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A B S T R A C T

Long-term point tracking is a computer vision task, in which query
points given in a template frame are to be located throughout a video.
Tracking of a dense set of query points enables applications that
would not be possible with standard standard bounding-box-level
or segmentation-level tracking. In this thesis, three instances of the
dense long-term tracking task are addressed. First, a novel method for
estimating homographies from optical flow achieves state-of-the-art
planar tracking performance. Second, two novel methods for dense
point tracking – tracking of all points from a template frame – are
proposed. The trackers combine optical flows estimated between both
adjacent and distant frames to form long-term tracks, and achieve
good performance while tracking fast. Last, a novel coin-tracking task
is introduced, together with a baseline coin-tracking method and a
coin-tracking benchmark. In coin-tracking, the target objects are flat
and two-sided. Which of the two sides is currently visible changes
frequently, leading to new challenges that mostly do not occur in
common planar object tracking.
Keywords: visual tracking, dense correspondences, long-term optical
flow, point tracking, planar object tracking, coin-tracking

A B S T R A K T

Dlouhodobé sledovánı́ bodů je úloha počı́tačového viděnı́, ve které
se majı́ body označené v jednom snı́mku videa lokalizovat v celém
videu. Sledovánı́ hustě rozmı́stěných bodů umožňuje aplikace, které
by nebyly možné se standardnı́m sledovánı́m na úrovni obdélnı́ků
ohraničujı́cı́ch objekt nebo segmentačnı́ch masek. V této práci se řešı́
tři úlohy dlouhodobého sledovánı́ husté sady bodů. Za prvé, nová
metoda odhadu homografie z optického toku dosahuje špičkových
výsledků ve sledovánı́ plochých objektů. Za druhé jsou navrženy
dvě nové metody pro sledovánı́ všech bodů z daného vzorového
snı́mku. Obě kombinujı́ optický tok odhadnutý mezi sousednı́mi i
mezi vzdálenými snı́mky do dlouhých trajektoriı́ a dosahujı́ dobrých
výsledků i rychlosti. Nakonec je představena úloha coin-tracking
společně se základnı́ coin-tracking metodou a datovou sadou pro
vyhodnocovánı́. V úloze coin-tracking jsou sledované objekty ploché
a dvoustranné. To, která z obou stran je právě viditelná, se často měnı́,
což vede k novým výzvám, které se při běžném sledovánı́ plochých
objektů obvykle nevyskytujı́.
Klı́čová slova: vizuálnı́ sledovánı́, husté korespondence, dlouhodobý
optický tok, sledovánı́ bodů, sledovánı́ plochých objektů, coin-tracking
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1
I N T R O D U C T I O N

Figure 1: Sparse point tracking in a video. The task is to locate query points
(in the left image) throughout the video and indicate if they are
visible. The middle (green circle) point is occluded in the middle
image. Images from the swing video in the DAVIS [1] dataset.

One of important problems in computer vision is establishing
local correspondences between images. Given a pair of images Ia, Ib
capturing overlapping parts of a scene (possibly taken with different
cameras, from different viewpoints, at different times), the task is to
automatically find corresponding pairs of image coordinates (x, y)↔
(x′, y′), such that the image Ia at the coordinates (x, y) ∈ R2, and
the image Ib at the coordinates (x′, y′) ∈ R2 depict the same scene
point. Establishing such correspondences enables further computer
vision processing, like camera pose estimation, reconstruction of a 3D
model of the captured scene, creating panoramas from overlapping
low field-of-view pictures, object tracking, motion prediction, and so
on.

In this thesis, we deal with establishing correspondences in a video
sequence. A video is a sequence of T ∈N images (Ii)

T
i=1 captured in

quick succession1, e.g. at 30 frames per second (FPS). In the short time
between the frame acquisitions, the camera pose, the focal length, the
illumination, and the scene do not change much, if at all. This makes
finding correspondences between nearby frames a simpler task than
in the general two-image correspondence problem. Even when these
changes accumulate throughout a video, the task is simpler thanks to
the information provided by the intermediate frames.

When dealing with video, the correspondences are sequences
of image coordinates ((xt, yt))

T
t=1 or a set coordinates paired with

frame numbers {((xt, yt), t), . . . } when the correspondences are not

1 We ignore time-lapse videos, which have different properties.
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1.1 motivation / applications 2

Figure 2: Video editing with dense long-term correspondences. The edits (red
text) made on the first frame (left) were automatically propagated to
the rest of the video and “stick” to the surface and its deformations.
Best viewed as a video:
https://cmp.felk.cvut.cz/∼serycjon/MFT/visuals/lioness.mp4

established in each frame. The task typically is to track, i.e., locate
throughout a video, a given set of query points (fig. 1). This is related to
estimating correspondences between images, but it is a different task.
Whereas in the case of pairs of images we were looking for finding
some corresponding points, here we want to know locations of given
points specified in one of the frames. In consequence, we have to deal
with point visibility as the query points may be occluded or out of the
camera field of view in some frames. Note that it may be possible to
estimate the point location even when the point is not visible, based
on contextual information like the motion of nearby points.

Both estimating correspondences between image pairs and tracking
points in a video are usually done sparsely, i.e., only a relatively small
number of correspondences is estimated and only a relatively small
set of query points is tracked.

In this thesis we focus on tracking densely, i.e., we want to efficiently
track every point in a query frame or a query object template. The
dense tracking is a generalization of the optical flow estimation problem,
in which the positions of all the points in one frame of a video It are
to be tracked into the next frame I(t+1). One of the problems this
thesis addresses is how to go from two-frame optical flow estimation
to long-term tracking throughout the video and in the presence of
occlusions.

For texture-less symmetric objects (chapter 5) where point tracking
may be impossible we also consider tracking by segmentation. The task
is then to densely estimate which pixels belong to the tracked object,
without estimating fine-grained point-to-point correspondences.

1.1 motivation / applications

Although tracking points in a video can be a useful building block for
various computer vision tasks, the dense long-term tracking studied

https://cmp.felk.cvut.cz/~serycjon/MFT/visuals/lioness.mp4


1.2 thesis overview 3

in this thesis is particularly well applicable to video editing. In film
post-production and special visual effects, the artists frequently need
to edit the video locally, i.e. altering just some part of the scene, as
opposed to global edits, like brightness, contrast, or color adjustment
of the whole frame. Doing the edits manually on each frame would be
infeasible and the results would be jittery and not temporally stable.
Having a dense tracker allows the artist to do the edits on one frame
of the video and propagate them automatically to the whole video,
such that they “stick” to the surfaces in the scene as shown in fig. 2.
Visual tracking is part of standard post-production tools, like Adobe
After Effects, BorisFX Mocha Pro, DaVinci Resolve Fusion, and others.

Another interesting application is tracking in surgical videos [2, 3,
4]. Dense correspondences can be used to provide augmented reality
for the surgeons, e.g., highlighting spots that were not inspected in
detail yet, showing various guidance markers, or overlaying the image
with data from other sensors.

1.2 thesis overview

In this thesis, we address three instances of the problem of tracking
with dense correspondences. In chapter 3, we deal with planar object
tracking, where the goal is to track all points on the surface of a rigid
planar (flat) object or surface. The motion of all the surface points is
described by a simple geometric model (homography) when the video
is captured by a standard projective camera. In fact, the task is slightly
more general, because the homography also covers the case where a
non-planar target position is constant with respect to the camera and
the only motion is caused by rotation of the camera around its center.
We use the 8-degree-of-freedom (DoF) homography motion model to
filter out correspondence estimation noise and suppress gross errors
(outliers). Our approach is to estimate the homography from dense
optical flow correspondences. We train a neural network to predict
a quality score for each correspondence and use it as weights for
weighted least squares homography fitting. The resulting planar ob-
ject tracker achieves state-of-the-art results (as of the time of writing of
this thesis) on multiple planar object tracking benchmarks [5, 6, 7, 8],
including one published after the tracker [6]. We have published the
code, the trained model, and improved ground-truth annotations of a
standard planar-tracking benchmark [8]. The chapter is based on

J. Šerých and J. Matas, “Planar object tracking via weighted optical
flow,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 1593–1602, 2023.

In chapter 4, we address a more general problem of tracking all
pixels of a reference video frame. Unlike in planar object tracking, the
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query points may belong to multiple independently moving 3D objects
of unknown shape. Also, the motions in the scene are no longer con-
strained to be rigid. The problem is similar to optical flow estimation
but extended to long video sequences. This introduces the need to
handle occlusions, non-trivial illumination and appearance changes,
and longer motions. The proposed dense point trackers achieve good
benchmark performance while tracking orders of magnitude faster
than state-of-the-art alternatives. This line of work was first published
in

M. Neoral, J. Šerých, and J. Matas, “MFT: Long-term tracking of every
pixel,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 6837–6847, 2024,

extended in

T. Jelı́nek, J. Šerých, and J. Matas, “Dense matchers for dense tracking,”
in Proceedings of the 27th Computer Vision Winter Workshop (CVWW
2024), 2024,

and further improved in

J. Šerých, M. Neoral, and J. Matas, “MFTIQ: Multi-flow tracker with
independent matching quality estimation,” under review, 2025.

In chapter 5, we go back to planar objects and introduce a novel
task called coin-tracking, in which a thin double-sided planar object,
like a coin, a playing card, or a smartphone, is to be tracked from both
sides. The rotation of such objects poses new challenges, including
a flip between the two sides. A thin object like a playing card can
become practically invisible during the flip. Without understanding
the underlying 3D structure, the tracked object seems to be disap-
pearing (due to the out-of-plane rotation) and suddenly a possibly
very different object seems to start appearing. In typical coin-tracking
videos, the target objects are dynamic, and their motion is the primary
source of the tracking challenge. This contrasts with the standard
planar object tracking task, where the targets are usually static, and
the camera movement is most significant.

The coin-tracking was chronologically the first part of our research,
started during my MSc studies. In the master thesis [13], we first in-
troduced the coin-tracking task and proposed a coin-tracking method.
The coin-tracking related materials in this PhD thesis are based on the
following paper

J. Šerých and J. Matas, “Visual coin-tracking: Tracking of planar double-
sided objects,” in German Conference on Pattern Recognition, pp. 317–330,
Springer, 2019.
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We have significantly extended the MSc work in the following ways.
First, we compare the proposed CTR coin-tracking dataset to standard
visual object tracking datasets, showing some of its unique challenges,
like large and fast changes in aspect ratio of the target objects and low
textureness of the targets. Second, we significantly improved the CTR
dataset ground truth, increasing the frequency of annotations from
every 30th frame to every 5th frame and switching from bounding-box
to segmentation annotations. Finally, we introduce and experimentally
evaluate a novel coin-tracking method CTR-Base.

We have set a new state-of-the-art in planar tracking (chapter 3)
and achieved very good results in dense point-tracking (chapter 4), yet
the coin-tracking problem has not been satisfactorily solved yet (even
in its simplest form in which templates of both sides of the target are
available) and remains an open challenge.

1.3 contributions

The contributions of this thesis are:
WOFT [9]. A state-of-the-art planar object tracker with 8DoF homog-
raphy pose representation.
POT-210 re-annotation [9]. Improved ground-truth annotations on
a uniformly spaced subset of the standard planar object tracking
benchmark POT-210 [8]. The original ground truth was not sufficiently
precise to reliably benchmark current state-of-the-art methods.
Coin-Tracking task and benchmark [14]. Publication of the coin-
tracking task (work started in the master thesis) and the CTR coin-
tracking benchmark with segmentation mask annotations.
CTRBase [14]. A baseline coin-tracking method, which, however, still
outperforms current dense point trackers on the coin-tracking task.
MFT [10]. A dense point tracker that extends the RAFT optical flow
to enable long-term tracking. It achieves good benchmark results and
tracks densely orders of magnitude faster than published alternatives.
MFTIQ [12]. An improved version of MFT that allows for plug’n’play
integration of arbitrary optical flow. It outperforms the original MFT
with RAFT and achieves results close to the point-tracking state-of-
the-art.

