query. Two definitions of ”interesting” lead to different tasks.
The first is to find, for all pixels in the query, the highest resolution images depicting it,
Figure 1. The second is to find regions of interest that are the most often photographed,
Figure 2 (right). For more examples and comparison of the two tasks, see also Fig-
ures 10 and 11.

In order to solve those tasks efficiently in a large, unordered image collection, a
number of issues has to be tackled. Namely, an efficient retrieval of matching sub-
images with significantly different resolution has to be addressed, together with an ef-
fective rejection of false matches to prevent topic drifts. Towards this end, we introduce
a novel concept of detail mining called hierarchical query expansion.

The results of the method are illustrated in Figures 1 and 2, which show the query
image, a sample of the discovered images of details from the dataset and two visual-
izations of localized interesting parts of the query image. The color in Figure 1 (left,
bottom) codes the maximal resolution found in the dataset. In Figure 2 (right) the color
codes the number of images found and backprojected into the query image.

The outputs show what the most interesting details for the crowds visiting the land-
mark are and which details are worth seeing (taking a picture of). It helps the user to
find or focus on interesting details or suggests additional queries. Annotations (such as
Flickr tags) of the discovered images can be used for describing parts of the image as
in [4]. The output of the proposed detail mining can be also used as a initial step for
finding iconic view of the details [28].
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The rest of the paper is structured as follows: the components of the search engine
based on bag-of-words retrieval are reviewed in Section 2. The novel method is intro-
duced in Section 3 and experiments are given in Section 4. Section 5 concludes the
paper.

2 Related Work

This section reviews relevant approaches to specific object search. Currently, methods
based on aggregation of local features, such as [12, 23], have become popular. Despite
recent results on approximate localization using VLAD descriptor [2], these methods
perform poorly when geometric constraints are to be enforced. Thus, these methods are
not suitable for sub-image search with large scale change.

This paper builds on the bag-of-words image representation which was first adopted
in the domain of visual search in [26]. Virtually all aspects of BoW-type representa-
tion have been studied in great detail: feature detectors and descriptors [15, 3, 29, 16,
17], vocabulary construction [26, 21, 24, 10, 19], spatial verification and re-ranking [24,
10], document metric learning [13, 11, 5], dimensionality reduction [9], burstiness and
feature dependency detection [11, 5, 14], and query expansion and automatic failure re-
covery [8, 25, 11, 22, 7].

The proposed method exploits a recent variant of the BoW image representation
using an inverted file augmented with geometric information [27] for efficient image
scoring. The closest approach to ours is [18] which attempts to retrieve a single user-
specified sub-window with the highest resolution. Unlike Mikulik et al., no supervision
by the user is provided in this work, and all possible locations are considered simulta-
neously. To avoid severe contamination by irrelevant images, a novel geometric consis-
tency verification method is introduced.

Compared to other methods that efficiently find clusters of related images, such
as [4], this paper focuses on extreme geometric changes, especially towards large changes
of scale in order to obtain images with the greatest details.

The application domain of this paper is similar to the recent work of Weyand and
Leibe [28] on hierarchical iconoid shift, which, given a landmark, provides iconic views
of objects at different scales on that landmark. In [28], images are obtained separately
for each landmark, using textual ques and GPS tags, and each collection of such im-
ages is indexed separately. In contrary, our approach has only one large collection of
images without any further annotation, and the landmark (or any image with details to
be discovered) is not defined beforehand. In [28], the images are exhaustively matched,
which is a time demanding offline process. Our method works online and takes only
several seconds to find the details of a given image. Note that compared to [28], this
paper deals with a more difficult task, as linking details to full views in the exhaustive
matching is easier than the other way round, see Figure 3.

