Tracking with Dense Correspondences

Jonáš Šerých 2024-12-10

Motivation Applications: Video Editing, Video Style Transfer

Motivation Applications: Video Editing, Video Style Transfer

 \rightarrow dense (every pixel), long-term (long video, through occlusions) tracking

Optical Flow - Dense Tracking on Pairs of Consecutive Frames

Optical Flow = $(\Delta x, \Delta y)$ in each pixel

Optical flow $F_{(t-1)\rightarrow t}$ often works well. Occlusions are usually neither handled nor benchmarked. How to do long-term?

Planar Tracking

Known geometric model of the scene

- ightarrow dense long-term tracking = sequence of geometric transformations
- Keypoints (e.g. Harris 1988) + tentative correspondences + RANSAC (Fischler, Bolles 1981)
- Intensity registration (e.g. Lucas-Kanade 1981; ESM 2004)
- CNN regressing 4 control points (DeTone et al. 2016)

WOFT: Weighted Optical Flow Tracker - Two-View Homography

- 0. Dense correspondences from Optical Flow
- 1. Reliability regression "predict inlier/outlier"
- 2. Fit homography with weighted least squares
- 3. Failure detection via support set

- + The whole network is differentiable
- + Everything trained only with loss on H
- + Works on targets with few keypoints

Learned Correspondence Weights

Weight CNN trained **indirectly** by optimizing a loss on the weighted LSq homography

- Weights (yellow) focus on well-textured areas, corners
- Occlusions have zero weight (here "occlusion" by specular reflection)

WOFT: Weighted Optical Flow Tracker - Sequence Of Homographies

Large pose change \rightarrow OF fails

Pre-Warp with previous pose \rightarrow OF works on residual

WOFT = Pre-Warp \rightarrow Weighted Flow Homography \rightarrow Failure Detection

J. Šerých and J. Matas, "Planar object tracking via weighted optical flow," in WACV, 2023

State-of-the-art Performance on Multiple Benchmarks

			P@5		P@	Ø15	
method	year	FPS	orig	rean	orig	rean	
GOP-ESM	2019	4.95	42.9	-	49.7	-	
SuperGlue	2020	3.7	39.1	42.1	58.0	55.7	
Gracker	2017	4.8	39.2	-	63.2	-	
SiamESM	2019	-	58.7	-	66.2	-	
SOSNet	2019	1.5	56.6	60.9	69.9	67.0	
SIFT	2004	0.8	62.2	65.8	71.3	69.6	
OBD	2021	30	48.4	54.3	79.3	79.2	
LISRD	2020	7	61.6	68.3	79.6	79.2	
HDN	2022	10.6	61.3	70.9	91.5	92.4	
WOFT		19.2	68.9	80.5	91.2	92.3	
WOFT		3.5	80.6	90.4	93.9	95.6	

New PlanarTrack 2023 benchmark

		WOFT	HDN	GIFT	LISRD	SIFT
		[32]	[41]	[24]	[29]	[25]
DOT 210 [20]	PRE	0.805	0.612	0.553	0.617	0.692
F01-210 [20]	SUC	0.572	0.484	0.404	0.463	0.445
DOT 110 [20]	PRE	0.768	0.567	0.528	0.581	0.578
POT-210UC[20]	SUC	0.536	0.442	0.379	0.419	0.378
Planar Track _{Tst}	PRE	0.433	0.263	0.254	0.167	0.142
	SUC	0.306	0.236	0.223	0.137	0.107

method	P@5	P@15
SIFT [40, 5]	43.8	54.5
SOL [83]	55.3	74.8
HDN [100]	74.4	94.5
Bit-Planes [107]	75.1	76.0
Gracker [84]	75.2	89.9
GOP-ESM [5]	90.8	93.1
SiamESM [93]	96.1	97.7
WOFT	96.1	98.0

Improved GT – WOFT Score from 80.6 to 90.4

Original GT alignment

Improved GT alignment

Dense Point Tracking on 3D Surfaces

Dense Point Tracking

- Geometry unknown
- Non-rigid motion
- Not just one object
- Again use Optical Flow

Template to Current Optical Flow Matching

- + No error accumulation \rightarrow no drift
- + Can recover after occlusions or failures
- But harder task change of viewpoint, illumination, large motion

Optical Flow Chaining

- Cannot recover from temporary occlusions
- Errors accumulate \rightarrow drifting
- + Simple task
- + Optical Flow trained for this task

MFT - Multiple Flow Chain Candidates

- 1. Create several flow chain candidates
- 2. Pick the best one for each tracked point

Keep the number of candidates small:

- Fix the best candidate on each previous frame
- Only consider chains ending with OF $F_{(t-\Delta) \rightarrow t}$, $\Delta \in \{1, 2, 4, 8, 16, \dots, \infty\}$ 12.

