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Abstract
Structure-based localization is the task of finding the ab-

solute pose of a given query image w.r.t. a pre-computed
3D model. While this is almost trivial at small scale, spe-
cial care must be taken as the size of the 3D model grows,
because straight-forward descriptor matching becomes in-
effective due to the large memory footprint of the model,
as well as the strictness of the ratio test in 3D. Recently,
several authors have tried to overcome these problems, ei-
ther by a smart compression of the 3D model or by clever
sampling strategies for geometric verification. Here we ex-
plore an orthogonal strategy, which uses all the 3D points
and standard sampling, but performs feature matching im-
plicitly, by quantization into a fine vocabulary. We show
that although this matching is ambiguous and gives rise to
3D hyperpoints when matching each 2D query feature in
isolation, a simple voting strategy, which enforces the fact
that the selected 3D points shall be co-visible, can reliably
find a locally unique 2D-3D point assignment. Experiments
on two large-scale datasets demonstrate that our method
achieves state-of-the-art performance, while the memory
footprint is greatly reduced, since only visual word labels
but no 3D point descriptors need to be stored.

1. Introduction
The continuously increasing amount of available im-

agery enables Structure-from-Motion (SfM) systems to pro-
duce larger and larger 3D scene models. In turn, these re-
constructions can be used in visual navigation tasks to en-
able humans or autonomous vehicles to stay localized in
their surrounding, by estimating camera poses w.r.t. to the
model. Naturally, scalable localization becomes an issue as
the size of the reconstructions increases.

Many state-of-the-art approaches for structure-based lo-
calization associate image descriptors [5,21] with the scene
points during SfM reconstruction, and use these to establish
the 2D-3D matches required for pose estimation [9, 15, 20,
29,34]. The most obvious issue w.r.t. scalability is memory

Figure 1: Correct camera pose estimation despite the pres-
ence of a repetitive pattern, as achieved by the proposed
method for one of the query images of San Francisco.

consumption: large models easily contain hundreds of mil-
lions of descriptors, which require tens of gigabytes of stor-
age space (actually often more than the underlying image
database). Model compression schemes try to mitigate this
problem by reducing the 3D model to a small fraction of all
available scene points [6, 19, 26]. These schemes achieve
impressive compression rates, but the smaller number of
points also translates into fewer matches and thus a larger
number of images that cannot be localized.

A second, more subtle problem with growing model
size is that the discriminative power of the descriptors de-
creases. As the descriptor space becomes more densely
populated, matching features by nearest-neighbor search in
that space becomes more ambiguous; and the widely used
ratio test [21], which defines a match as a point whose dis-
tance to the nearest neighbor in descriptor space is a lot
lower than to the 2nd-nearest neighbor, becomes too strict.
One can use location recognition [3, 8, 31, 35] and image
retrieval techniques [10, 27, 32] to first narrow down the
search to smaller sub-regions of the model [7, 15, 30] with
fewer scene points to match to. Empirically, though, pure
descriptor matching mostly outperforms retrieval-based ap-
proaches on large datasets, since the latter are prone to false
positives (wrong localizations).
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In this paper, we propose to perform model compression
by quantizing the point descriptors, instead of removing
3D scene points or using “mean descriptors” per 3D point.
Using a fine visual vocabulary [13, 22, 33] enables us to
represent each descriptor just by its word ID. Thanks to
the size of the vocabulary (16M visual words), this does
not introduce too much quantization noise. The vocabu-
lary implicitly defines reasonable neighborhood sizes in the
descriptor space, without the need to explicitly search for
the 2nd-nearest neighbor. Note that each 3D point can be,
and typically will be, assigned to more than one word ID,
because of the variability of its descriptors from different
images. This makes the approach very different from us-
ing the mean descriptors per 3D point. At the same time,
each ID will be assigned to many 3D points in the model.
That means that when the 2D features from the query im-
age are quantized with the same vocabulary, there are mul-
tiple potentially matching 3D points for each of them. The
trick in our method is to not force each individual 2D fea-
ture to find a unique match, but instead to form hyperpoints,
i.e., sets of potential 3D correspondences for each 2D fea-
ture, which are locally unique. These hyperpoints can be
disambiguated a lot more reliably than individual matches:
by aggregating information from all hyperpoints through a
simple voting procedure (as in image retrieval) the model
is pruned to a set of promising locations. At each loca-
tion, the hyperpoints turn into ordinary one-to-one matches,
because of their local uniqueness. Having established the
matches, one can proceed to pose estimation (geometric
verification) with standard RANSAC [12]. We will show
that this “delayed disambiguation” of matches compares fa-
vorably both against direct matching of point descriptors
and against location recognition. The hyperpoint method
achieves a higher number of correct poses (recall) with the
same precision, respectively a lower number of false local-
izations with the same recall.