2.1 What is this?

The proposed method builds upon the ideas introduced by Mikulik et al. in [18]. We
review this work in detail as the zoom-in queries are used. The method [18] is based
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Fig. 3: Reaching the full view from a detail and vice versa by conventional image re-
trieval. When querying with an image of a detail, the full view is returned in the top few
images. When querying with the full view, the detailed images are ranked low, typically
even below a large number of false positives.

on the bag-of-words image search engine. In the first step, features are detected and
described in the given query image. Posting lists (rows of inverted files) of the query
visual words are fetched and images in the dataset scored according to the weighted bag-
of-words. The standard tf-idf weighting scheme is used but in addition, visual words
scores to the separate bins according to the logarithm of the scale change. A score in a
bin is re-weighted linearly to prefer scaling-up (zoom-in) and to suppress scaling-down.

In our experiments, we compressed the scale information of each feature into 4 bits.
This allows to separate features into 16 bins. Edges of the bins are learned on the subset
of images to equalize the histogram of log scales.

In standard systems the score is evaluated in one go for each document when scalar
products are computed between whole posting lists and a query BoW vector. To en-
able taking into account the scale change, the score of a document is computed during
traversing of the inverted file in a document at a time (DAAT) manner [27]. A heap of
the top S scored images is kept, where S is a chosen length of the shortlist.

Images in the shortlist are spatially verified using RANSAC [6] and incremental
spatial verification (iSP) [7], and re-ordered according to the scale of found geometric
transformation. This ranking is prone to false positives more than standard ranking –
according to number of model inliers. The problem was already mentioned in [18].

3 Efficient Image Detail Mining

This section describes the proposed method in detail. The goal of this paper is to find the
finest details for every location in the image and to find regions that are commonly pho-
tographed by the crowds. Two issues prevent a simple solution of applying the method
described in the previous section to every location in the image: computational effi-
ciency and the risk of high false positive rate.

3.1 Hierarchical query expansion

It has been demonstrated many times that the query expansion technique [8, 1] signif-
icantly improves the quality of retrieval performance, especially on the recall. We in-



Efficient Image Detail Mining 5

Algorithm 1 Overview of the zooming algorithm. Note that step 5 represents a trade-off
between the query time and output quality.

Input: Bag-of-words of the query image Q
Output: Ranked list of images R

1. Fetch posting list of query visual words from inverted file.
2. Score with tf-idf weights and re-weight according to scale change of the

features. Create the shortlist.
3. Spatially verify images in the shortlist estimating affine transformation
A with RANSAC.

4. Rank images according to det(A) (descend order).
5. Group images.
6. Return the result or form the expanded query with context learning and

goto 1.

troduce a novel method for detail mining called hierarchical query expansion. After the
initial query, the image is divided into sub-regions and a new, expanded, query is issued
for each of the sub-regions. The partitioning of the image is driven by the density of
the photographed details – the focus of the crowds. Since people tend to take pictures
of individual and well aligned objects, regions depicted in a number of overlapping
images are good candidates for detail mining. There are three issues that need to be
addressed in order to efficiently deliver qualitatively appealing results: image coverage,
low redundancy, and consistency.

Image coverage and low redundancy. Typically, on well-known landmarks, certain de-
tails are photographed significantly more often than others. Considering only the top re-
sults without considering their spatial layout, as most of the query expansion approaches
do, would result in neglecting details that are still available in the image collection, but
are depicted on a lower number of photographs. In order to obtain details in all parts of
the image, lower ranked images that are not overlapping with higher ranked images are
considered.

For efficiency, the retrieved images are spatially clustered and large clusters are
sub-sampled. Each such cluster provides a simple generative model of a certain part
of the image on a higher resolution level than the original query. The clusters are used
to issue an expanded zoom-in query, to obtain further details. The procedure can be
iterated, however our experiments suggest that a single application of hierarchical query
expansion is sufficient to obtain most of the details present in the database.