Both MFT and MFTIQ are a joint effort with Michal Neoral. We
both participated in all parts of the research and development pro-
cess. I implemented the trackers, caching mechanisms, evaluation,
and visualization tools. Michal implemented and trained the neoral
networks.



2
R E L AT E D W O R K

First we review concepts and related work that appear in all the
problems we address. Specific related work and methods competing
with the proposed approaches are reviewed in related work sections
in chapter 3, chapter 4, and chapter 5.

2.1 optical flow estimation

The optical flow (OF) estimation is a classical computer vision task.
Given two consecutive frames of a video with spatial resolution H×W,
the OF is a H ×W array of point-to-point correspondences encoded
by point-position differences (∆x, ∆y) between the two frames. Some
methods also estimate a H ×W occlusion map, indicating whether
the point is visible in the second frame or not. But most often, the
occlusions are ignored, and the methods attempt to estimate the optical
flow even when the point is occluded or out-of-view in the second
image, based solely on contextual clues.

2.1.1 Optical Flow vs Motion Field

Originally, the OF was representing the apparent movement of bright-
ness patterns between the frames [15]. The OF methods were based on
the brightness constancy assumption, i.e. that the brightness of a pixel
corresponding to a particular 3D point does not change between two
consecutive frames. To resolve ambiguities an additional smoothness
constraint had to be used. Instead of dealing with the brightness
of each pixel separately, [16] considers the brightness patterns in a
small neighborhood of the pixel. Neither the brightness constancy
assumption, nor the smoothness assumption hold in practice.

Modern deep learning OF methods estimate the motion field of the
scene instead. Assuming that each pixel corresponds to a single 3D
scene point, the motion field represents the difference between the
position in the first image and the position in the second image that
shows the same 3D point.

The two quantities, i.e. the original optical flow and the motion
field are not the same. For example in a static-camera video of a single
color non-textured sphere rotating around its axis, the optical flow is
zero everywhere, because the image brightness does not change at
all. On the other hand, the motion field represents the rotation of the
sphere. From this example it is clear that the motion field estimation
task is ill-posed - the video is indistinguishable from another one

6



2.1 optical flow estimation 7

where the sphere rotates with different speed, around different axis,
or doesn’t move at all. In the configuration where both the camera
and the sphere are static, but a light source moves, resulting in a
specular highlight moving on the sphere, the motion field is zero,
but the original optical flow represents the motion of the specular
highlight.

Nowadays the optical flow methods, e.g. [17, 18, 19, 20, 21, 22, 23],
estimate the motion field, but call it optical flow. Also in this thesis, when
we say optical flow we mean the motion field, i.e. the 2D projection of
the motion of a 3D point.

The assumption that each pixel represents only one 3D point is
not correct in practice, because of effects like (partial) transparency,
reflections, mixed pixels on object boundaries, or blur. Amodal OF [24]
represents multiple motions per pixel, but is not widely used.

2.1.2 Modern Optical Flow Methods

Traditional optical flow estimation methods [15, 16, 25] were based on
optimization of some hand-crafted objective function. The modern
methods based on deep-learning instead train a neural network to
regress the optical flow. In the simplest form, FlowNetSimple [20],
the two input images are concatenated and the resulting tensor of size
H×W× 6 is passed through a multi-layer convolutional network with
the optical flow on the output. Most recent OF methods are instead
based on correlation cost-volume introduced in FlowNetCorr [20]. The
two input images are not concatenated and Convolutional Neural
Network (CNN) features are extracted instead for each of them. Then
each feature vector from one image gets compared to feature vectors
in the other image by computing a dot-product of each such feature
pair. The resulting map is called the correlation cost-volume. In an
ideal case it would be enough to select the position with the biggest
cost-volume value, i.e. the most similar, for each pixel in the first
image. However the cost-volume is typically processed by another
neural network regressing the final flow. Some methods [26, 21, 23]
use a local cost-volume, in which the feature similarities are computed
only within a small neighborhood of each pixel from the first image.
These methods are multi-scale, first estimating the OF on a low spatial
resolution and iteratively refining it to the final high-resolution result.

The RAFT [22] optical flow computes the full 4D H
8 × W

8 × H
8 × W

8
cost-volume once, followed by an iterative procedure that samples the
cost-volume in some neighborhood of the current flow estimate and
computes an updated estimate. Current state-of-the-art OF methods
add various improvements over the original RAFT. The GMA [19]
OF adds a transformer block that enables modeling long-range rela-
tion between the motion of distant pixels. The FlowFormer [27] and
FlowFormer++ [28] use transformers also for image feature extrac-
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tion and the iterative flow estimation. Another direction is adding
multi-scale processing, like in MS-RAFT+ [29, 30].

Another recent trend in optical flow estimation is taking into
account more than just the two video frames between which the flow
is to be estimated. ContFlow [23] uses the OF estimated between
previous two frames as an input into the flow regression network. In
VideoFlow [18], the flow is estimated between triplets, or quintuplets
of frames in both forward and backward direction. MemFlow [17]
maintains a feature representation in a small memory buffer and
updates it in a learned way on each frame of the video.

In all the deep-learning methods the pixels are represented by some
feature embedding computed by a neural network with typically large
receptive field. The currently used features are unable to represent
only the object in the center of the receptive field and they incorporate
the surrounding context and background in a unpredictable black-box
manner. This sometimes causes the flow to be incorrectly influenced
by the background and/or other objects, or even to completely ignore
the central object, especially when it is relatively thin.

2.1.3 Optical Flow datasets

Tho OF neural networks are trained mostly on synthetic data, typically
on the FlyingChairs[20], FlyingThings3D[31], and MPI Sintel[32,
33]. The first two contain chairs and random everyday objects from [34]
respectively, randomly moving in the view. Although the resulting
pairs of images are very far from being realistic, these datasets proved
to be helpful for the OF training. The MPI Sintel (which is often
called just Sintel) dataset contains scenes from the open source movie
Sintel, whose authors have released all the source files needed for
rendering. Thanks to this, selected scenes could be re-rendered with
additional optical flow and occlusion (a H ×W array storing a bi-
nary visible/occluded state of each pixel) outputs. Compared to
the FlyingChairs and the FlyingThings3D datasets, Sintel contains
more realistic scenes and non-rigid motions. Apart from being a
standard dataset for OF training, MPI Sintel also contains a test
set and defines a benchmark on it. Inspired by Sintel, the recently
published Spring[35] dataset contains renders from the Spring open
source movie, which contains more fine structures, e.g. fur and grass,
and is rendered at high resolution.

The reason for using mainly synthetic data for OF training and
evaluation is practical impossibility to obtain OF ground truth for
real-world videos. There are two works attempting to measure flow
ground truth. The authors of the HD1K dataset [36] acquired videos
with a car-mounted camera on two selected streets. The two streets
were first scanned with a LIDAR without people or moving cars,
providing a 3D model of the whole scene. Next, videos were captured
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including people and moving cars. The OF (pseudo) ground truth
was measured from 2D to 3D correspondences and estimated camera
poses. This process does not work with dynamic objects, so these were
manually segmented and marked as invalid.

The Kitti dataset [37] also contains traffic scenes captured from a
car, but on larger area. The (pseudo) ground truth of the static parts
of the scenes was constructed by transforming LIDAR point-clouds
with rotations and translations from a GPS/IMU device combined
with ICP fitting of the LIDAR 3D point-clouds. Unlike HD1K, Kitti

also provides a (pseudo) ground truth for some moving objects. In
particular, the authors have fitted parametric CAD models of cars to
the point clouds. Projecting the model 3D points into two frames gives
the flow correspondences. The (pseudo) ground truth provided by
both of these datasets is generated by measurement and thus contains
errors, hence we call them (pseudo) ground truth. Also the annotations
are only semi-dense, i.e. not every pixel has a ground-truth flow.

The main evaluation metric is the end-point-error (EPE), which is
the euclidean length of the difference between the estimated and the
ground-truth flow

EPE
(
∆x, ∆y

)
= ∥

(
∆x, ∆y

)
−
(

∆∗x, ∆∗y
)
∥, (1)

or metrics derived from it, like the fraction of points with EPE below
certain threshold. Apart from the overall mean EPE metric, the Sin-
tel benchmark also measures the EPE on occluded (EPE unmatched)
and unoccluded (EPE matched) flows separately. However, flow meth-
ods are not expected to predict occlusion masks and the standard
benchmarks do not evaluate it, so most methods completely ignore
the occlusion problem. Note that it is often possible to estimate the
optical flow correctly even during occlusions, based on the motion of
nearby non-occluded points. Some methods, e.g. [26, 23, 38], estimate
occlusions internally to aid the accuracy of the optical flow, but they
do not provide occlusion maps as outputs and do not evaluate the
accuracy of the estimated occlusions.

We use optical flow as a component in our dense point trackers
(chapter 4). Detecting the optical flow occlusions is an essential part
of the proposed trackers, which enables long-term stable tracking.

2.2 feature matching

Feature matching is another important computer vision task. The
goal is to estimate point-to-point correspondences in a pair of images
capturing the same 3D scene. Unlike the optical flow task, the two
images are now not consecutive frames of a video. Often they are
captured independently, with different cameras, from different view-
points and at different times — so called wide multiple baseline
stereo (WxBS) problem. Traditionally, some keypoints [39, 40, 41]
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Figure 3: Example pairs of frames from synthetic optical flow datasets.
Left to right: FlyingChairs [20], FlyingThings3D [31], and
MPI Sintel [33].

or regions [42] were identified first, before finding matching pairs
between the two images.

More recently, several methods [43, 44, 45, 46, 47, 48] estimate the
correspondences densely, i.e. for each pixel. In addition to an H ×W
map of corresponding coordinates, they also output an H ×W score
map that can be thresholded to reject pixels without a match. Similar
to the optical flow methods (see section 2.1.2), these dense feature
matching methods use the cost-volume representation (in case of [48]
the cost-volume computation is hidden inside the transformer cross-
attention block). However, they are not trained on consecutive frames
of synthetic videos, but rather on pairs of real-world photos. These
typically come from the MegaDepth [49] dataset of famous buildings
and other landmarks, where a (pseudo) ground-truth depth and cam-
era calibration is available via COLMAP [50, 51] 3D reconstruction.
The training pairs have wide baseline compared to the optical flow
data, but lack complex motions as the whole 3D-reconstructed scene
is static and usually has simple geometry, e.g., a façade. Some meth-
ods [45, 46, 52] also use self-supervised training with warp consistency
constraints and spatial training image augmentation.

2.3 visual object tracking

In the visual tracking task, the goal is to establish correspondence in a
video, but on an object level, instead of pixel level. Traditionally [53,
54, 55], the target was represented by a 2D bounding box (rectangle),
usually with fixed aspect ratio or fixed scale. More recently the focus
has shifted to segmentation level trackers [56, 57, 58, 59, 60], which
represent the target by a segmentation mask, i.e., a per-pixel target /
background classification.

Most of the published trackers are short-term, meaning that the
target is at least partially visible during the whole video. In long-term
tracking the target may become fully occluded or out-of-view and
some kind of re-detection is required to resume the tracking after
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it reappears. The long-term trackers report the visibility status flag
on top of the target pose. Note that this long-term / short-term
classification [61] is independent on the length of the tracked videos.
The methods proposed in this thesis are all long-term in this sense.