The contributions of the present paper are: (i) we demon-
strate that using an inverted file with 16M visual words
(IDs) is sufficient to achieve a localization rate on par with
state-of-the-art approaches that must manage hundreds of
millions of descriptors [20]; (ii) we show that enforcing lo-
cal uniqueness of the matches returned by the vocabulary
significantly boosts the localization performance; (iii) we
demonstrate that the benefit of having a 3D model (as op-
posed to pure image retrieval) lies not only in the stricter
geometric verification; rather, it also boosts the number of
votes in the retrieval stage; (iv) we analyze common failure
cases that lead to wrong pose estimates (false positives), and
show that some of these can be avoided by re-ranking based
on a simple measure of the inlier distribution in the image.

2. Related Work
When a SfM model of the scene is available, query image

descriptors can be directly matched with 3D scene points,

by storing for each 3D point the descriptors of the 2D points
it originates from. In order to accelerate the matching, prior-
itized search strategies try to only consider a small subset of
features that is likely to yield matches at low cost [28], or a
set of scene points that is likely to be visible in the query im-
age [9,19]. For larger models, some of the matches lost due
to the strictness of the ratio test can be recovered by back-
matching selected 3D points against the image, exploiting
the co-visibility of scene points [9, 20, 29]. State-of-the-art
methods relax the threshold of the ratio test, and prefer to
handle a larger proportion of false correspondences through
a more involved geometric verification [20,34]. In contrast,
using a large vocabulary to find a set of locally unique corre-
spondences makes our approach largely independent of the
density in descriptor space.

In order to accelerate 3D-to-2D matching, [19] select a
subset of all 3D points in such a way that every camera
used in the reconstruction observes enough selected points,
which is formulated as a set cover problem. The same
problem is modeled as a mixed-integer quadratic program
in [26], allowing them to incorporate additional constraints
(at the cost of higher run-time). [6] demonstrate that by
incorporating information about the density in descriptor
space one can achieve a high rate of correct localizations
with fewer points. Still, the method involves a trade-off
between memory consumption and localization rate, and
can localize fewer images than, e.g., [20]. Instead of us-
ing descriptors, [11] learn classifiers to correlate query fea-
tures and 3D points, simultaneously reducing the memory
requirements and providing a run-time independent of the
model size. However, their method requires a rough prior
on the position, e.g., from GPS, to handle large datasets.

Location recognition methods represent a scene as a set
of geo-tagged images, and then use bag-of-words type im-
age retrieval [27, 32] to identify database images similar to
the query. The basic method has been refined to include
vocabulary trees [25], query expansion [10], and bursti-
ness suppression [17]. [31] select discriminative features
that only occur at a few locations to improve the retrieval
performance, and conversely [18] remove frequent visual
words that are shared between unrelated locations. [7] clus-
ter related database images and learn classifiers on top of the
bag-of-words model to better distinguish between different
places in the scene, effectively also down-weighting words
that occur often. In contrast, [35] actively exploit repetitive
structures to improve location recognition in urban scenes
where they typically appear.

In order to better handle viewpoint changes, [15] gen-
erate synthetic views to improve the retrieval performance.
[30] use Hamming embedding [16] to simulate a finer vo-
cabulary and suppress incorrect votes. [3] show that down-
weighting uninformative parts of the Hamming space based
on density estimation boosts the recall of location retrieval.



[4, 8] use vanishing points to normalize features against
changes in viewpoint before attempting retrieval, and also
confirm that obvious position priors based on GPS improve
location recognition in large scenes.

While the methods mentioned so far rely on visual vo-
cabularies, [36, 37] work with the original feature descrip-
tors. [36] use the nearest neighbors found for each query
feature to vote for their associated GPS positions. [37] is
related to our approach in that they also determine a con-
sistent set of matches for all query features from a larger
set of potential matches with multiple images. Their for-
mulation leads to an NP-hard generalized minimum clique
problem. In contrast, we solve the disambiguation problem
using image retrieval by exploiting the local uniqueness of
hyperpoints.