Consistency. Since in our approach the user does not provide a region of interest, a
number of seemingly harmless and uninteresting regions, such as railings in the corner
of the image, can expand into enormous number of false positive images. To eliminate
such a topic drift, we introduce a novel mechanism to detect and eliminate inconsis-
tencies in the retrieved results. A test is performed as an additional spatial verification
between result images to ensure that no false positive will be introduced into any ex-
panded query. In the test, an affine transformation Aj,i mapping features from result
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image i to result image j is obtained. In addition, the mappings Aq,i and Aq,j to the
query image q estimated in the initial retrieval phase are used. For a consistent pair
of result images i and j, it holds Aq,i ≈ Aq,jAj,i. However, for false positive results
caused by repeated patterns or bursty features, the three mappings are typically incon-
sistent, see Figure 4.

query result i result j

Fig. 4: The geometric consistency test. The solid parallelogram in the query image de-
notes the projected image border of result j through the transformation estimated be-
tween the query and result j. The dashed parallelogram in the query image is again the
border of result j, now transformed by composition of transformations through result
image i. The dashed parallelogram in result i is the transformed image boundary from
result j.

3.2 Expansion regions selection

Images obtained by the zoom-in query (with a minimal scale change of 2) are first
filtered by geometric verification against the query image. Only images with at least t1
inliers are considered. The estimated mapping of the result images to the query is then
used to backproject the images. Consequently, the result images are grouped based on
location and scale in the query image. Finally, on each group a geometric consistency
test is performed, before the expanded queries are issued.

Choice of t1 parameter. The number of matching features as a level of confidence
of match correctness has been previously used in query expansion techniques [8]. In
our case, when a significant change of scale is required, the parameter t1 can be set
much lower than in standard query expansion. It stems from the fact that the number of
features exponentially decreases with the scale of the feature – this is caused by the scale
dependent non-maxima suppression in the feature detectors. Therefore, the probability
of random geometric match is substantially decreased by the requirement of zooming-
in. Experimentally, we have found that as little as two consistent features with a query
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image (t1 = 2) provides acceptable results. Note that this result is in combination with
a large vocabulary (16M visual words) and the novel geometric consistency test among
the result images. In our experiments, we set t1 = 4.

Result grouping. A simple greedy algorithm is used to group the result images for
the hierarchical query expansion. First, a place (a pixel) in the query image covered
by the largest number of images is found. The image with the highest estimated scale
change covering that pixel is selected as a cluster seed. Images with at least 50% overlap
with the seed image are included in the cluster. The cluster is removed and the whole
procedure is repeated.

Note that unlike in [28], the goal is not to produce an iconic view of the detail, but
to group images relevant to that certain detail for the purpose of query expansion. If the
size of the cluster is larger than 6 images, the 6 images with the largest scale change are
used for the query expansion for efficiency reasons.

Each cluster is subject to a geometric consistency test. First, inliers to the geomet-
ric transformation Aj,i between image pairs in a cluster are detected. For geometric
consistency, at least 50% of those matches need to be consistent with the composite
transformation Aj,qAq,i.

If a cluster contains only a single image and the consistency test cannot be evaluated,
such a cluster is discarded, unless it has at least t2 geometrically consistent features with
the query image and thus small probability of being a false match. In the presented ex-
periments t2 = 8. An example of clusters of geometrically consistent images is shown
in Figure 5.

Fig. 5: Groups of spatially verified images selected for further query expansion. The
original query is shown in the top-left corner with a blue border.
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3.3 Discussion

The proposed method can be seen as a special type of image clustering. In image clus-
tering, false links can be introduced by users inserting visual tags into their images, as
depicted in Figure 6. These links are difficult to detect and complex heuristics are often
used. Our approach naturally eliminates such issue, as a large scale change is required,
while the tags, no matter how complex, typically have a fixed scale.

Fig. 6: A common issue for image clustering methods. Totally unrelated scenes linked
via a graphical tag superimposed over the images.

4 Experiments

A search engine was built on a dataset of 620,000 images downloaded from Flickr,
searching for tags of famous landmarks, European countries and cities, and architec-
tonic keywords.

4.1 Dataset preparation

Following the common practice in the recent work on image retrieval, multi-scale Hessian-
affine features [17] were detected and described by the SIFT descriptor [15].