There exist many variations of the tracking task depending on the
type of the tracked object, number of tracked objects, camera motion,
availability of some a-priory knowledge of the target, etc. For example
in multi-object tracking (MOT) [62, 63] there are multiple targets of
the same type (usually people or cars) to be tracked at the same time.
The targets are first detected by a class-specific detector, the tracking
task is then to consistently assign the detections to the targets.

2.3.1 Visual Object Tracking Benchmarks

The progress in single-object model-free short-term tracking is cap-
tured by the Visual Object Tracking challenge (VOT) held annually
since 2013 [64]. Large scale tracking benchmarks [65, 66] became avail-
able more recently. The segmentation level tracking became popular
after the introduction of the DAVIS [67] video object segmentation
benchmark in 2016. The segmentation trackers are also evaluated on
YouTubeVOS [68] or MOSE [69].

There are different evaluation metrics, but they are usually based
on the Intersection-over-Union (IoU) score – both for the bounding-
box and for the segmentation tracking. The IoU, also called the
Jaccard index, measures the similarity between the ground truth and
the predicted region by computing the areas of their intersection
and union and taking their ratio. With the set of pixel positions
representing the ground truth named A and the set of pixel positions
representing the prediction named B, the IoU is computed as

IoU(A, B) =
|A ∩ B|
|A ∪ B| . (2)

Various statistics can be computed based on the IoU scores, e.g. com-
puting its mean over all frames (mIoU), thresholding IoU to detect
number of tracking failures, or varying the IoU threshold and plotting
the fraction of frames with failure, followed by computing the Area
Under Curve (AUC) of the curve.



3
P L A N A R O B J E C T T R A C K I N G

In this chapter we address the rigid planar object tracking problem and
present WOFT [9], a planar tracker which is state-of-the art on multiple
benchmarks, namely POIC [5], POT [7, 8], and PlanarTrack [6],
the last of which was published after WOFT. We also analyzed the
ground truth quality of POT and because it was not high enough to
properly compare state-of-the-art methods, we precisely re-annotated
a uniformly spaced subset of frames and published the corrected
ground truth. The annotation was done under my supervision by Mrs.
Larisa Ivashechkina using an annotation tool I have created for very
precise homography annotation.

3.1 introduction

In planar rigid object tracking, the object pose is related to its initial
pose by an 8 degrees-of-freedom (DoF) homography when using a per-
spective camera, and the target is fully specified by the initialization
mask. Planar trackers can output precise 8-DoF object poses, enabling
applications not possible with bounding-box or segmentation mask
level trackers, in areas such as film post-production, visual servo-
ing [70, 71], SLAM [72], or markerless augmented reality [73, 74, 75].
Man-made objects are often either completely planar or consist of
planar surfaces, allowing for planar object tracking in a wide range of
scenarios.

Current state-of-the-art methods struggle on seemingly toy-like
sequences in standard planar object tracking datasets, POT-210 [8]
and POIC [5]. The target planarity poses challenges, e.g., strong

backbone

4D cost-
volumes

flow
estimation 

weight
estimation

weighted LSq

Homography

Figure 4: Planar object tracking with a homography estimated by a novel
weighted least squares (LSq) homography module called WFH (or-
ange box) on optical flow correspondences. The proposed trainable
flow weight CNN assigns a weight wi ∈ [0, 1] to each flow vector
based on samples from correlation cost-volume.

12
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perspective distortion, significant illumination changes caused by
specular highlights, and motion blur caused by a shaking hand-held
camera.

In this chapter, we introduce a novel model-free planar object
tracker. The proposed method estimates dense correspondences be-
tween the template (initial image) and the current image with a deep
optical flow network. A novel homography estimation module then as-
signs a weight to each optical flow correspondence, and a homography
is estimated as a solution to a weighted least squares problem. The
network assigns low weights to incorrect flow vectors and thus it is not
necessary to use robust outlier detection algorithms like RANSAC.

Using dense OF correspondences has several advantages. First, OF
estimation is well researched and high-quality methods are available
off-the-shelf. Second, the dense per-pixel correspondences help on low-
textured objects, where sparse key-point correspondences fail. Finally,
having dense correspondences enables us to compute a homography
correspondence support set and detect a tracking failure if the support
is small.

The proposed homography estimation procedure is fully differen-
tiable, allowing us to train both the weight estimator and the optical
flow network using homography supervision. The main contributions
of this work are the following.

• We propose a novel fully differentiable homography estimation
neural network module.

• We propose a novel planar target tracker employing the weighted
flow homography estimation (code public1).

• The proposed tracker sets a new state-of-the-art on the POT-210 [8],
POT-280 [7], and POIC [8] datasets, performing well across all
challenge types. On POT-210, the tracker error is half of the
error of the best competing method.

• We analyze the ground truth on the POT-210 dataset and pub-
lish1 a precise re-annotation of its subset. The inaccuracy of
the original annotation accounted for half of the errors of the
proposed tracker.

3.2 geometry of planar object tracking

In this section we describe the geometry of the planar object tracking.

projective space . A point in 2D Euclidean space is usually repre-
sented by coordinates (x, y) ∈ R2, however it can also be represented
in the homogeneous coordinates (x, y, 1). In this so called 2D projective

1 https://cmp.felk.cvut.cz/∼serycjon/WOFT

https://cmp.felk.cvut.cz/~serycjon/WOFT
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space P2, all the coordinate triplets (λx, λy, λ), λ ̸= 0 represent the
same 2D point (x, y). The points with coordinates (x, y, 0) are called
points at infinity, or ideal points and they represent intersections of
parallel lines. Lines are represented by homogeneous coordinates
l⃗ = (a, b, c) with l⃗⊺ x⃗ = 0 for all points x⃗ on the line. All the points at
infinity lie on the line at infinity l⃗∞ = (0, 0, λ), λ ̸= 0. This extension
with the points and line at infinity makes manipulation with point
and lines simpler, because there are no special cases — any two lines
meet at a single point, any two points lie on a single line. In the same
way the 3D Euclidean space R3 can be extended to the 3D projective
space P3.

pinhole camera model . To describe how the points in the 3D
world are projected into a 2D image, we assume the usual perspective
camera model. It is derived from the working of an ideal pinhole camera,
in which the light from the captured scene passes through a single
point. This model captures the working of commonly used real-world
cameras well, unless the camera has a wide-angle fish-eye lens.

The projection is performed by a rank 3 matrix P ∈ R3×4 asx
′

y
′

λ
′

 = P


x
y
z
1

 (3)

The 3D point X = (x, y, z) is first transformed into homogeneous
coordinates (x, y, z, 1) and then multiplied by the projection matrix
P to get homogeneous coordinates of the projected 2D point. In
the standard case, λ

′ ̸= 0, we can recover the image 2D Euclidean
coordinates (u, v) by simply dividing by λ

′
.[

u
v

]
=

1
λ′

[
x
′

y
′

]
(4)

plane-induced homography Let’s now consider projection
of points lying on a plane such that (1, 1, 0)⊺X = 0, i.e. with zero
z-coordinate X(3) = 0. Now

x
′

y
′

λ
′

 =

 | | | |
p1 p2 p3 p4

| | | |




x
y
0
1

 =

 | | |
p1 p2 p4

| | |

x
y
1

 = H

x
y
1

 (5)

The projection of points on that plane simplifies to multiplying the
homogeneous form of the 2D in-plane coordinates by a homography
matrix H ∈ R3×3. Any plane can be converted to this case by changing
the world coordinate system appropriately. Since P is a full-rank
matrix, H is also full rank and thus invertible. With two cameras, their
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projection matrices P1, P2 and the homographies H1, H2 from the 3D
plane to the image, we can construct a homography H12 mapping
directly from the first into the second image by first transforming from
the image in the first camera to the 3D plane and then back to the
second camera.

H12 = H2H1
−1 (6)

The homography matrix has nine parameters, but since it maps into ho-
mogeneous coordinates where scale does not matter (see Eq. (4)), it has
only eight degrees of freedom. A homography mapping is typically es-
timated from at least four pairs of correspondences ((u1, v1), (u2, v2))
between the two images of the plane, where (u1, v1) and (u2, v2) are
the pixel coordinates of a 3D point lying on the plane projected into
the respective cameras.

3.2.1 Robust Homography Estimation

Usual way to estimate a homography relating two images of a plane is
to first automatically find a large (N ≫ 4) set of point correspondences.
Due to measurement noise and presence of gross matching errors
(outliers), the homography matrix is typically estimated using a robust
method, like RANSAC [76]. For homography estimation, RANSAC,
or RANdom SAmple Consensus, creates a homography hypothesis
estimated from a randomly drawn minimal sample of the input data,
i.e., sample of minimal size needed to estimate an model, which is
4 correspondences in case of homography. Then the hypothesis is
verified against all the available correspondences by counting how
many of them are inliers to the homography hypothesis. The inlier /
outlier decision can be based on thresholding the distance between the
coordinates (u2, v2) and the homography-projected (u1, v1) (one-way
transfer error), or other similar metrics.

This random minimal sample, hypothesis, and verification proce-
dure is repeated many times and the best found model (most inliers)
is kept. Finally, the best model is further refined by finding a least-
squares fit to all its inliers.

There are many variations of this algorithm, e.g., LO-RANSAC [77,
78], PROSAC [79], or MAGSAC++ [80]. While they improve on the
plain RANSAC speed and/or accuracy, these methods are still stochas-
tic and require unknown-in-advance number of iterations. In contrast,
we designed a single-iteration homography estimation neural network
suitable for planar tracking as we will describe in section 3.4.1.

3.3 related work

General visual object tracking methods have been improving consis-
tently, with deep-learning-based trackers dominating classical methods[61,
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81]. In contrast, planar object trackers have only recently started using
deep learning.

The homography trackers can be roughly divided into three main
categories [8]: keypoint methods, direct methods, and deep methods.
Traditional keypoint-based tracking consists of three steps: (i) keypoint
detection and description using, e.g., SIFT[40] or SURF[82], (ii) key-
point matching by nearest neighbor search in the descriptor space, and
(iii) robust homography estimation with RANSAC [76]. The SOL [83]
tracker uses SVM to learn keypoint descriptors and PROSAC [79] or-
dering. In Gracker [84], the keypoints are not matched independently
based only on descriptor similarity, but instead a graph-matching ap-
proach is used. The OBD [85] tracker uses ORB keypoints for target
detection and optical flow tracking. In the POT-280 [7] benchmark, the
authors compare several deep-learning based homography trackers.
The best ones use the SIFT keypoint detector, a deep learning descrip-
tor such as GIFT [86], MatchNet [87], SOSNet [88], or LISRD [89],
followed by RANSAC.

Direct methods formulate the tracking task as image registra-
tion. Given the current frame, they attempt to find a homography
warping that optimizes the alignment of the current frame with the
object in the initial frame. In the classical Lucas-Kanade [16] and the
Inverse Compositional [90] methods, the warp quality is measured
directly on the image intensities by a sum of squared differences.
The ESM [91] tracker avoids the costly computation of Hessian in
Lucas-Kanade by using an efficient second-order minimization (ESM)
technique. GO-ESM [92] improved robustness to illumination changes
by adding a gradient orientation feature on top of the image intensities
and generalizing the ESM tracker to multidimensional features. The
GOP-ESM [5] tracker extends GO-ESM with a feature pyramid and a
coarse-to-fine iterative approach. Chen et al. [93] proposed to use the
ESM algorithm as a differentiable layer in a siamese neural network
architecture. The ESM layer iteratively aligns the template and the
query frame feature maps obtained from a ResNet-18 [94] backbone
pre-trained on ImageNet. The whole architecture is then fine-tuned
on image pairs synthesized from the MS-COCO dataset [95]. Direct
methods perform well on the POIC[5] dataset, but typically fail on
motion blur, partial occlusions and partially out-of-view targets, e.g.
in the POT-210 [8] dataset.

