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Abstract: Can prior information on the consistency of image tracks and Bayesian modeling bring the performance of image primitive object detection and linking methods closer to the image stacking methods?
The answer is positive: It brings it half way from the LINE method [1] to the FPGA Stacking method [1].

Data
• 50 cm TAOS sensor from Lulin observatory, Taiwan
• FOV 1.3◦× 1.3◦, 2049× 2047 pixels, 16 bit
• 3 Days (2011–10–20, . . . ), about 5600 images
• the telescope points at a fixed intertial point near the GEO region
• batch: 29 images, 8.8 s intervals, 5.9 s exposures, no sidereal tracking; then reset
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Registration

registering stars
• telescope as a calibrated projective camera

Hij = KRjR
−1
i K−1 mapping between

images i, j

• initial rotations from FITS headers insufficient
• optimisation of rotations over the maximum

spanning tree of the field-of-view overlap graph
• all images warped onto a common cylinder

pairwise overlaps MST (1st part) registration cylinder
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registered with initial rotations. . . . . . and with optimized rotations

all data: RMS error 2.8 px. . . . . . RMS error 0.8 px

Image Features, Temporal Events, Primitives

raw image feature map event map

at time 12

collapsed time

raw image feature map event map
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temporal profiles

• two locations:

1. high-magnitude event at time 12 (green)
2. random (red)

• contrast of the event improved in feature map
• star background suppressed in event map

primitive objects after event map segmentation (weak ones removed for clarity)
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primitive object
• centroid location in global space and time
• relative magnitude
• elliptical approximation + raw image patch

Sequence Detection
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• primitives ya, yb propose a line Z in space-time
• all primitives are matched to Z by M and classified as

inliers/outliers wrt the line by Maximum Likelihood
• line support s(M,Z) is calculated (see the paper)
• efficient: k-d tree search → 50 proposals per sec

Line Support Terms:
1. data model: geometric errors (left), radiometric differences
2. track speed model (below)
3. hot pixel track model (see the paper)�tte dste x(t+�t)d(t)x(t)detr
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Primitive length de is consistent with track spacing d:

d =
∆t

te
(de + ds)

te – exposure time
∆t – inter-frame time interval
ds – sidereal motion vector (in image)

Multi-track RANSAC Procedure
(input: primitives D, output: track list Q of maximal length k)

1. Initialize: Pool of all outliers O := D, empty priority queue
Q := ∅, unsuccessful proposal counter c := 0.

2. Propose a random space-time line and compute the track
sequence Z (see left).

3. Find the best matching M from Z to the pool O.
4. Compute support s(M,Z).
5. Increment the counter c := c+ 1.
6. if s(M,Z) > minQ then

(a) if lengthQ = k then remove the lowest-priority ele-
ment from Q and return its primitives to O,

(b) admit (M,Z) to Q with priority s(M,Z),
(c) remove the set of matched primitives M from O,
(d) reset the counter c := 0.

7. Repeat Steps 2–7 until c > cstop.
8. Return the queue Q.

• the number of iterations cstop is not dependent on |D|

Results

data summary track detection counts by method

day images primitives RANSAC FPGAS both false pos.

1 1 584 78 970 35 37 23 5+2(hot)
2 1 980 91 461 42 51 32 1(hot)
3 2 250 105 894 40 58 33 0

tot 5 814 276 325 117 146 87 5+3(hot)

• no ground truth data
• comparison with FPGA Image Stacking method (FPGAS) [1]
• FPGAS detects more tracks in high magnitudes
• RANSAC detects more shorter tracks
• compare the histogram with [2]

detections per magnitude

<12 12 − 13.5 13.5 − 15 15 − 16.5 16.5 − 18 >18
0

10

20

30

40

50

60

70

Magnitude

C
o
u
n
t

 

 
FPGAS

both

RANSAC

detections: red: RANSAC (proposed); yellow: RANSAC FP; blue: FPGAS [1]
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Day 2
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Day 3
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Conclusions
We have tested RANSAC method on a dataset sufficiently large for obtaining predictive performance
figures. The results were compared with FPGAS, which is the best performing method that was run on
the same data [2]. The proposed RANSAC method is stronger than FPGAS in detecting short tracks
and tracks entering the FoV in the middle of the sequence. The FPGAS method is stronger in detecting
high-magnitude tracks. The discrepancy can be addressed within the RANSAC framework.
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