The hierarchical two level k-means algorithm with approximate nearest neighbor
[20] is used to learn a balanced vocabulary with 16 millions visual words [19]. The vo-
cabulary is learned on all 620,000 images (nearly 1.3× 109 SIFT descriptors). Mikulik
et al. [19] studied the effect of vocabulary size and showed that increasing it boosts the
performance of specific object retrieval and that the speed of tf-idf scoring is increased.
The speed is significantly increasing up to 16 million visual words with a negligible
increase up to 64 million words (the largest size tested).

One disadvantage of the large vocabularies – that the resulting search trees are un-
balanced – has been addressed by the shallow hierarchical tree proposed in [19]. The
second disadvantage is the higher computational complexity of building the large vo-
cabulary. The 16 million visual word dictionary is a compromise between the time
required for the offline vocabulary building and performance. According to [19], even
larger vocabularies would lead to higher performance.

As in [22], feature geometries are compressed. Four bits are allocated for scale and
12 bits for shape compression. The compressed geometries are stored in the inverted
file along with the visual words for fast access during DAAT scoring [27].
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We have manually annotated results for six different landmarks. As an example of
very difficult false positives even for humans, we show a selection of high ranked false
positives (Fig. 7) for the Arc de Triomphe query. The false positive images come from
the same landmark, just from a different side.

Fig. 7: Some highly ranked false positives for the Arc de Triomphe query (left).

4.2 Scale change

This experiment shows scale change in the highest ranked images for two different
settings. The standard retrieval system and our new method with query expansion, de-
signed for discovering as many details as possible, are compared. As it can be seen
from Figure 8, our method retrieves a large portion of detailed images. Figure 9 shows
that retrieved images from our system are more informative than images from standard
retrieval.

In case of the Astronomical clock from Figure 1, the displayed images – local max-
ima in the resolution, are in our method ranked in the first five in comparison to ranks
usually above 5000 in standard retrieval. As the length of the shortlist is limited be-
cause of efficiency, these images are not even considered for verification and thus are
surrounded by false positives.
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Fig. 8: Scale change for the 100 top scored images. Comparison of the standard nearest
neighbor (most similar) and zoom-in with hierarchical query expansion (QE) methods.
The query and the first few results are shown in Figure 9.
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Fig. 9: A comparison of the highest ranked images for two different settings. The query
image on the left is used in both cases. The first two rows on the right show top 20
results of the standard nearest neighbor (NN) system optimizing average precision (i.e.
similarity). The last two rows show the top 16 images after query expansion of chosen
groups of images. Note that while the NN search retrieves many very similar results,
the result of our approach is much more informative.

4.3 Maximum scale

Figures 10 and 11 show further examples of very fine details. The maximum scale is
typically achieved by images of some interesting detail or eventually by a false match,
as shown in Figures 10 and 11. The false matches are rare and are results of the query
expansion. The spatial consistency test is not performed on the final results to reduce
the response time.

On the other hand, the frequency distribution is dominated by a relatively small
(and thus not interesting) scale change from the query image. Most of such images
show people in front of the landmark with a part of the building in the background.
The biggest difference between the location of the details and frequently photographed
spots is in the Arc de Triomphe, where many people have their photo taken upwards
with the arc above them.

Quantitative results are given in Table 1. We summarize results over six different
landmark queries. The number of images that were retrieved as details of the landmark
showing scale change larger than 3, the value of largest zoom, and the number of false
positive images in top 10, 50, and 100 images with largest zoom were recorded. On
all landmarks, very fine details were detected with reasonable false positive rates. The
three tables compare results for different types of result verification. The most conser-
vative method based on standard spatial verification [24] combined with the proposed
geometric consistency of result groups produces very low false positive rates and the
lowest number of retrieved images. With the incremental spatial verification (iSP) [7],
the number of false positive images has the tendency to increase. This trend is further
pronounced when skipping the group geometric consistency test.