Deep learning homography estimation is typically done by regres-
sion of four control points. The HomographyNet [96] and UDH [97]
feed a concatenated pair of homography-related images through a
CNN and formulate the homography estimation as direct regression
of four control points. Rocco et al. [98] proposed to regress the four
homography control points from a correlation cost-volume contain-
ing each-to-each similarities between Siamese VGG-16 [99] feature
maps. The four-point regression is also used by the recently proposed
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HDN [100] method, which decomposes the homography into a sim-
ilarity transform and a homography residual. These control-point
regression methods struggle with occlusions and often assume that
the whole images are related by a homography, and do not distinguish
between the target and the background motion. The PFNet [101] uses
a custom convolutional architecture to estimate a dense flow field,
which is then used in RANSAC, making the method not differentiable
and end-to-end training not possible.

3.4 method

We propose a weighted flow homography module (WFH) that assigns
a flow weight wi ∈ [0, 1] to each OF correspondence and estimates a ho-
mography using a weighted least squares formulation (Sec. 3.4.1). The
WFH is differentiable, making end-to-end training of both the WFH
and the OF network possible. In Sec. 3.4.2, we propose a weighted
optical flow tracker (WOFT) built around the WFH homography esti-
mator.

3.4.1 Weighted Flow Homography Module

The idea of the WFH module is to compute a flow weight wi ∈ [0, 1]
for each optical flow vector and to predict a homography by solving
a weighted least squares (LSq) problem. The standard least squares
homography fitting is sensitive to grossly incorrect correspondences
(outliers). This is usually addressed by RANSAC, which uses repeated
hypothesis sampling to find a homography and its outlier-free cor-
respondence support set. The WFH instead eliminates outliers by
setting their flow weights close to zero, allowing for a robust, single
iteration, and fully differentiable weighted least squares fitting.

We process a pair of images with an optical flow estimation net-
work, such as RAFT [22] to get OF correspondences (pi, p′i), where
pi = (xi, yi) is a position in one image and p′i = (x′i , y′i) the corre-
sponding position in the second image. We then pass a suitable inner
representation of the OF network to a weight-estimation CNN that
predicts the flow weight wi for each OF vector. Finally, we estimate ho-
mography by solving a system of equations by weighted least squares.
First, we introduce plain least squares homography estimation, then
we describe the weighted variant and the training loss function. Finally,
we describe the weight estimation CNN in detail.

3.4.1.1 LSq Homography

Given the optical flow correspondences, we want to find a homography
matrix H ∈ R3×3 mapping (xi, yi, 1) to (λx′i , λy′i, λ), λ ̸= 0. This leads
to an overdetermined homogeneous system of equations Ah = 0, with
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Figure 5: High weights of optic flow (yellow) appear mainly on corners and
well-textured areas. Bottom: the POT-210 target with the highest
average flow weights (left); weight values drop (purple) when ”oc-
cluded” by a reflection (right). Best viewed in color.

h ∈ R9×1 being the flattened H-matrix and A ∈ R2N×9 encoding the
data constraints. The system is usually solved in the least-norm sense
via a singular value decomposition (SVD) of A. We use the PyTorch
machine learning framework which includes differentiable SVD, but
the back-propagated gradients are often unstable. To overcome this
issue, we constrain the homography by fixing its bottom-right element
h3,3 = 1, leading to a non-homogeneous system Ãh̃ = b, which can
be solved in the least-squares sense using the QR decomposition with
more stable gradients. Not all homographies are representable with
this constraint (see Sec. 4.1.2 in [102]), but we have not encountered
such a case in the tracking scenario.

In the non-homogeneous formulation, each correspondence adds
two equations into Ã ∈ R2N×8 and b ∈ R2N :[

0 0 0 −xi −yi −1 y′ixi y′iyi
xi yi 1 0 0 0 −x′ixi −x′iyi

]
h̃ =

[−y′i
x′i

]
(7)

We solve the least squares problem

min
h̃

2N

∑
j=1
∥Ãj,·h̃− bj∥2

2 (8)

by QR decomposition of the data matrix Ã = QR followed by solving
the triangular system Rh̃ = Q⊺b (triangular system solver available
in PyTorch).
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3.4.1.2 Weighted LSq Homography

In the proposed weighted least squares formulation, we weight each
pair of equations with the corresponding estimated flow weight wi
and find

min
h̃

2N

∑
j=1

wj∥Ãj,·h̃− bj∥2
2 (9)

= min
h̃

2N

∑
j=1
∥
(√

wjÃ
)

j,·
h̃−

(√
wjbj

)
∥2

2 (10)

The weighted problem (9) is transformed into non-weighted (Eq. (8))
by multiplying each row of Ã and each element of b by the square
root of the corresponding weight

√
wi.

3.4.1.3 Training WFH

We train the WFH weight estimation CNN using a loss function on
the predicted homography. We warp points forward by the ground
truth homography HGT then backward by the inverse of the estimated
H and finally compute L1 loss on the projection errors as:

L(H) =
1
N

N

∑
i=1
∥pi −H−1HGT pi∥2 (11)

Both the optical flow network and the flow weight estimation CNN
are trained using a single loss function, and we do not use additional
direct supervision of the flow weight predictor. The learned flow
weights resemble a keypoint detector output (corners, well-textured
patches), but with information from both images, therefore giving low
weights on occlusions or significant appearance changes as shown in
figure 5.

3.4.1.4 Weight Estimation CNN

The proposed WFH module operates on the correlation cost-volume
pyramid of the RAFT [22] optical flow estimator, but the idea is appli-
cable to other OF networks (Sec. 3.5.2). RAFT computes a correlation
volume C1 ∈ RH/8×W/8×H/8×W/8 that captures the similarity between
all pairs of feature vectors extracted from the two input images. Next,
they construct a 4-layer correlation pyramid

{
C1, C2, C3, C4}. Finally,

9× 9 patches centered on current flow vector estimates are sampled
from this pyramid and processed by a neural network that produces a
flow vector update. This is repeated several times to produce the final
optical flow field.

In WFH we sample the correlation pyramid once more on the
final OF positions, resulting in a 9× 9× 4 feature map for each flow
vector in the spatial resolution of H/8×W/8. To capture the global
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Figure 6: The WOFT tracker pre-warps the current frame using the last good
pose (1). It then estimates a homography between the template
and the pre-warped frame (2) and the reliability of the estimated
homography is assessed (3). When the estimate is not reliable (‘lost‘
state) a homography based on a local flow (4) is returned instead.

context, we then append an additional channel containing the mean

correlation volume response M(i, j) =
H/8
∑

m=1

W/8
∑

n=1
C1

i,j,k,l for the given

position (i, j) ∈ {1, . . . , H/8} × {1, . . . , W/8} in the first input image
feature map. We process the resulting features fi,j ∈ R9×9×5 with a
three-layer convolutional network (kernel size 3, 128 output channels,
ReLU) followed by a 1× 1 convolution (single output channel) and
global average pooling. Finally, we up-sample the results with the
RAFT up-sampling module and apply a sigmoid activation to get a
H ×W score map with weights between 0 and 1.

3.4.2 Homography tracker

We propose a planar object tracker based on the weighted flow ho-
mography module, WFH. Our weighted optical flow tracker, denoted
WOFT, consists of four main parts as shown in Fig. 6.

First, we apply a pre-warping technique to reduce large pose dif-
ferences, which are not handled well by OF methods. The current
video frame It is pre-warped 1 by the homography from the last
reliable frame IG, with G = 0 initially. The pre-warp Ĩt =W(H−1

0→G, It)

1 reduces the pose difference between the template and the current
images, resulting in a motion similar to the typical I(t−1) → It optical
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flow scenario. The possible appearance difference between the tem-
plate and a temporarily distant frame (caused mainly by illumination
changes and motion blur) is implicitly handled by the optical flow
feature encoder.

Second, we compute the global optical flow 2 between the template
frame I0 and the pre-warped current frame Ĩt and the correspond-
ing flow weights. We mask the flow correspondences, only leaving
the ones starting inside the template mask and ending inside the
current image. To speed up the homography estimation, we ran-
domly subsample the correspondences, only keeping 500. We then
estimate homography H0→t̃ using weighted least squares as described
in Sec. 3.4.1. Computing the homography between the template and
the pre-warped current frame prevents error accumulation and target
drift (Sec. 3.5.2).

We pass the weighted optical flow together with the computed
homography to a state logic block 3 that decides whether the tracking
was successful or not. The lost/not-lost decision is made based on
the support set size of the estimated homography. In particular,
with optical flow correspondences (pi, p′i) we warp each position
pi = (xi, yi) using the homography H0→t̃ and compute the Euclidean
distance to the position p′i = (x′i , y′i). The i-th correspondence is an
inlier when ∥W(H0→t̃, pi)− p′i∥ ≤ 5 pixels – a standard threshold on
planar tracking benchmarks [8, 5]. We declare the tracker lost when it
has a small support set, i.e. less than 20% inliers.

When the tracker is not lost, we return H0→t = H−1
0→GH0→t̃ and

update the last good frame index used for pre-warping G = t. When
the tracker is lost, we make a second attempt to estimate the pose using
a local optical flow I(t−1) → It. The local flow tends to drift, but it helps
to keep track of the target pose in the short term. The temporarily close
input images are close in appearance (similar illumination, similar
motion blur, etc.). We estimate H(t−1)→t 4 by weighted least squares
as described above and output H0→t = H(t−1)→tH0→(t−1). Moreover,
when the tracker is lost for more than 10 frames, we reset the pre-
warping last good frame index G = 0. The target pose can change
significantly over the 10 frames, making the pre-warp information
outdated. Moreover, a bad pre-warp homography can ruin any chance
of recovering, e.g. an outdated strong perspective change pre-warp
distorts the current target area beyond being recognizable, and the
identity homography with G = 0 is the safest choice.

3.4.3 Implementation details

For optical flow, we use the author-provided RAFT checkpoint trained
on Sintel. We then train the weight estimation CNN for 10 epochs on a
synthetic dataset with 50000 image pairs. We generate the training set
by repeatedly sampling a random MS COCO[95] image and warping
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it with two random homographies representing the template and the
current frame pose. The random homographies are generated by
perturbing each corner of the image with a random vector of length
up to 20% of the image diagonal. We blur the second warped image
by a random linear motion of length up to 20 pixels. Finally, both
images are passed through JPEG compression with quality set to 25.

We train with AdamW [103] optimizer with an initial learning rate
1e−3, which is then halved after every epoch. Finally, we fine-tune
the whole network, including RAFT for 2 epochs, starting from the
learning rate 1e−5 and again halving it after every epoch. To stabilize
the training procedure, we discard training samples achieving loss
over 100.

The tracker runs at around 3.5 FPS on a GeForce RTX 2080 Ti
GPU (i7-8700K CPU @ 3.70GHz). The majority of time is spent on
the optical flow computation (275ms). The weight computation (2ms),
the weight up-sampling (1ms), and the least squares homography
estimation (5ms) take negligible time. Image pre-warping (done on
CPU), optical flow masking, and subsampling cost an additional 7ms.

