RIS RANSACing Optical Image Sequences
R A for GEO and near-GEO Objects
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Abstract: Can prior information on the consistency of image tracks and Bayesian modeling bring the performance of image primitive object detection and linking methods closer to the image stacking methods?
The answer is positive: It brings it half way from the LINE method [1] to the FPGA Stacking method [1].
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e the number of iterations cgstop is not dependent on |D)|

detections: red: RANSAC (proposed); yellow: RANSAC FP; blue: FPGAS [1]
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We have tested RANSAC method on a dataset sufficiently large for obtaining predictive performance [1] T. Yanagisawa and H. Kurosaki, “Detection of faint GEO objects using JAXA's fast
figures. The results were compared with FPGAS, which is the best performing method that was run on analysis methods,” Transactions of the Japan Society for Aeronautical and Space Sci-
the same data [2]. The proposed RANSAC method is stronger than FPGAS in detecting short tracks ences, Aerospace Technology Japan, vol. 10, no. 28, pp. Pr_29-Pr_35, 2012.

and tracks entering the FoV in the middle of the sequence. The FPGAS method is stronger in detecting [2] T. Yanagisawa, H. Kurosaki, H. Banno, Y. Kitazawa, M. Uetsuhara, and T. Hanada,

. : : _ “Comparison between four detection algorithms for GEO objects,” in Proceedings of
high-magnitude tracks. The discrepancy can be addressed within the RANSAC framework. the Advanced Maui Optical and Space Surveillance Technologies Conference, 2012.
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