Recently, [33] have shown that exhaustive geometric ver-
ification is feasible even for databases containing billions of
images, if one uses a fine vocabulary. A similar idea was
used in the context of SfM computation in [13], where de-
scriptor matching is replaced by finding collisions in a very
fine vocabulary [22]. These examples show that quantiza-
tion w.r.t. a fine vocabulary, as opposed to the coarse vo-
cabularies commonly used for retrieval, can to some extent
replace a matching routine. In this paper, we explore the
potential of a fine vocabulary for the localization problem.

3. Locally Unique Descriptor Matching
Rather than removing points from a reconstruction, and

thus losing useful information, this paper presents a com-
pression scheme based on quantizing descriptors. Fig. 2
illustrates our pipeline. We use a fine visual vocabu-
lary, consisting of 16M words, to find potentially match-
ing 3D points for each feature in a query image. The ad-
vantage of our approach is that it easily scales to large
datasets since adding a point and its descriptors requires
only a few additional bytes. Naturally, establishing matches
based on quantization leads to ambiguous matches where
a feature is linked with two or more points that can be ob-
served together. As the main contribution of the paper, we
therefore propose a method that selects a subset of locally
unique matches and shows that enforcing local consistency
improves the localization rate. Having obtained sets of lo-
cally unique matches, we can efficiently find the parts of
the model most likely to be visible in the query image by
solving an image retrieval problem. In turn, each retrieved
image defines a set of unique matches, enabling the use of
simple RANSAC-based camera pose estimation.

The use of locally unique matches is motivated by the
way SfM methods construct 3D models, where feature
tracks are obtained by matching local features between
database images, followed by rejecting ambiguous matches
using the ratio test. Thus, only locally unique matches are
triangulated to 3D points and we can expect that enforcing

local uniqueness will not reject too many correct matches.
In the following, we first define the property of local

uniqueness for a set of 2D-3D matches. As a result of
this new matching strategy, a query feature might be linked
with multiple 3D points. Inspired by the definition of hy-
pergraphs, where an edge can contain multiple vertices,
we refer to such a collection of points as a hyperpoint.
After defining local uniqueness, we describe an approach
for computing hyperpoints based on a fine visual vocabu-
lary [22] (c.f . Sec. 3.2). Section 4 then details how im-
age retrieval is used together with hyperpoints for structure-
based localization, where Sections 4.3 and 4.4 explain how
to exploit co-visibility information from the SfM process
to improve the retrieval performance. Finally, Section 4.5
discusses problems in camera pose estimation specific to
matching with vocabularies.

3.1. Hyperpoints

The 3D points and cameras1 in a SfM reconstruction de-
fine the bipartite visibility graph G = (P ∪ C, E) [19] (c.f .
Fig. 2). Each node p ∈ P corresponds to a 3D point in the
model while each node c ∈ C corresponds to a camera. The
graph contains an edge {p, c} if the camera corresponding
to c observes the 3D point p. Typically, the visibility graph
is used to define the co-visibility relation between pairs of
points [19, 20, 29]. Let

C(p) = {c ∈ C | {p, c} ∈ E} (1)
be the set of cameras observing a point p. Two points p1, p2
are considered co-visible if C(p1) ∩ C(p2) 6= ∅.

Let rs(f, p) be any function rating the similarity be-
tween the descriptor of a query feature f and the descrip-
tors of a 3D point p. Given some threshold τ on the simi-
larity function, we can obtain a set of potentially matching
points. For example, the red feature in the query image in
Fig. 2 potentially matches to two 3D points that are not co-
visible. In that case, consistency with other feature matches
can be exploited to disambiguate the correspondence. In
contrast, two of the points matching the blue feature are
co-visible and thus cannot be disambiguated by other fea-
tures. We seek to find a set of locally unique matches
H(f) = {p | rs(f, p) > τ}, in the following also referred
to as a hyperpoint, containing no co-visible points by de-
tecting and removing local ambiguities.

Given that most local descriptors are not viewpoint in-
variant, we experimented with using only a subset of all
cameras from C(p) to define co-visibility. Yet, initial exper-
iments showed that using all cameras gives the best results.