A faster variant WOFT↓ s downscales the input images to H/s×
W/s and rescales the output homographies to the original resolution.

3.5 experiments

We evaluate the proposed tracker on two standard planar object track-
ing datasets, POT-210 and POIC and show that it consistently achieves
high accuracy and robustness.
POT-210[8]: The Planar Object Tracking in the Wild benchmark con-
tains 210 videos of 30 objects. Each object appears in 7 video sequences
with different challenging attributes – scale change, in-plane rotation,
perspective distortion, motion blur, occlusion, out-of-view, and uncon-
strained. The sequences have a fixed length of 501 frames. POT-280 [7]
extends POT-210 by 10 new objects.
POIC[5]: the Planar Objects with Illumination Changes dataset con-
sists of 20 sequences of varying length giving a total of 22971 frames.
The dataset contains sequences with translation, in- and out-of-plane
rotations, and scale changes, but mainly focuses on strong specular
highlights and other significant illumination changes, making it com-
plementary to POT-210.
PlanarTrack[6]: the PlanarTrack is a recent large scale benchmark.
It has 7× more annotated frames than POT-280 and 25× more targets.
Each target is tracked only in one video in a setting of the uncon-
strained sequences from POT benchmarks. The dataset also contains
some unconventional targets, like a transparent glass plate or a TV
screen playing a video.
Evaluation protocol: On both all the used datasets a tracker is initial-
ized on the first frame and left to track till the end of the sequence.
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Figure 7: Precise re-annotation examples. Original ground truth annotation
(left), improved ground truth annotation (right). The grayscale
template in green channel, the GT-warped current frame in red and
blue channels. Imprecise annotation causes green and magenta
shadows, while precisely aligned images produce a grayscale result.
The green bands on top and on right side respectively are caused
by a partial occlusion on current frame. The alignment error of the
original GT evaluated on the improved ground truth is 15.8px (top)
and 7.2px (bottom).
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Figure 8: Additional POT-210 [8] re-annotation examples. Left: original
GT annotation, right: our precise re-annotation. The grayscale
template in green channel, the GT-warped current frame in red and
blue channels. Imprecise annotation causes green and magenta
shadows around contours, while precisely aligned images produce
a grayscale result. In some cases, there are still green and magenta
visible in the well-aligned images - these are due to reflections and
change of illumination.
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Figure 9: The homography discrepancy is not a good metric. Left: ground truth
annotation (green box) on frame 242 of sequence V18 3 in the POT
dataset [8, 7]. Middle: shifting the top-left corner 155 pixels up
(red box) results in homography discrepancy score of 918. Right:
shifting the top-left corner just 0.5 pixels right (red box) results in
homography discrepancy score of 2929, i.e. a sub-pixel error in the
position of a single corner results in big discrepancy, much bigger
than the official benchmark threshold ts = 10. An over 300× bigger
error in corner position results in around 3× smaller homography
discrepancy in this case.

The alignment error eAL is computed for each annotated frame. Given
four reference points xi ∈ X in the first frame, the alignment error is
defined as root-mean-square error between their projection into the
current frame by the ground truth homography H∗ and by the tracker
homography H,

eAL(H; H∗, X) =

√√√√1
4

4

∑
i=1

(W(H∗, xi)−W(H, xi))2, (12)

withW(H, x) representing the projection of vector x by a homography
H. Tracker precision is measured as a fraction of frames with eAL ≤
5 px (P@5 score). Additionally, we measure eAL ≤ 15 px (P@15

score), corresponding to the fraction of frames with target not tracked
perfectly, but not completely lost either – we call this robustness
regime. On average, eAL = 15 px corresponds to IoU (Intersection over
Union) score of 0.89, much stricter threshold than commonly used on
bounding boxes or segmentations.

Apart from the alignment error, POT [8, 7] and PlanarTrack [6]
also use a homography discrepancy score. The homography discrepancy
measures the reprojection error of the corners of a two-pixel wide
square at the origin. Depending on the pose of the target, even sub-
pixel errors in predicted corner positions can result in arbitrarily high
homography discrepancies as shown in Fig. 9. We do not use this error
metric, because it heavily depends on the tracked object position in
the image and does not have a meaningful and useful interpretation.
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3.5.1 Ground truth quality

During the analysis of WOFT performance on POT-210, we found that
in many cases the ground truth (GT) annotations are less accurate than
the official 5px error threshold. We have performed reannotation of a
subset of the POT-210 dataset to measure the original GT quality and
provide more accurate estimates of tracker performance, see Fig. 7.
Our annotation tool shows the template, the object on the current
frame warped with the current annotation, and, most importantly,
an alignment visualization. We convert both the template frame and
the current frame to grayscale and overlay the warped frame over the
template, putting the template into the green channel and the current
frame into the red and the blue channels. This allows for very precise
alignment over the whole extent of the target, unlike the annotation
interface used for the original annotation (Fig. 4 in [8]). We have fully
manually reannotated frames 82, 172, 252, 332, and 412 from each
sequence, without seeing the WOFT estimated poses. On some frames
a precise homography alignment was not possible – either due to
strong motion blur, or due to imperfect planarity of the targets. A
target non-planarity, e.g. a slight bend in otherwise flat-looking target,
manifests itself the most when the target is viewed from extreme
angles. We annotate such cases as precisely as possible (selected
examples shown in Fig. 10) and mark the frames as problematic and
ignored in evaluation. The new GT is publicly available at https://cmp.

felk.cvut.cz/∼serycjon/WOFT. More examples of the reannotation
overlay are in Fig. 8. The alignment error of the original GT evaluated
on our re-annotation is 3.63 on average, and worse than the official
5px threshold in 15% cases.

3.5.2 Ablation study

In Table 1, we show the impact of various design choices of WOFT on
POT-210 performance (both on the original and the more accurate re-
annotated ground truth). First, we show the importance of computing
the optical flow between the template and the pre-warped current
frame. In rows 1, 2 we only use the local flow (from I(t−1) to It). The
tracker drifts and quickly loses the target, resulting in overall poor
performance. A big performance improvement is achieved by using
global flow (from I0 to Ĩt) and always using the previous frame for
pre-warping (rows 3, 4). Another boost in performance is achieved
with the controlled pre-warping (rows 5 - 9), where the local flow is
used when the global flow fails and the pre-warp homography is reset
when the target is ‘lost‘ for more than 10 frames.

Using the weighted least squares homography estimation consis-
tently improves the performance – compare row 2 to row 1 (P@5 +1.3),
row 4 to row 3 (P@5 +10.7), and row 6 to row 5 (P@5 +8.3). In row 7,

https://cmp.felk.cvut.cz/~serycjon/WOFT
https://cmp.felk.cvut.cz/~serycjon/WOFT
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Figure 10: Selected not completely planar targets from POT-210 [8]. When
viewed from extreme angle, slight target non-planarity becomes
visible. It is then impossible to precisely align the image with the
template view on the whole target surface. Top-left image: precise
alignment on sides, imprecise alignment in the center. Bottom-left
image: imprecise alignment in the center and bottom-right part.
Right image: precise alignment in the center, imprecise elsewhere.
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P@5 P@15

M PW H W F orig rean orig rean
(1) R – LSq – ✓ 5.7 0.8 16.6 10.7
(2) R – LSq ✓ ✓ 7.0 2.1 22.5 17.3
(3) R ✓ LSq – ✓ 57.6 63.6 68.1 68.9
(4) R ✓ LSq ✓ ✓ 66.7 74.3 75.5 76.4
(5) R C LSq – ✓ 73.1 82.1 89.9 92.0
(6) R C LSq ✓ ✓ 80.6 90.4 93.9 95.6
(7) R C LSq ✓ – 75.1 83.0 87.3 87.8
(8) R C IRLSq ✓ ✓ 80.6 90.4 93.9 95.6
(9) R C RSAC – ✓ 79.5 88.8 92.7 93.5

(10) L C LSq – – 66.9 74.8 82.3 82.6
(11) L C RSAC – – 72.8 80.9 84.4 85.1
(12) L C LSq ✓ – 72.8 81.0 86.1 87.1

Table 1: Ablation study on POT-210, evaluated on the original ground truth
(orig) and the reannotation (rean). In all experiments, weighted
least squares perform better than non-weighted alternative in both
P@5 and P@15. M – flow method: RAFT (R), LiteFlowNet2 (L).
PW – use of the global pre-warped flow: never (–), always (✓),
controlled (C). H – homography estimation method: least squares
(LSq), iterative re-weighted least squares with Huber loss (IRLSq),
RANSAC (RSAC). W – using the estimated weights. F – using the
fine-tuned RAFT flow.

we used the same settings as in WOFT (row 6), but without the RAFT
fine-tuning, resulting in a drop in P@5 (−7.4). We have also experi-
mented (row 8) with estimating homography by weighted iterative
reweighted least squares (IRLSq) instead of ordinary weighted least
squares. We have set the IRLSq to optimize the Huber loss (also called
smooth L1 loss) which is more robust to outliers than least squares.
This did not change the performance (w.r.t. row 6), indicating that
our estimated weights already take care of outliers and the robust
estimator is not necessary. Next, we compare RANSAC (row 9) with
the proposed WOFT (row 6). The weighted least squares approach
achieves better results (P@5 +0.9) in a single differentiable pass.

Rows 10-12 show WOFT with LiteFlowNet2 [104] flow instead
of RAFT. Again, the weighted LSq estimator (row 12) works better
than plain LSq (row 10) or RANSAC (row 11). For the LiteFlowNet2

experiment, we have kept the same 3-layer CNN architecture for
weight estimation as with RAFT (Sec. 3.4.1.4). For inputs, we have
used the cost-volume on the last LiteFlowNet2 NetE pyramid level
(level 3). The cost-volume contains a 7× 7 correlation response map for
each position in the template feature map. We feed each of these 7× 7
maps through the weight estimation CNN to get the corresponding
flow weights wi. The weight estimator training was kept the same,
except we have only trained for 5 epochs. We did not fine-tune the
LiteFlowNet2 and used the liteflownet2 ft 4x1 600k sintel kitti 320x768

configuration and checkpoint from MMFlow [105].
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Figure 11: Weight distribution for different optical flow error ranges mea-
sured against the re-annotated POT-210 [8] ground truth. Median
in orange. Top: frequency of each flow error range. The weight
network learned to assign zero weight to incorrect flow vectors
(outliers) and high weight to some correct flow vectors.

3.5.3 Weights Evaluation

Figure 11 shows how the learned weights correlate with the optical flow
quality. Low-textured areas and ambiguous features are often assigned a
low weight (Fig. 5) even when the corresponding optical flow is correct.
Importantly, the incorrect flow vectors are assigned low weights.

3.5.4 POT-210 and POT-280 evaluation

We compare WOFT method against the best performing methods on the
POT-210 [8] dataset. Namely keypoint methods: SIFT [40], OBD [85], and
Gracker [84], deep control point regression HDN [100], the deep learning
based methods evaluated in [7]: SOSNet [88], SuperGlue [106], LISRD [89],
the direct methods: GOP-ESM [5], and Siam-ESM [93] (deep + direct).

The proposed WOFT achieves state-of-the-art on the POT-210 dataset.
The Alignment Error eAL results are depicted on Fig. 12 and in Tab. 2.
Evaluated over all 210 sequences (all plot) The WOFT tracker performs better
than all the other methods, both in terms of accuracy (P@5), and robustness
(P@15). Note that more than half of the 5px threshold errors of WOFT are
explained by imprecise GT.