MFT: Multi-Flow Tracker

M. Neoral, J. Šerých, and J. Matas, "MFT: Long-term tracking of every pixel," in WACV, 2024 Estimate uncertainty σ and occlusion O for

each flow vector:

Chain the σ , O scores, pick the best:

$$\sigma_{0 \to t}^{2} = \sum_{i} \sigma_{i}^{2} \qquad O_{0 \to t} = \max_{i} O_{0 \to t}$$

$$c^{*} = \arg \min_{c} \sigma_{c,0 \to t}^{2}$$
s.t. $O_{c,0 \to t} < 0.5$

$$\mathcal{L}(\sigma) = \sum_{i=1}^{H \times W} \frac{l_h(||\vec{x}_i - \vec{x}_i^*||_2)}{2\sigma_i^2} + \frac{1}{2}\log(\sigma_i^2)$$
$$\mathcal{L}(O) = \text{Binary Cross-Entropy}$$

MFTIQ: Multi-Flow Tracker with Independent Quality Estimation

J. Šerých, M. Neoral, and J. Matas, "MFTIQ: Multi-flow tracker with independent matching quality estimation," in WACV, 2025

Estimate uncertainty and occlusion for the whole chain, independently on the OF.

	speed	DAVIS strided		DAVIS first			RовоTAP first			KINETICS first			
method	PPS↑	AJ↑	${<}\delta^{\scriptscriptstyle \! X}_{avg}{\uparrow}$	OA↑	AJ↑	${<}\delta^{\scriptscriptstyle X}_{avg}{\uparrow}$	OA↑	AJ↑	${<}\delta^{\scriptscriptstyle\! X}_{avg}\!\!\uparrow$	OA↑	AJ↑	${<}\delta^{\rm x}_{\rm avg}{\uparrow}$	OA↑
TAP-NET	555	38.4	53.1	82.3	33.0	48.6	78.8	45.1	62.1	82.9	38.5	54.4	80.6
CoTracker 0.8	64.8	79.1	88.7	<u>60.6</u>	<u>75.4</u>	89.3	54.0	65.5	78.8	48.7	64.3	86.5	
TAPIR	200	61.3	72.3	87.6	56.2	70.7	86.5	59.6	73.4	87.0	<u>49.6</u>	64.2	85.0
BOOTSTAP	200	66.4	78.5	90.7	61.4	74.0	<u>88.4</u>	64.9	80.1	<u>86.3</u>	54.7	68.5	<u>86.3</u>
MFT	10671	56.3	71.0	87.0	51.1	67.1	84.0	-	_	-	39.6	60.4	72.7
MFT ROMA	-	58.0	77.2	80.5	52.1	72.7	77.1	-	-	-	-	_	-
MFTIQ	709	<u>65.7</u>	79.8	87.8	59.9	75.5	84.5	<u>60.0</u>	77.5	85.2	48.7	65.9	85.2

MFTIQ performance close to BOOTSTAP (by DeepMind, tomorrow @ ACCV 2024), without needing 15M YouTube videos and 256 A100 GPUs.

MFTIQ RoMa \approx 15× slower than MFT, but still fast compared to SOTA.

method	BL	OCCL	OOV	PERS	ROT	SC	UNC	all
LISRD	54.1	93.8	83.7	65.0	86.3	30.0	67.1	68.3
HDN	48.8	78.2	66.1	54.4	91.4	94.8	60.7	70.9
CGN	41.6	88.1	82.8	76.5	96.1	90.3	72.4	78.5
WOFT	60.4	98.6	96.3	95.4	99.3	94.0	88.2	90.4
HVC-Net	60.5	98.6	97.2	92.7	99.3	100.0	90.1	91.4
MFTIQ	72.0	98.6	95.0	96.6	99.5	100.0	89.1	93.1

Accuracy Threshold (px)		Baselines			Submissions					
	RAFT	CSRT		MedTrack	CCG_DGIST					
4	0.07258	0.22782	0.4254	0.38911	0.36089	0.26008	0.25403			
8	0.19556	0.47379	0.69355	0.6754	0.63508	0.54435	0.51008			
16	0.39919	0.67137	0.86492	0.86694	0.83871	0.77419	0.74194			
32	0.64919	0.74798	0.93347	0.93145	0.90927	0.91734	0.8871			
64	0.80444	0.81048	0.96371	0.95968	0.94355	0.95363	0.9254			
Average	0.42419	0.58629	0.77621	0.76452	0.7375	0.68992	0.66371			
Placement				1 st	2 nd	3 rd				

MFT as a baseline submitted by challenge authors won.