3.2. Hyperpoints and Fine Vocabularies

Based on the definition of local uniqueness given above,
we aim to compute a hyperpoint H(f) for each feature f in

1To avoid ambiguities, we refer to the images in the reconstruction as
cameras throughout the paper.
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Figure 2: The proposed localization pipeline. Using a fine visual vocabulary, we obtain a set of potential matching points for
each feature in the query image. The visibility graph, encapsulating the visibility relation between 3D points and cameras in a
reconstruction, is then used to obtain a hyperpoint, i.e., a set of locally unique matching points, for each feature (c.f . Sec. 3).
In order to find sets of probable matches, each point contained in a hyperpoint votes for the cameras in the reconstruction
from which it was triangulated (c.f . Sec. 4). For each such set, the camera pose for the query image is estimated using
RANSAC, starting with the camera that receives most votes (black).

the query image. We solve this problem by first computing
a set of potentially matching points P(f) = {p | rs(f, p) >
τ} and then enforcing local uniqueness.

A vocabulary-based similarity function. Ideally, we
would like to include a point into a hyperpoint only if its
descriptor is ”very similar” to the feature’s descriptor while
rejecting as many points as possible. Yet, finding a good
similarity function rs is hard. Many descriptor spaces,
e.g., SIFT [21] and SURF [5], consist of regions of vary-
ing density, which needs to be considered when designing
rs. K-means quantization, i.e., training a visual vocabu-
lary, automatically adapts to this fact by creating smaller
Voronoi cells in regions with higher density. While it has
been shown that vocabularies containing hundreds of thou-
sands words are too coarse to create discriminative matches
[30], fine vocabularies containing tens of millions of de-
scriptors have recently enjoyed some success in image re-
trieval [22, 23, 33] and feature matching [13]. In this paper,
we thus use a fine vocabulary V to compute the set P(f) of
potentially matching points.

Let V(p) ⊂ V be the set of visual words to which the
descriptors associated with p are quantized, and let ω1, . . . ,
ωk be the k words in V closest to the descriptor of a query
feature f , where ωi is the ith-nearest neighboring word of f .
The set of potentially matching points for f then consists of
all points mapped to one of the k closest words of f , i.e.,

P(f) = {p | V(p) ∩ {ω1, ..., ωk} 6= ∅} . (2)

After determining P(f) through look-ups in an inverted file
structure, we next select a subset of all points from P(f)
to form the hyperpoint H(f). Intuitively, we want to add a
point p ∈ P(f) toH(f) if there is no other point p′ ∈ P(f)
co-visible with p that has a descriptor more similar to f .
Since we use visual words instead of the full descriptors, we
measure descriptor similarity by the word rank rank(p, f).
The point p has word rank i, i.e., rank(p, f) = i, if one of
the descriptors of p is assigned to ωi, while at the same time
none of p’s descriptors is assigned to a closer word ωj with

j < i. A point p ∈ P(f) is then added to H(f) if it has a
smaller word rank than any of its co-visible points, i.e.,

H(f) ={p ∈ P(f) | ∀p′ ∈ P(f) \ {p} : (3)
C(p) ∩ C(p′) = ∅ ∨ rank(p, f) < rank(p′, f)} .

In case two co-visible points have the same word rank, none
of them is included inH(f). As a result, all locally ambigu-
ous matches, e.g., arising from locally repeating structures,
are removed. Thus, we obtain a unique hyperpoint per fea-
ture that does not contain any pair of co-visible points.

In practice, at most one feature in the query image can
correspond to the projection of a given 3D point. We thus
actively enforce that each point is contained in at most one
hyperpoint. Before computing the set P(f) for each feature
f , we check for every point whether its visual words are
contained in the closest words of multiple features. A point
p is only added to P(f) if f is its nearest neighbor in the
image, i.e., rank(p, f) < rank(p, f ′) holds for every other
feature f ′ 6= f . Consequently, all hyperpoints are disjoint,
i.e., no 3D point is contained in more than one hyperpoint.

4. Localization Using Hyperpoints
Having obtained a hyperpoint H(f) for each query fea-

ture f , we next seek to find a set of consistent matches
to be used for camera pose estimation inside a RANSAC
loop [12]. A set of consistent matches contains at most one
point from each hyperpoint such that all selected points are
co-visible, i.e., come from the same part of the scene. At the
same time, no point should be contained in more than one
correspondence. Given a set of 1-to-many matches for each
feature in a query image, [37] consider the similar prob-
lem of selecting one match per feature. They model this
problem as a variant of the NP-hard generalized minimum
clique problem, which they solved approximately. In the
following, we show that the local uniqueness property of
the hyperpoints and the visibility graph allow us to express
the match selection problem as a (computationally) much
simpler image retrieval problem.