WOFT also achieves top results on the extension of POT-210 dataset,
POT-280 [7]. With 76.9 P@5 and 93.2 P@15 it outperforms state-of-the-art
methods by a large margin as shown in Tab. 3.

speed-accuracy trade-off The WOFT method runs at 3.5 FPS
due to slow RAFT OF computation (275ms per frame). A simple method
to gain speed is to compute optical flow on lower-resolution images. We
have evaluated WOFT variants WOFT↓s, s ∈ {2, 3, 4} which downsamples
the input images to H/s×W/s resolution before computing the optical flow
and re-scales the output homography back into the original resolution. The
speed-accuracy trade-off is shown in Fig. 14. The WOFT↓3 variant operating
on H/3×W/3 images runs close to real-time and achieves state-of-the-art.
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P@5 P@15

method year FPS orig rean orig rean
GOP-ESM [5] 2019 4.95

*
42.9 – 49.7 –

SuperGlue [106, 7] 2020 3.7*
39.1 42.1 58.0 55.7

Gracker [84] 2017 4.8*
39.2 – 63.2 –

SiamESM [93] 2019 – 58.7 – 66.2 –
SOSNet [88, 7] 2019 1.5*

56.6 60.9 69.9 67.0
SIFT [40, 7] 2004 0.8*

62.2 65.8 71.3 69.6
OBD [85] 2021 30

*
48.4 54.3 79.3 79.2

LISRD [89, 7] 2020 7
*

61.6 68.3 79.6 79.2
HDN [100] 2022 10.6*

61.3 70.9 91.5 92.4
WOFT↓3 (ours) 19.2 68.9 80.5 91.2 92.3
WOFT (ours) 3.5 80.6 90.4 93.9 95.6

Table 2: Results on POT-210 [8] dataset. The proposed WOFT tracker sets a
new state-of-the-art performance in both accuracy (P@5) and robust-
ness (P@15). Evaluated on the original ground truth (orig) and the
re-annotation (rean). Tracking speed in frames per second (FPS). *
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Figure 12: Alignment Error on POT-210 [8] (original GT). WOFT performs
well on all sequence types, reducing the error on the official 5px
threshold to half of the best competitor. Method types: (red circle)
– keypoint, (green triangle) – direct, (black square) – deep.
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Figure 13: Alignment Error evaluation on POIC [5]. The proposed WOFT
achieves state-of-the-art with 96.1 P@5 and 98.0 P@15.
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Figure 14: Speed-accuracy trade-off of WOFT↓ s variants as measured on the
re-annotated POT-210 dataset. Down-scaling the input images
with s = 2 or s = 3 significantly speeds up (3×, respectively
6×) the WOFT tracker while retaining state-of-the-art accuracy.
The second-best performing method on POT-210 – HDN [100] in
purple.
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Figure 15: WOFT tracking. State visualization - red: tracking, cyan: lost -
switch to local flow. First row: WOFT handles strong occlusions
on the POT-210 V18 5 sequence. Second row: successful track-
ing on the V06 7 POT-210 unconstrained with perspective change,
partial occlusion, scale change and motion blur. Third row: suc-
cessful tracking in a POIC disk sequence, where a large part of the
target surface changes appearance because of specular reflection.
The last two rows show selected tracking failures. Row 4: the
tracker is ‘lost‘ and did not recover because of a big scale differ-
ence w.r.t. the template frame, however, the local homography
estimation prevents complete failure. Row 5: the target becomes
almost fully occluded and the tracker switches to track a nearby
distractor patch. Later WOFT reacquired the correct target. Last
row: WOFT can handle a moderate amount of motion blur, but
fails on extremely blurred frames.
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post-processing industry state-of-the-art We have addi-
tionally evaluated a film post-processing industry standard planar tracking
solution Mocha Pro 2022. The software is primarily made for interactive use,
but also provides python API enabling fair benchmark evaluation. We have
tested three variants of the Mocha Pro tracker hyper-parameters on POT-210.
We used perspective (homography) model in all the experiments. We have
tried I. the default parameters, II. increasing the Min % Pixels Used parameter
to 100%, and III. increasing the target initialization by 10%. We have chosen
the variants II. and III. according to the recommendations in Mocha Pro user
guide. Variant III. performs best, but still significantly worse (P@5 32.8, P@15

52.0) than POT-210 state-of-the-art.
We have observed the Mocha Pro tracker to work well for a short time

but completely fail afterwards. The temporal smoothness of the tracking may
be more important than pixel-perfect precision as human are very sensitive
to visual jitter. A typical tracking workflow is letting the tracker work until
it starts drifting, manually fix the tracking output on a problematic frame
and resume the tracking. This human-in-the-loop approach ensures visually
smooth output and gives the visual effect artist full control of the output.
The user interfaces of tools like Mocha Pro or DaVinci Resolve are tailored to
such interactive use. This could explain the poor results of the Mocha Pro
tracker in the benchmark setting of “initialize once and let track” which it
was not designed for. Also the POT-210 dataset probably does not represent
the kind of videos that video post-processing tools are typically used for
(high resolution, high quality videos without much rotation or blur caused
by shaking camera).

3.5.5 POIC evaluation

We compare (Fig. 13) the WOFT tracker performance with the top methods
evaluated on the POIC [5] dataset. Apart from the methods evaluated on
POT-210, this includes SOL [83] and Bit-Planes [107]. WOFT achieves state-
of-the-art results with 96.1 P@5 and 98.0 P@15 as shown in Table 4. See
Fig. 15 for WOFT output examples on both POT-210 and POIC.

3.5.6 PlanarTrack evaluation

On the PlanarTrack benchmark [6], WOFT out-performs other tested track-
ers by a large margin. In particular, it achieves [6] P@5 score of 0.43, while
the second-best HDN [100] has only 0.26. The big performance drop be-

method year P@5 P@15

SuperGlue [106, 7] 2020 37.7 58.2
SOSNet [88, 7] 2019 51.9 67.1
HDN [100] 2022 56.7 88.9
SIFT [40, 7] 2004 57.2 68.4
LISRD [89, 7] 2020 57.3 77.6
WOFT (ours) 76.9 93.2

Table 3: Results on POT-280 [7] dataset. The proposed WOFT tracker sets a
new state-of-the-art performance in both accuracy (P@5) and robust-
ness (P@15).
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method P@5 P@15

SIFT [40, 5] 43.8 54.5
SOL [83] 55.3 74.8
HDN [100] 74.4 94.5
Bit-Planes [107] 75.1 76.0
Gracker [84] 75.2 89.9
GOP-ESM [5] 90.8 93.1
SiamESM [93] 96.1 97.7
WOFT 96.1 98.0

Table 4: Results on POIC [5] dataset. The proposed WOFT tracker achieves
state-of-the-art performance in both accuracy (P@5) and robustness
(P@15).

tween POT-210 and PlanarTrack shows that the planar tracking is still far
from being solved on particularly challenging scenarios. We have briefly
inspected the PlanarTrack ground truth and found similar issues like in
POT-210, however the current state-of-the-art methods still do not achieve
performance so good that the ground truth quality would have significant
effect in benchmarking.

3.6 discussion and limitations

The WOFT tracker handles partial occlusions, a moderate amount of mo-
tion blur, and the illumination changes and lack of texture present in the
POIC dataset. In comparison, other methods performing well on POIC
(SiamESM [93], GOP-ESM [5]) have low performance on POT-210 and vice
versa (LISRD [89], SIFT [40]). Moreover WOFT achieves state-of-the-art per-
formance on the PlanarTrack benchmark [6], which was published after
the WOFT paper [9]. WOFT does not feature a re-detection scheme and
estimates only the residual transformation after the pre-warp step. This
causes issues when the tracker gets lost for more than 10 frames on the scale
subset. After resetting the pre-warp source frame to G = 0 (pre-warp with
an identity homography), the scale component of the residual transformation
is sometimes bigger than what the flow network can handle (see Fig. 15).

We tested the proposed WFH homography method on the RAFT OF
network, which is accurate (Fig. 11), but slow (275ms per frame). However,
the OF estimation is an active area of research and we expect new accurate
and fast methods to be published in the future. The core idea of WFH – flow
weights computed from an OF cost-volume and a differentiable homography
estimation with weighted LSq – is applicable to other OF methods. The
ablation study results with RAFT replaced by LiteFlowNet2 support this
claim. We also proposed a simple WOFT↓3 variant that operates fast (19.2
FPS) and still achieves state-of-the-art.
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Figure 16: MFT – Multi-Flow Tracker application: video editing. A WOW!
logo, inserted in frame 0 of sequences from selected standard
datasets [1, 68], propagated by MFT. Frames at 0%, 50%, and
100% of the sequence shown. Full videos are available at http:

//cmp.felk.cvut.cz/∼serycjon/MFT.

This chapter is about tracking of any points (TAP), not just points on a
single planar target surface. Moreover we focus on tracking densely, i.e. every
point from an initial frame. This can be viewed as an extension of optical flow
for long-term tracking. Although dense feature matchers (see section 2.2) can
be used to extract dense correspondences between temporarily distant frames
of a video, they cannot use the information from the intermediate frames
leading to a much harder and sometimes even impossible task (see section 4.5
for an example).

In planar tracking we had a geometric model which we used to pre-warp
the video frames to make the task of matching distant frames simpler for
the OF estimator, but here we have no such thing. The objects are no longer
planar or even rigid and the goal is to track points on multiple objects and the
background simultaneously. We thus do not attempt to model the geometry
of the whole scene, but instead rely on the optical flow alone. We generalize
the idea of estimating OF between pairs of temporarily distant frames that
we have used in WOFT, i.e. computing the OF between the initial and the
current frame.

35
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This chapter presents trackers MFT, published in [10], and MFTIQ [12],
which is currently under review. Both papers are a joint work with Michal
Neoral, both with equal contribution from both of us. Michal was responsible
for adapting and training the neural networks, while I implemented the
tracker and the experiments. We contributed equally to writing of the papers,
both the first drafts and the final forms, and to developing the algorithms
and analyzing them.

4.1 introduction

Reliable dense optical flow has a significant enabling potential for diverse
computer vision applications, including structure-from-motion, video editing,
and augmented reality. Despite the widespread use of optical flow between
consecutive frames for motion estimation in videos, generating consistent and
dense long-range motion trajectories has been under-explored and remains a
challenging task.

A simple baseline method for obtaining point-to-point correspondences
in a video, concatenates interpolated optical flow to form trajectories of
a pixel, i.e. the set of projections of the pre-image of the pixel, for all
frames in a sequence as shown in fig. 17. However, such approach suffers
from several problems: error accumulation leading to drift, sensitivity to
occlusion and non-robustness, since a single poorly estimated optical flow
damages the long-term correspondences for future frames. This results in
trajectories that quickly diverge and become inconsistent, particularly in
complex scenes involving large motions, repetitive patterns and illumination
changes. Additionally, concatenated optical flow between consecutive frames
cannot recover trajectories after occlusions. Few optical flow approaches
estimate occluded regions or uncertainty of estimated optical flow.

Another baseline approach (also shown in fig. 17) — matching every
frame with the reference — is neither prone to drift nor occlusions, but has
other weaknesses. As the pose and illumination conditions change in the
sequence, the matching problem becomes progressively more difficult. In
the datasets used for point-tracking evaluation, match-to-reference performs
worse than consecutive frame optical flow concatenation.

Addressing both weaknesses, we proposed a novel method for dense
long-term pixel-level tracking. It is based on calculating flow not only for
consecutive frames, but also for pairs of frames with logarithmically spaced
time differences (see Fig. 18). We show that when equipped with suitable
estimates of accuracy and of being occluded, a simple strategy for selecting
the most reliable concatenation of the set of flows leads to dense and accurate
long-term flow trajectories. It is insensitive to medium-length occlusions and,
helped by estimating the flow with respect to more distant frames, its drift is
reduced.