Video Style Transfer From Multiple Keyframes

Coin-Tracking

Coin-Tracking Task

J. Šerých and J. Matas, "Visual coin-tracking: Tracking of planar double-sided objects," in GCPR, 2019

- Sudden appearance change (side flip)
- Difficult motion blur (fast 3D rotations)
- Low textureness
- Strong illumination change
- Aspect ratio change

CTR-BASE Coin-Tracking Method

Segmentation

Segmentation adaptation

- Segmentation by k-NN classification in learned metric space FASTVOS[5]
 - State-of-the-Art at that time
 - Worked well only on short videos
 - Simple online update

Coin-Tracking Results

Summary

- J. Šerých and J. Matas, "Visual coin-tracking: Tracking of planar double-sided objects," in *GCPR*, 2019. 1 GSC citation
- J. Šerých and J. Matas, "Planar object tracking via weighted optical flow," in *WACV*, 2023. 3 GSC citations
- M. Neoral, **J. Šerých**, and J. Matas, "MFT: Long-term tracking of every pixel," in *WACV*, 2024. 36 GSC citations
- J. Šerých, M. Neoral, and J. Matas, "MFTIQ: Multi-flow tracker with independent matching quality estimation," in WACV, 2025

Thanks for your attention.

Cost Function Optimized by MFT

Goal: minimize end-point-error on visible points

$$\mathcal{L}_{G} = \sum_{t=1}^{T} \sum_{i=1}^{H \times W} ||\vec{x}_{t,i} - \vec{x}^{*}_{t,i}||_{2} \cdot \llbracket \text{visible}_{t,i} \rrbracket$$

MFT not trained end-to-end. Uncertainty loss:

$$\mathcal{L}_{u} = \frac{1}{2\sigma^{2}} l_{H}(||\vec{x} - \vec{x}^{*}||_{2}) + \frac{1}{2}\log(\sigma^{2})$$

$$OF \text{ error}$$

selecting minimal uncertainty \approx selecting minimal end-point-error

Cost Function Optimized by MFT

Goal: minimize end-point-error on visible points

$$\mathcal{L}_G = \sum_{t=1}^T \sum_{i=1}^{H \times W} ||\vec{x}_{t,i} - \vec{x}^*_{t,i}||_2 \cdot \llbracket \text{visible}_{t,i} \rrbracket$$

MFT not trained end-to-end. Uncertainty loss:

$$\mathcal{L}_{u} = \frac{1}{2\sigma^{2}} l_{H}(||\vec{x} - \vec{x}^{*}||_{2}) + \frac{1}{2}\log(\sigma^{2})$$

allow incorrect flows
OF error pay for large σ

selecting minimal uncertainty \approx selecting minimal end-point-error

Cost Function Optimized by MFT

Goal: minimize end-point-error on visible points

$$\mathcal{L}_G = \sum_{t=1}^T \sum_{i=1}^{H \times W} ||\vec{x}_{t,i} - \vec{x}^*_{t,i}||_2 \cdot \llbracket \text{visible}_{t,i} \rrbracket$$

MFT not trained end-to-end. Occlusion handling:

Even with perfect OF, must not start tracking the occluder.

$$c^* = \arg\min_{c} \sigma_{c,0 \to t}^2$$

s.t. $O_{c,0 \to t} < 0.5$

SAMv2 on Coin-Tracking

- + Surprisingly works almost perfectly
- + Even when initialized on single side tracks both!
- Cannot distinguish the two sides

Optical Flow Chaining With Bilinear Interpolation

To chain $F_{1\rightarrow 2}$ with $F_{2\rightarrow 3}$, the later must be interpolated at the red point. We use bilinear interpolation.

Optical Flow Direction

- Forward (*red*) Optical Flow suitable for point-tracking How did a query point from the first frame move?
- Backward (*blue*) Optical Flow suitable for texture transfer Each coordinate gets some color from the first frame

Optical Flow Chaining Direction

Crivelli et al. (2014); Wu et al. (2023) AccFlow

Video Stylization From Multiple Keyframes

Perturb 4 homography control points, maximize product of:

- 1. Fraction of segmentation explained
- 2. Object visibility fraction
- 3. Previous visibility mask IoU
- 4. Appearance ZNCC

 ${\bf G}$ - pose hypothesis, ${\bf B}$ - segmentation inside hypothesis

 ${\bf R}$ - segmentation outside hypothesis