4.1. Hyperpoints And The Visibility Graph
Consider a camera c ∈ C from the visibility graph and

the set of points P(c) = {p ∈ P | ∃{p, c} ∈ E} visible in
that camera. By the definition of hyperpoints, each feature
is contained only once in the set of matches

M(c) = {(f, p) | p ∈ H(f) ∩ P(c)} (4)

obtained by intersecting P(c) with the points contained in
the hyperpoints. This is due to local uniqueness enforced
when constructing a hyperpoint. If there were correspon-
dences (f, p), (f, p′) ∈ M(c), then H(f) would contain
two co-visible points. Thus, selecting a camera in the view-
ing graph automatically defines a set of consistent matches
since we enforce that each point is contained in at most
one hyperpoint. As noted above, we observe that wrong
matches are often spread over the full model while correct
matches form a dense cluster in the visibility graph. Un-
der the assumption of perfect co-visibility information, the
consistent set of matches containing the correct correspon-
dences can be found by determining the camera c ∈ C as-
sociated with the largest set M(c). This camera can be ef-
ficiently computed by having each point p contained in hy-
perpoint H(f) vote for all images from C(p), i.e., by solv-
ing an image retrieval problem.

4.2. Solving The Retrieval Problem
In practice, cameras observing many points are more

likely to obtain more votes. Thus, it is necessary to weight
the raw number of consistent matches for c based on P(c).
Instead of simply counting the number of matches per cam-
era, the goal of using a weighting scheme is thus to identify
a region which contains significantly more matches than
can be explained by the background noise caused by in-
correct correspondences. One possible weighting scheme
is the well-known inverse document frequency weight [32],
which gives visual words contained in many cameras less
influence. Another possibility is to employ the inter-image
burstiness2 scheme from [17] that weights each vote by
1/
√
|P(c)|. Notice that intra-image burstiness, i.e., the

same word co-occurring multiple times in a camera, is auto-
matically handled by our definition of hyperpoints. In addi-
tion to a weighting scheme, we also employ one of the weak
geometric consistency filters from [16]. For a camera c, the
feature orientations of the query feature f and its matching
point p ∈ P define a constraint on the rotation along the
principal axis between the query camera and c. We quan-
tize the space of relative orientations voting into 12 bins,
each covering 30◦. Each match (f, p) adds its weight to all
bins whose center differs by at most 30◦ from the relative
orientation between f and p. When performing spatial veri-
fication (c.f . Sec. 4.5), only the features associated with the

2Burstiness is the phenomenon that some combination of words occur
much more often together than predicted by assuming an independent uni-
form distribution.

bin with the largest weight are used. Naturally, we use an
inverted file system for efficient voting.

4.3. Recovering Votes Lost To Quantization
In a traditional image retrieval system, each entry in an

inverted file corresponds to a feature in a database image.
Using a visual vocabulary, i.e., a quantization of the de-
scriptor space, introduces artifacts, where a query feature
and its corresponding image feature are mapped to different
words. Consequently, correct votes are lost due to quanti-
zation, even if k > 1 words are used for each query feature.
This is especially true for the large vocabularies that we are
using in this paper [22]. As a result, the point actually cor-
responding to a feature f might be (partially) missing from
H(f). [22] therefore propose to learn a probabilistic sim-
ilarity measure that related visual words. Unfortunately,
learning this measure requires a massive amount of data.

Fortunately, some of the lost votes can easily be recov-
ered by exploiting the visibility graph. If a point p is con-
tained in a hyperpoint H(f), the visibility graph defines all
cameras observing p, even if p’s descriptor extracted from
the image belonging to a camera c is mapped to a differ-
ent word. For this reason, our approach casts votes for all
cameras from C(p). Our experimental results will show that
exploiting these associations increases the retrieval perfor-
mance compared to the classic approach of treating each
inverted file entry as an independent observation.

4.4. Match Expansion
The cameras contained in the SfM reconstruction repre-

sent a subset of all possible views on the scene. Thus, it is
likely that there exists no camera that observes all correct
matches between query features and model points. Only
considering points visible in a camera c for pose estimation
will thus ignore correct correspondences, which in turn can
severely degrade the quality of the pose estimate or prevent
successful pose estimation altogether if too many matches
are lost. Again, the visibility graph enables us to recover
additional matches for a camera c before pose estimation
by including correspondences found for similar cameras.