The idea to obtain long-term correspondences by calculating a set of
optical flows, rather than just flow between consecutive images, appeared
for the first time in [108]. This led to a sequence of papers on the topic
[109, 110, 111]. The performance of these early, pre-conv-net methods is
difficult to assess. They were mainly qualitatively, i.e. visually, tested on a
few videos that are not available.

The MFT paper [10] introduced the following contributions: A point-
tracking method that is (i) capable of tracking all pixels in a video based on
CNN optical flow estimation, (ii) conceptually simple and can be trained
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Figure 17: Baseline approaches to long-term tracking with optical flow.
Chaining optical flows estimated between consecutive frames (top,
red) and directly estimating optical flow between the reference
and the current frame (bottom, black).

and evaluated on a single customer grade GPU. We show (iii) a simple yet
effective strategy for selection of long-term optical flow chain candidates, and
(iv) how to select the most reliable candidate on the basis of spatial accuracy
and occlusion probability obtained by small CNNs trained on synthetic data.
We publish the results and the method code 1.

Experimentally the method outperforms baselines by a large margin and
provide a good speed/performance balance, running orders of magnitude
faster than the state-of-the-art for video point tracking [112, 113] when used
for dense point tracking. Fig. 16 shows an application of the proposed
method for video editing.

The MFTIQ [12] builds on the ideas of MFT and has the following extra
contributions. We have developed (v) an Independent Quality (IQ) module
which decouples the occlusion and uncertainty estimation used in MFT from
the optical flow computation, which leads to better performance. Thanks to
the flow quality estimation being independent on the particular optical flow
network, we can integrate (vi) any off-the-shelf OF method with MFTIQ in a
plug-and-play manner and without any re-training or fine-tuning. We show
(vii) that MFTIQ out-performs MFT and other point trackers, getting near
the state-of-the-art, while still being significantly faster for dense tracking.

4.2 related work

long-term optical flow To track points over multiple consecutive
frames, some methods [114, 115, 116] have proposed to concatenate estimated
optical flow. However, they cannot recover from partial occlusions. Moreover,
concatenating optical flow results in error accumulation over time and induce
drift in the tracked points. Standard OF benchmarks [33, 37] do not evaluate
occlusion predictions and consequently most OF methods do not detect
occlusions at all. Although some optical flow methods have been proposed

1 https://github.com/serycjon/MFT

https://github.com/serycjon/MFT
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to estimate the flow from more than two frames [117, 23, 17, 18], they still
operate in a frame-by-frame manner and do not handle partial occlusions
well.

Another line of work [108, 118, 109] addresses these limitations. These
algorithms construct long-term dense point tracks by merging optical flow
estimates computed over varying time steps, not just on neighboring frames.
This enables handling of temporarily occluded points by skipping over
the occlusions and establishing the correspondence between frames where
the points in question are not occluded. However, these methods rely on
the brightness constancy assumption, which leads to failure over distant
frames. In subsequent works [110, 111], this approach was extended by
statistical flow selection. The idea is to generate a large number of motion
path candidates by randomly selecting reference frames and weighting them
based on estimated quality. The optimal candidate path is then determined
through global spatial-smoothness optimization. However, these methods
are computationally intensive and limited to tracking a small patch of a
single object.

In comparison, our proposed MFT generates only a small number of
candidates and picks the best one based on occlusion and uncertainty es-
timated by a simple CNN. Although some optical flow methods estimate
occlusions [119, 23, 26, 120, 121, 122] or uncertainty of estimated optical
flow [123, 124, 125], state-of-the-art optical flow methods [22, 27] do not
provide such estimates. We are the first to employ estimation of occlusion
and optical flow uncertainty for the dense and robust long-term tracking of
points.

point tracking aims to track a set of physical points in a video as
introduced in TAP-Vid [126]. A baseline method TAP-Net [126] computes
cost volume (similar to RAFT [22]) for a single query point independently
for each frame of the sequence. A two-branch network then estimates the
position and visibility of the query point in the targeted frame. PIPs [127]
focuses on tracking points through occlusions by processing the video in
fixed-sized temporal windows. It does not re-detect the target after longer
occlusions. PIPs use test-time linking of estimated trajectories since it is
limited to tracking in eight consecutive frames only. Particle Video [128]
prunes tracked points on occlusion and creates new tracks on disocclusion,
however these are not linked together. TAPIR [112] combines the per-frame
point localization from TAP-Net [126] with a temporal processing inspired
by PIPs [127], but uses a time-wise convolution instead of fixed size frame
batches. BootsTAP [129] is an improved TAPIR model, self-supervisedly
fine-tuned on a large amount of YouTube video clips. CoTracker [113]
processes query points with a sliding-window transformer that enables
multiple tracks to influence each other. However, it works best when a
single query point is tracked at a time, supported by an auxiliary grid of
queries. SpatialTracker [130] extend it by adding 3D information from a
monocular depth estimation method. Compared to our proposed approach,
these methods do not track densely, but instead focus on tracking individual
query points. It is possible to track all the points in batches, but it is slow.
The DOT [131] tracker densifies the CoTracker correspondences with a
specialized RAFT-like optical flow network.

OmniMotion [132] was designed to track densely. It pre-processes the
video by computing optical flow between all pairs of frames. It represents
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Figure 18: Overview of the MFT. MFT tracks a query point (black square)
by chaining optical flows. Each chain consists of a previously
computed chain from frame 0 up to frame (t− ∆) (dashed arrow,
white dot), and an optical flow vector computed between frames
(t− ∆) and t (solid arrow). MFT forms multiple candidate chains
with varying ∆. The best candidate (black dot) is selected according
to uncertainty and occlusion scores. This is done in parallel,
independently for each pixel in the reference frame.

the whole video with a quasi-3D volume, a NeRF[133]-like network and
a set of 2D↔quasi-3D bijections. The representation is globally optimized
at inference time to obtain consistent motion estimates of all points in all
frames of the video. While other test-time optimization approaches [134, 135]
improve over the OmniMotion tracking speed, they are still extremely slow
when compared to the sparse point trackers.

4.3 method

The proposed method for long-term tracking of every pixel in a template is
based on combining optical flow fields computed over different time spans,
hence we call it Multi-Flow Tracker, or MFT in short. Given a sequence of H×
W -sized video frames I0, I1, . . . , IN and a list of positions on the reference
(template) frame pi,0 = (xi, yi), i ∈ {1, . . . , HW} the method predicts the
corresponding positions pi,t in all the other frames t ∈ {1, . . . , N}, together
with an occlusion flag oi,t. At time t, the MFT outputs are formed by
combining the MFT result from a previous time t− ∆, with the flow from
t− ∆ to the current frame t (see Fig. 18). Note that this is not combining only
two flows, but appending single flow to a previously computed, arbitrarily
long chain of flows. MFT constructs a set of candidate results with varying ∆,
then the best candidate is chosen independently for each template position.
To rank the candidates, MFT computes and propagates an occlusion map
and an uncertainty map in addition to the optical flow fields. Detecting
occlusions is necessary to prevent drift to occluding objects as shown in
Fig. 19. The position uncertainty serves to pick the most accurate of the
candidates. We now describe how the occlusion and uncertainty maps are
formed, followed by a detailed description of the proposed MFT.
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Figure 19: Optical flow and occlusions. OF methods are typically [22, 27]
trained to ignore occlusions and to predict the ground-truth flow
(red) even when occluded in the second frame. Continuing track-
ing after an occlusion would result in the target drifting to the
occluding object. Example from Sintel [33].

#0 #t− ∆1 #t− ∆2 #t

4 F̄0→(t−∆2)[•]

2 F(t−∆1)→t[•]s

5 F(t−∆2)→t[•]s
3 = 1 + 2

6 = 4 + 5

1 F̄0→(t−∆1)[•]

Figure 20: Schematic explanation of the MFT tracking procedure. At the
current frame, time t (right), the tracker creates a set of result
candidates, each formed by a different chain of optical flows. In
this example, the first candidate 3 is formed by chaining the result
1 previously computed in time (t− ∆1) with flow 2 estimated
between frames (t− ∆1) and t. We use bilinear interpolation (red)
to sample the flow field, since the positions in (t− ∆1) usually do
not align with the pixel grid. The flow 3 into the current frame
t is constructed by summing the two flow vectors. We repeat
this procedure for ∆2, again summing the result 4 for frame
(t− ∆2) with 5 – the bilinearly sampled flow field from (t− ∆2)
to t. When chaining the flows, we also chain their occlusion and
uncertainty maps. Finally, we select the candidate ( 3 , or 6 ) with
the lowest uncertainty score among the ones not occluded, or
mark the result occluded when all candidates predict occlusion.
Current point position shown in blue, grid-aligned flow vectors
in black, interpolated flow vectors in red.
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4.3.1 Occlusion and Uncertainty

Current optical flow methods typically compute the flow from a cost-volume
inner representation and image features [22, 27, 21]. Given a pair of input
images, Ia and Ib, the cost-volume encodes similarity between each position
in Ia and (possibly a subset of) positions in Ib. We propose to re-use the
cost-volume as an input to two small CNNs for occlusion and uncertainty
estimation. In both cases we use two convolutional layers with kernel size 3.
The first layer has 128 output channels and ReLU activation. Both networks
take the same input as the flow estimation head and each outputs a H ×W
map.
Occlusion: Similar to [122, 23, 26], we formulate the occlusion prediction as
a binary classification. The network should output 1 for any point in Ia that
is not visible in Ib and 0 otherwise. We train it on datasets with occlusion
ground-truth labels (Sintel [33], FlyingThings [31], and Kubric [136]) using
standard cross-entropy loss. The trained CNN achieves 0.96 accuracy on
Sintel validation set.
Uncertainty: We train the uncertainty CNN with the uncertainty loss function
from [137, 45]

Lu =
1

2σ2 lH(||⃗x− x⃗∗||2) +
1
2

log(σ2) (13)

where x is the predicted flow, x∗ the ground truth flow, σ2 the predicted
uncertainty and lH is the Huber loss function [138]. The uncertainty CNN
predicts α = log(σ2) to improve numerical stability during training. We
output σ2 during inference.

We sum the occlusion loss and Lu weighted by 1
5 . Note that we only

train the occlusion and uncertainty networks, keeping the pre-trained optical
flow fixed.

4.3.2 MFT – Multi-Flow Tracker

The MFT tracker is initialized with the first frame of a video. It then outputs
a triplet FOU0→t = (F̄0→t, Ō0→t, Ū0→t) at each consequent frame It. The
F̄0→t is a H ×W × 2 map of position differences between frame number
0 and t, in the classical optical flow format. The Ō0→t and Ū0→t are H ×
W maps with the current occlusions and uncertainties respectively. On
the initialization frame, all three maps contain zeros only (no motion, no
occlusion, no uncertainty), on the first frame after initialization, the triplet is
directly the output of the optical flow network and the proposed occlusion
and uncertainty CNNs. On all the following frames, the results are not the
direct outputs of the network, but instead they are formed by chaining two
(F, O, U) triplets together.

The MFT is parameterized by D, a set of time deltas. We set D =
{∞, 1, 2, 4, 8, 16, 32} (logarithmically spaced) by default. For every ∆ ∈ D, we
create a result candidate that is formed by chaining two parts – a previously
computed result FOU0→(t−∆) and a network output FOU(t−∆)→t as shown
in Fig. 20. To keep the notation simple, we write (t − ∆), but in fact we
compute max(0, t− ∆) to avoid invalid negative frame numbers.