Speed performance of every stage of the proposed algorithm is recorded in Table 2.
Importance of the group consistency test stage is additionally amplified looking at these
results. Skipping this stage will not significantly decrease total duration of the query
but it will noticeably increase the number of false positives in several queries, i.e. in the
Notre Dame and the Arc de Triomphe query (as shown in Table 1).
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Table 1: Performance on the six annotated queries with different verification methods.
From left to right: query name, the number of retrieved images with zoom larger than 3,
the maximum zoom achieved, the number of false positives in top ten, fifty and hundred
retrieved images respectively.

Standard spatial verification with the proposed geometric consistency test on groups
Query NumImgs MaxZoom FP@10 FP@50 FP@100
Astronomical clock 2297 37.33 0 1 3
Sacre Cœur 174 16.47 0 6 16
St. Vitus Cathedral 398 32.64 0 3 8
Sagrada Familia 305 20.27 0 0 0
Notre Dame 510 34.84 0 0 0
Arc de Triomphe 444 27.46 1 9 19

iSP [7] with the geometric consistency test on groups
Query NumImgs MaxZoom FP@10 FP@50 FP@100
Astronomical clock 2564 29.25 3 8 18
Sacre Cœur 335 21.85 1 8 20
St. Vitus Cathedral 599 31.16 0 7 14
Sagrada Familia 348 22.92 0 4 6
Notre Dame 625 41.47 0 3 11
Arc de Triomphe 717 28.16 0 18 30

iSP [7] without the geometric consistency test on groups
Query NumImgs MaxZoom FP@10 FP@50 FP@100
Astronomical clock 3210 40.29 2 8 14
Sacre Cœur 623 26.71 1 7 20
St. Vitus Cathedral 651 31.16 0 5 17
Sagrada Familia 474 22.92 0 1 4
Notre Dame 777 41.47 6 22 33
Arc de Triomphe 912 28.17 1 22 45
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Fig. 10: Results of several queries. Starting with the original query image (top left),
the high resolution transform (HRT) (bottom left) is obtained and details are found
automatically. The retrieved images (right) with the largest relative scale change (after
removal of multiple examples of the same detail).
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Fig. 11: Results of several queries. Starting with the original query image (top left),
the high resolution transform (HRT) (bottom left) is obtained and details are found
automatically. The retrieved images (right) with the largest relative scale change (after
removal of multiple examples of the same detail). For the Astronomical clock query
five images with the largest relative scale change are shown in Figure 1 (right).
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Table 2: Duration of the highest resolution transform (HRT) as a whole and of all the
stages on a single 2.6 GHz machine. From left to right: query name, duration of the
initial zoom-in query, duration of the grouping stage, duration of the geometric consis-
tency test performed on each group, duration of QE query performed on each group,
total duration of the query.

Query Zoom-in Grouping Group SP hierQE Total
Astronomical clock 8.2s 4.8s 0.6s 25.0s 38.5s
Sacre Cœur 2.9s 1.1s 0.2s 5.1s 9.3s
St. Vitus Cathedral 8.3s 5.5s 0.7s 16.7s 31.2s
Sagrada Familia 1.6s 0.5s 0.1s 2.8s 5.0s
Notre Dame 10.3s 11.3s 0.8s 14.9s 37.3s
Arc de Triomphe 4.3s 2.8s 0.8s 13.4s 21.3s

5 Conclusions

A pair of novel problems has been formulated: given a query image, for every pixel,
find an image with the maximum resolution depicting it and find the most photographed
parts of the image. The solution to the problems relies on a hierarchical query expansion
that exploits the DAAT inverted files and a new geometric consistency verification step
that is sufficiently robust to prevent topic drift.

Experiments show that the false positive rate of the proposed method is well below
the level needed for user acceptability and that surprising details on the tested landmarks
are found, even those that are hardly noticeable by inspection in the query image. On a
single 2.6 GHz machine, the computation of the highest resolution transform takes 5 to
40 seconds depending mainly on the number of relevant images.

Acknowledgement. The authors were supported by the MSMT LL1303 ERC-CZ, GACR
P103/12/G084, and SGS13/142/OHK3/2T/13 grants.
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