For a given camera c observing points P(c), let

C(c) =
⋃

p∈P(c)

C(p) (5)

be the set of other cameras that observe at least one point
from P(c). In order to obtain more matches for camera
pose estimation, we consider the set of 3D points

Pext(c) = {p | ∃c′ ∈ C(c) : p ∈ P(c′)} (6)

visible in any of these cameras. We consequently enlarge
the set of initial matchesM(c) found inside the hyperpoints
(c.f . Eq. 4) to

Mext(c) =M(c) ∪ {(f, p) | p ∈ H(f) ∩ Pext(c)} , (7)



Figure 3: A sample query image with a pose that has more
than 30 inliers even though it is obviously wrong. Inliers are
only found in a small region of the image, forcing pose es-
timation to place the camera far away from the scene. Note
that structure-based localization approaches typically use a
threshold of 12 inliers to detect bad poses.

i.e., we use all matches found for the cameras from C(c).
Obviously, we could extend the set of matches even fur-
ther by expanding C(c). However, an experimental analysis
showed that from a set of correctly matching points, only
few are not contained in the extended set.

The match expansion step might violate the local unique-
ness property. However, we found that only few features
actually receive multi-matches. In addition, the effective in-
lier rate [15] that we use for re-ranking after performing
pose estimation for the top-N ranked cameras automatically
handles these multi-matches (c.f . Sec. 4.5). Thus, we do not
adapt the definition of hyperpoints.

Notice that we do not use the additional matches during
voting. The rationale behind this decision is to avoid casting
too many votes as these lead to a higher background noise
during voting, making it harder to distinguish between un-
related cameras with many associated matches and relevant
cameras with only few votes.

Obviously, our match expansion is strongly related to
query expansion [10]. Query expansion augments the query
with geometrically verified features from already retrieved
images. In contrast, match expansion is performed before
spatial verification.

4.5. Ranking Pose Estimates
Structure-based localization methods that employ image

retrieval typically rely on the original feature descriptors to
establish the 2D-3D matches required for camera pose es-
timation [7, 15, 30]. For each camera c, they only match
against the points visible in it. Thus, they can safely ap-
ply the ratio test, enabling them to reject most wrong cor-
respondences before RANSAC-based camera pose estima-
tion. As a result, poses estimated from incorrect matches
usually have few inliers. Re-ranking the poses computed for
the top-N ranked cameras based on their number of inliers
therefore usually lists the best pose first. Unfortunately, we
found out that poses computed with our method do not nec-
essarily follow this behavior.

Even when using a fine vocabulary, we noticed that we

usually find quite many matches for unrelated cameras if
the query image is highly textured, e.g., when showing
skyscrapers. Consequently, we were able to observe cam-
era poses that look obviously wrong to a human observer
but nonetheless received many inliers and were considered
best after re-ranking.

In particular, we noticed two popular failure cases (c.f .
Fig. 3). Often, the computed camera pose differs signif-
icantly from the viewing direction of the camera c which
triggered pose estimation (to a degree that the query camera
was placed behind the walls of a building) and/or most of
the inliers were found in a small region of the image. In
the following, we discuss two simple approaches to handle
these error cases.

The first failure case, an estimated pose differing signif-
icantly from the pose of the camera c, can be handled by
enforcing a geometric constraint during RANSAC. Let p,
c ∈ R3 be the positions of a point p and the camera center
of a camera c, respectively. Consider the current pose esti-
mate of RANSAC with camera center cest and a point p that
satisfies the threshold on the reprojection error. p should
only be counted as an inlier if the estimated pose observes
p under a similar viewing direction as c, i.e., if

(cest − p)
T
(c− p)

T

‖cest − p‖2‖c− p‖2
≤ cosα , (8)

where α is some threshold on the angle.
The second failure case is caused by finding many inliers

in a small region of the image. In this case, we observed that
RANSAC preferred to find poses far away from the scene,
even if the internal calibration was known. Instead of rat-
ing a pose based on its number of inliers, we use a slightly
adapted version of the effective inlier count from [14, 15],
which takes the distribution of inliers in the query image
into account. Each matching feature covers an square of
side length 2r, where r is the threshold on the reprojec-
tion error that is used to distinguish inliers and outliers. Let
Ainliers be the total area covered by all inlier features. The
effective inlier count is then defined as

Ieffective = I ·Ainliers/(I · 4r2) = Ainliers/(4r
2) , (9)

where I is the number of inliers found by RANSAC. The
measure thus expresses how well the distribution of inliers
in the query image resembles a “perfect” distribution where
all inliers are at least 2r pixels apart. Notice that a feature
matching to multiple points will contribute at most once to
the effective inlier count.

