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Range Image Registration Problem

Difficulties

• Half-occlusion ⇒ solutions are ‘partial’ matchings

• Finite resolution ⇒

1. ‘true correspondences’ are not discrete

2. surface discretization is not viewpoint-
invariant

• Occluding boundary artefacts ⇒ robust methods

In This Talk

• A robust matching method

• for partial (incomplete) matchings,

• which is algorithmically efficient.

• This is possible in discrete optimization framework of graph kernels.

Assumptions: rigid objects, no texture information
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Posing the Surface Registration Problem
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y1 = T1 x1

y2 = T2 x2

putative correspondence:

(xi, yi; Ti)

Task: Find matching M : S1 → S2 and registration parameters T = {R, t} under:

• similarity of invariants F :

(x,y) ∈ M if F (x) ∼ F (y) x ∈ S1, y ∈ S2

• geometric compatibility of covariants xi, ni, etc:

Tp = Tq (= T) for all p, q ∈ M

• uniqueness constraint: each point xj is matched at most once
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Checking Compatibility of Covariants is Cheap

• checking T1 = T2 = T does need the knowledge of T1, T2

S2

y2

y1

S1

x1

x2

M

y1 = T1 x1

y2 = T2 x2

A single correspondence does not

provide all parameters of T, but

a pair overconstrains it!

• given positions xi, yi and normal vectors ni, mi, we know

yi = Ri (xi − t), mi = Ri ni, i = 1, 2

T1 = T2 iff there is a special orthogonal matrix R such that

[y2 − y1, m2, m1] = R [x2 − x1, n2, n1]
⇒

a Yes/No T1=T2

compatibility

condition over

correspondence pairs

• R: 3 parameters ⇒ highly redundant condition

• a weaker necessary condition is, e.g. ‖y2 − y1‖ = ‖x2 − x1‖
• together with n we also use a splash-like structure matrix (see the paper)
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Invariant Features & Their Similarity

elementary oriented triangles

x

3× 3 image
neighborhood

3 of all 24
triangles

for each triangle i: triple feature
n

n2

n1
x2

x1

x

fi(x) =
det[n, n1, n2]

‖(x1 − x)× (x2 − x)‖

Point neighborhood gives a large collection F (x) = {fi; i = 1, . . . , t}
CDF(F )
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simil (F (x), F (y)) = KS
(
CDF(F (x)), CDF(F (y))

)
similarity ∼ Kolmogorov-Smirnov distance
between feature distributions

in fact sensitivity interval [KS− δ(KS), KS]
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Representing the Matching Problem

Geometric Compatibility Graph GC:

putative correspondences (x1, y1) and
(x2, y2) are incompatible if T1 6= T2

(x1, y1)

(x2, y2)
green for ‘geometric’

Uniqueness Graph GU :

Choose either (x1, y1) or (x1, y2)
but never both

(x1, y2)(x1, y1)

(x2, y2)(x2, y1)

This is the line graph of a complete bipartite graph

Given data: The union of GC ∪ GU is oriented by similarity of invariant features F :

simil
(

F (x2), F (y1)
)

∼ simil
(

F (x2), F (y2)
)

(x2,y2)

(x1,y2)

(x2,y1)

simil
(

F (x1), F (y2)
)

≫ simil
(

F (x2), F (y2)
)

q is strongly better

we do not know which is better

(intervals do not overlap)

(overlapping intervals)
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Strict Sub-Kernel of an Oriented Graph

Goal: To define which is ‘the best solution.’

Def. [ Strict Sub-Kernel, SSK ]

An independent vertex subset M is a strict sub-kernel
of oriented graph G if every successor of every p ∈ M
has a strict successor in M .

strict
(unidirectional)

q

r ∈ M

p ∈ M

Examples:

has one SSK has no SSK has no SSK has 2 SSKs

T: If every even circuit of G has a bidirectional arc ⇒ there is at most one maximal SSK.

� condition guaranteed for orientations induced by interval overlap

� SSK can be incomplete if data insufficient or contradicting the model
explains part of data that is consistent with prior model (geometric consistency, uniqueness)

� SSK is robust to small data perturbations
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Strict Sub-Kernel Algorithm

Sink reduction algorithm: Successive simplifying transformations to equivalent problems

• this is not mutually best matching:

• a vertex with successors (like q) can be in M
(MBM is a subset of M)

• O(n4) time complexity for n-point matching
(O(n3) algorithm exists)

• Easy to implement

• Can be massively parallelized
(stability of a network of comparators)

• This algorithm is valid for special class of orientations only,

see the paper.
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Coarse Range Image Registration: IP Detection

Detection of interest points Ii in each range image i

• all points of good localizability (=dissimilarity to immediate neighborhood)
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Coarse Range Image Registration: IP Selection

Interest point selection in each range image gives I∗i
• finding mutually geometrically inconsistent subset of Ii

for each pair x, y ∈ I∗i there is no allowed rigid transform bringing ngh(x) onto ngh(y)

• problem size reduction

• improves data rejection rate due to repeated similar structures

• can be found by solving an SSK problem see the paper
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Coarse Range Image Registration: Matching

Matching via SSK as described before.
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Interpretation of the Matching Procedure

1. Find a consistent match p that clearly correct (as measured by F )
2. Constrain acceptable rigid motions to those consistent with p
3. Repeat

Result: Ever tighter geometric guidance as the similarity decreases.
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Results on Pooh Dataset

1 failure

main failure mode: empty matching

Timings (per pair)

normals 0.2 min

features 0.6 min

IP detection 0.1 min

IP selection 1.7 min

matching 0.1 min

total 2.7 min

Data courtesy of Ohio State University
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Results on Pooh Dataset (cont’d)

coarse registration after ICP refinement

• Coarse registration: rotation well estimated, translation not so well
(but ICP can deal with it)

• around the neck: occlusion boundary/interreflection artefacts in data



i 1 2 3 4 5 6 7 8

im
pr

ov
em

en
t

|I1| 37 35 28 34 32 35 31 52

|I2| 41 37 28 34 33 32 33 58

|M | 18 17 10 9 14 18 10 11

ε0 1.79 5.71 4.72 3.25 9.38 2.51 6.07 8.06

εCR 0.35 0.43 0.96 0.58 0.43 0.45 0.60 1.14 8.4×
εICP 0.24 0.26 0.46 0.39 0.26 0.31 0.37 0.72 1.6×
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Results on Rick1 Dataset
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Conclusions

• SSK can be used for coarse registration
reduces initial closest-point error by about the order of magnitude

• What does SSK open for us?

1. Robust behavior: either finds a unique robust solution or rejects data.
robust w.r.t. small data perturbation

2. Multi-criterial matching (e.g. geometry, color) w/o mixing apples and pears.

3. Algorithmic simplicity.
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