Instead of using a constant radius, [14, 15] use a radius
that is proportional to the number of feature matches and
normalize by the area covered by all matching features. We
use our formulation because it is simpler to compute and
we did not notice much difference between the two formu-
lations. Similarly, we tried normalizing by the area covered



by all features found in the query image to obtain a score
that is comparable between images. We found little differ-
ence in re-ranking compared to the effective inlier count.

While pretty simple, we show in Section 5 that the pro-
posed re-ranking scheme significantly improves the rank-
ing quality compared to using the number of inliers. Notice
that this measure only depends on the feature geometry in
the image and is thus also applicable for standard retrieval
pipelines where spatial verification is performed using 2D-
2D matches. As a nice side effect, multi-matches found for
a feature will contribute at most once to the measure.

Finally, we want to point out one advantage of our ap-
proach compared to structure-based methods using image
retrieval. Since the latter methods perform feature match-
ing using the original descriptors, they can only consider a
small number of top-ranked cameras (usually set to 10) in
a reasonable time. In contrast, our method uses the same
matches for voting and pose estimation, making RANSAC-
based pose estimation the bottleneck in our pipeline. Still,
we found that we can easily consider the top-100 ranked
images in a few seconds per image.

5. Experiments
The proposed method is validated on the San Francisco

dataset [8], namely model SF-0 [20] using 610k out of the
1.06M available images and having 30M 3D points, and the
Landmarks dataset [20] depicting 1,000 famous landmarks
in 205k images and 38M 3D points.

5.1. San Francisco
First, a fine vocabulary specific for the dataset is created

using SF-0’s SIFT descriptors corresponding to the projec-
tions of the triangulated scene 3D points. We use an ap-
proximate hierarchical k-means approach with an average
branching factor of 4,096 to efficiently create a vocabulary
of 16M visual words [22]. This two-level setup decreases
the average assignment time by better balancing the tree.
For assigning efficiency, an approximate nearest neighbor
search algorithm, FLANN [24], is used. It has been shown
in [22] that, given a sufficiently large training set, using a
higher number of visual words will boost retrieval perfor-
mance while reducing query time. We think that a vocab-
ulary containing 16M visual words is a good compromise
between the time needed to build a vocabulary on one side
and the performance with average query time on the other
side. The described vocabulary was recently proven to work
in efficient image detail retrieval as well [23].

Having the vocabulary, the descriptors of both the
database and query images are quantized w.r.t. it. The need
to quantize query image descriptors brings just a small over-
head in means of runtime, which is not drastically different
from the time needed to extract the features themselves. To
deal with quantization noise, we assign each query descrip-
tor to up to nine nearest neighboring words that can be lo-
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Figure 4: Ablation study for our method on SF-0 dataset.
The proposed approach uses 7 nearest neighbors, employs
all the proposed enhancements, retrieves top-100 images,
constrains the camera orientation by 30◦, and uses effective
inlier rate to re-rank and select the best pose (if any). Note
that the achieved recall for 95% precision is 61.9%.

cated in the five best branches of the first vocabulary level.
In contrast, only the nearest word of each 3D point descrip-
tor is used as to reduce the size of the inverted files and
minimize the query time.

The results are reported for the improved GT from
2014 [3]. Following the protocol from [20], a query im-
age is considered being correctly localized if at least one of
the inliers lies on the correct building. Namely, we are in-
terested in precision/recall @1 measure, which is
the most relevant for the localization task: the user wants
to know her location in the model with high reliability –
the performance is usually measured by the recall at 95%
precision value [8]. The measure typically used by image
retrieval methods, recall@N, does not apply well in here
because user interaction would be needed to select from
multiple retrieved poses.

In Fig. 4, we present the results of the ablation study.
The curves are obtained by varying the (effective) inlier
threshold that decides when an image is considered local-
ized. Thus, the curves can have a positive slope as increas-
ing recall by lowering the threshold does not necessarily
increase the number of false positive localizations. Fig. 4b
shows results for the different matching schemes when us-
ing the 7 nearest words for each query feature, the proposed
re-ranking scheme using the effective inlier counts, and an
angle threshold of α = 30◦ (c.f . Eqn. 8). Compared to
casting additional votes and performing match expansion,
hyperpoints provide the largest improvement over the base-



line of using all matches. Thus, using hyperpoints is the
most important part of our approach. Fig. 4a shows that
changing the number of nearest neighboring words only has
a minor impact on recall for SF-0 when using at least two
words. The constraint on camera orientation has a relatively
small impact on the performance of the method, but yet can
yield additional 2% of recall (c.f . Fig. 4c). Fig. 4d shows
that re-ranking based on raw inlier counts performs inferior
to using effective inlier counts.

The noticeable drop in Fig. 4a when using just the near-
est word suggests that a significant amount of matching
points are quantized to a different word than their corre-
sponding image features. Due to a lack of ground truth,
exactly estimating how many matches are lost due to quan-
tization is impossible. For a same-sized vocabulary, [13]
report that about 50% of all potential matches are lost when
using only the nearest word. We found that for about 1/3
of all points, more than 50% of their descriptors quantize to
the same word. The largest inverted file record contains 75
descriptors, while the mean size of non-empty records is 9.

Next, we show how our performance relates to compet-
ing approaches. As most of them rely on RootSIFT [2], we
trained a RootSIFT-based vocabulary for SF-0, too, which
in turn brought us on average an additional 1.5% of recall,
see Fig. 5a. For the absolute recall value, DisLoc [3] works
the best, especially in the variant with spatial verification
(+sp), but the proposed method (namely its RootSIFT vari-
ant) is better for precision higher than 90%. At a preci-
sion of 95%, [3] achieve a 56.6% recall. Our approach
with RootSIFT obtains 63.5%, i.e., in the high-precision
regime we outperform [3] by 12% relatively. To compare
with [20], the original GT from 2011 was used. For 95%
precision, [20] achieve a recall of 54.2% using all point de-
scriptors (memory footprint 19.0 GB, see the supplementary
material [1] for details), respectively 50.2% when using a
single mean descriptor per point (4.9 GB). In contrast we
achieve a 59.1% recall (also using 4.9 GB), corresponding
to 9%, respectively 17.7% relative improvement. This re-
sult is interesting, as it shows that matching based on a vi-
sual vocabulary can actually outperform matching with full
descriptors.

5.2. Landmarks
In order to test our approach on the Landmarks dataset,

we trained two new specific fine vocabularies, one for SIFT
and another for RootSIFT. Note that this is due to the
fact that SF-0 and Landmarks use different SIFT extractors
whose outputs are not fully compatible. In the evaluation,
a landmark is considered being correctly recognized if at
least 12 inliers are found and the majority of them belongs
to the GT landmark. For a fair comparison with [7], we re-
trieve only the top-10 images. We also only use the nearest
word for each feature. Using more neighbors reduces the
overall recall as the large number of features found in the
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Figure 5: (a) Comparison of the proposed method with
competing approaches on San Francisco. Note that, op-
posed to these methods, we do not use all the available
database images but only a subset (SF-0) which makes lo-
calization of some of the query images impossible. (b) Re-
sults for Landmarks dataset using only the nearest word and
top-10 retrieved images.

query images leads to many votes for unrelated cameras.
Using a single-threaded C++ implementation on a standard
Intel i7-based PC, we processed the 10,000 query images
in about 3.5 hours (c.f . Fig. 5b). For the 12 inlier thresh-
old, we correctly localized 89.1% of images with precision
96.8% for SIFT and 91.1% of images with precision 96.9%
for RootSIFT. This clearly outperforms even the recall
@10 value 81.2% from [7] showing the benefit of having a
fine vocabulary, opposed to a coarse one. Also the registra-
tion performance reported for the compressed models [6] is
outperformed. Yet, our method does not reach the almost
perfect performance of the method using all the descrip-
tors [20].

6. Conclusions
We have presented a localization pipeline able to deliver

reliable camera poses w.r.t. large-scale 3D scene models in
favorable run-time thanks to the novel concept of hyper-
points. Hyperpoints allow to separate the difficult problem
of finding a unique 2D-3D matching into two simpler ones:
(i) establishing locally unique 2D-3D matches using a fine
visual vocabulary and the visibility graph of the model and
(ii) disambiguating these matches globally by using image
retrieval techniques and the visibility information from the
model again. The proposed method proved to have state-
of-the-art localization performance for the SF-0 dataset and
a competitive performance on Landmarks considering the
methods performing model compression.

Future work comprises of testing the concept of hyper-
points in combination with more advanced image retrieval
approaches which are able to achieve a higher overall re-
call than our simple voting scheme. We would also like to
test the performance of the proposed method in conjuncture
with the projection to lower dimensional spaces.
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