To do the chaining, we first define a new map P̄(t−∆) storing the point
positions in time (t− ∆). For each position p = (x, y) in the initial frame,
the position in time (t− ∆) is calculated as

P̄(t−∆)[p] = p + F̄0→(t−∆)[p], (14)
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where A[b] means the value in a map A at integer spatial coordinates b. To
form the candidate F∆

0→t, we add the optical flow F(t−∆)→t, sampled at the
appropriate position to the motion between frames 0 and (t− ∆).

F∆
0→t[p] = F̄0→(t−∆)[p] + F(t−∆)→t

[
P̄(t−∆)[p]

]
s

(15)

where A[b]s means the value in a map A sampled at possibly non-integer spa-
tial coordinates b with bilinear interpolation. When chaining two occlusion
scores, we take their maximum.

O∆
0→t[p] = max

(
Ō0→(t−∆)[p]; O(t−∆)→t

[
P̄(t−∆)[p]

]
s

)
(16)

Since we threshold the occlusion scores in the end to get a binary decision,
this corresponds to an “or” operation – the chain is declared occluded
whenever at least one of its parts is occluded.

The uncertainties are chained by addition, as they represent the variance
of the sum of flows, assuming independence of individual uncertainties.

U∆
0→t[p] = Ū0→(t−∆)[p] + U(t−∆)→t

[
P̄(t−∆)[p]

]
s

(17)

We repeat the chaining procedure for each ∆ ∈ D to obtain up to |D|
different result candidates. Finally, we select the best ∆, ∆∗ according to
candidate uncertainty and occlusion maps. In particular, we pick the ∆ that
has the lowest uncertainty score among the unoccluded candidates. When
all the candidates are occluded (occlusion score larger than a threshold θo),
all candidates are equally good and the first one is selected.

∆∗[p] = argmin
∆∈D

U∆
0→t[p] + ∞ · [[O∆

0→t[p] > θo]], (18)

where [[x]] is the Iverson bracket (equal to 1 when condition x holds, 0
otherwise). Notice that we select the ∆∗ independently for each position. For
example with D = {∞, 1}, the flows are computed either directly between
the template and the current frame (∆ = ∞), or from the previous to the
current frame (∆ = 1) as in the traditional OF setup. For some parts of the
image, it is better to use ∆ = ∞, because having a direct link to the template
does not introduce drift. On the other hand, on some parts of the image
the appearance might have significantly changed over the longer time span,
making the direct flow not reliable at the current frame. In such case a long
chain of ∆ = 1 flows might be preferred. Note that MFT usually switches
back and forth between the used ∆s during the tracking. A single template
query point might be tracked using a chain of ∆ = 1 flows for some time,
then it might switch to the direct ∆ = ∞ flow for some frames (possibly
undoing any accumulated drift), then back to ∆ = 1 and so on.

The final result at frame t is formed by selecting the result from the
candidate corresponding to ∆∗ in each pixel, e.g., for the flow output F̄0→t
we have

F̄0→t[p] = F∆∗ [p]
0→t [p] (19)

Finally, MFT memorizes and outputs the resulting triplet FOU0→t and dis-
card memorized results that will no longer be needed (more than max(D \
{∞}) frames old). Given query positions pi,0 on the template frame 0, we
compute their current positions and occlusion flags by bilinear interpolation
of the FOU result.

pi,t = pi,0 + F̄0→t[pi,0]s (20)

oi,t = Ō0→t[pi,0]s (21)



4.3 method 43

Figure 21: Uncertainty chaining near motion boundaries may significantly
underestimate the true error. Two rectangles moving in opposite
direction shown on three consecutive frames. Red point is the
estimated position. Blue point is the ground-truth position. Large
blue circle shows the true uncertainty (position error) of the tracker.
Black circle shows the sum of uncertainties estimated (in this
example perfectly) between consecutive images. Orange point in
the last frame shows the ground-truth position of the red point in
the middle frame.

4.3.3 Implementation Details

For the optical flow, we use the official RAFT [22] implementation with
author-provided weights. Both the occlusion and the uncertainty CNNs
operate on the same inputs as the RAFT flow regression CNN, i.e. samples
from the RAFT cost-volume, context features, and Conv-GRU outputs. We
train on Sintel [33], FlyingThings [139], and Kubric [136]. We sample training
images with equal probability from each dataset. Because the Kubric images
are smaller than the RAFT training pipeline expects, we randomly upscale
them with scale ranging between 3.2×and 4.6×. We train the occlusion and
the uncertainty network for 50k iterations with the original RAFT training
hyperparameters, which takes around 10 hours on a single GPU.

The MFT tracker is implemented in PyTorch and all the operations
are performed on GPU. Note that the optical flows and the occlusion and
uncertainty maps can be pre-computed offline. When the ∆ = ∞ is not
included in D, the number of pre-computed flow fields needed to be stored
in order to be able track forward or backward from any frame in a video
is less than N2|D|. Pre-computing flows for ∆ = ∞ (direct from template)
and all possible template frames is not practical, as the number of stored
flow fields grows quadratically with the number of frames N. With the flows
for other ∆s pre-computed, MFT needs to compute just one OF per frame
during inference, so the tracking speed stays reasonably fast.

On a GeForce RTX 2080 Ti GPU (i7-8700K CPU @ 3.70GHz), the chaining
of the flow, occlusion and uncertainty maps takes approximately 1.3ms
for each ∆ candidate with videos of 512× 512 resolution. On average, the
preparation of all the result candidates takes 8ms. The per-pixel selection of
the best one adds additional 0.6ms. Computing a single RAFT flow, including
the extra occlusion and uncertainty outputs, takes 60ms. Altogether, the full
MFT runs at 2.3FPS. With pre-computed flows MFT runs at over 100FPS,
making it suitable for interactive applications in, e.g., film post-production.
We set θo = 0.02 empirically.
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4.3.4 MFTIQ: MFT with Independent Quality Estimation

This section describes some improvements to the original MFT. The idea of
estimating uncertainty and occlusion status for each optical flow vector is
applicable to arbitrary OF methods. However, MFT occlusion and uncertainty
estimation network was designed for RAFT in particular. While RAFT
works well for small ∆ between the frames, it was only trained on pairs of
consecutive frames, where the motions are usually small and uncomplicated,
the spatial relation between the objects does not significantly change, and the
occlusion maps are small. Its performance drops as the ∆ increases. There
are some dense wide-baseline image matching methods proposed recently,
like RoMa [43], that are not trained on consecutive frames, but rather on
photos of landmarks taken by tourists. The camera pose changes much
more between such photos than between frames in OF training data. The
illumination changes are also more challenging as each photo was taken at a
different time and a different day. There are also other alternatives to RAFT
that have similar estimation quality, but faster runtime.

To integrate a different OF method — like RoMa for better performance
on bigger flow ∆, or some faster flow — into MFT, one would first have to
come up with some network architecture for the occlusion and uncertainty
heads suitable for the given OF method. To address this issue we have
developed MFT with Independent Quality, or MFTIQ in short. We propose a
standalone network that gets two images and an OF between them as inputs
and produces occlusion and uncertainty scores for each of the input optical
flow vectors. This way the network does not have to be tailored to fit the
particular OF estimator inner representations, like the RAFT cost-volume
and features in MFT.

This approach has some advantages. First, after training the quality
(uncertainty, occlusion) estimation network once, we can use any OF method
in a plug-and-play fashion. The MFTIQ user can choose to use slower, but
more accurate OF method, e.g. FlowFormer++ [28], RoMa [43], or faster,
but less accurate OF like NeuFlow [140]. Also when a new and better OF is
published, MFTIQ users get a free upgrade without any retraining.

Second, we can estimate the quality of the chain of flows as a whole,
without having to deal with the chaining of the uncertainty scores. While the
summation of uncertainties used in MFT is somewhat theoretically justified
(see Eq. (17), Sec. 4.3.2), the assumptions about independence do not work
well in practice, especially around motion boundaries as shown in Fig. 21.
In MFTIQ we feed the quality estimation network the template and the
current image and the flow field created by chaining flows in the MFT
fashion (Eq. (15)). This way it is harder for the tracker to drift and produce
long chains after incorrect jump, which was a weakness of the original MFT
as described in Sec. 4.5. On the other hand, estimating the occlusion and
uncertainty directly between the template and current frame is a harder
task, since appearances and poses of all objects in the scene can change
dramatically over the duration of the video.
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Figure 22: Overview of the MFTIQ Independent Quality (IQ) estimation
network. First, image features are extracted from the template
frame I0 and the current frame It. Then, the current frame fea-
tures are warped using the positions given by the chained flow
F∆

0→t. The now-aligned feature maps are compared with a local
(displacement up to ±3) correlation cost-volume. Finally a con-
catenation of the features extracted from both images and the
flow are concatenated with the cost-volume and processed by two
small CNNs to output the occlusion map and the cost map which
together represent the quality of the input flow chain.

4.3.4.1 Independent Flow Quality Estimation

In contrast to MFT, where the uncertainties were chained, in MFTIQ we
estimate the cost E and the occlusion map O directly as a function of the
chained flow F∆

0→t and the two images it relates to, I0 and It.

{E∆
t , O∆

t } = Q
(

F∆
1→t, I1, It

)
. (22)

The cost map E functions analogously to the MFT flow chain uncertainty
U, but is trained with a different cost function. Cost E is analogous to MFT
uncertainty U in that the lower values means higher positional accuracy.
The independent quality estimation function Q is implemented as a neural
network, the architecture and the training of which we describe in this
section.

An overview of the architecture is shown in fig. 22. First, we extract
image features to produce a H

4 × W
4 feature map. In particular, both images I1

and It are processed by the DinoV2 [141] network. We bilinearly upscale the
resulting coarse H

14 × W
14 feature map into the target H

4 × W
4 resolution. To add

more spatially fine-grained information, we also compute the ImageNet1K-
pre-trained ResNet50 [94] CNN features and features from a custom shallow
CNN. The features from all the feature providers (DinoV2, ResNet, custom
CNN) are aggregated and compressed through a convolutional operation
(from 5× 32 channels down to 32 channels) to produce an additional fused
feature for the cost-volume.

We resize all the resulting feature maps into the 1
4 resolution and com-

press them with a convolutional layer to have 32 channels each.
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warping + cost volume The next stage in our process is the forma-
tion of a local Correlation Cost Volume (CCV), which serves to measure the
similarity between the corresponding (as predicted by the optical flow chain)
features, while also considering adjacent pixel information. To perform this,
the feature maps from the current frame It, are warped to the template
frame I1 using the chained optical flow F0→t, which is scaled to match the
featuremap resolution. Then a local CCV (maximum displacement of 3px on
the featuremap resolution) is independently computed for each input feature
map, like in FlowNet [20].

Finally, we concatenate the feature similarities computed by the cost-
volumes with the image features and features computed from the chained
optical flow. The resulting H

4 × W
4 featuremap with 424 channels is then used

to estimate the flow-chain quality.

flow-chain quality estimation We use two three-layer CNN
heads, each followed by a bilinear upsampling to the full image resolution,
to estimate the cost and occlusion maps. The occlusion estimation CNN
classifies each pixel as either occluded or non-occluded and is trained using
standard binary cross-entropy loss, denoted as Loccl.

The cost is constructed from M = 5 binary classifiers again trained by
binary cross-entropy loss Lmatch θ . Pixels that have the flow end-point-error
(EPE, euclidean distance from the ground truth) over θpx or are occluded
belong to the positive class, while the visible and precisely matched (EPE
under θpx) belong to the negative class. The binary classifiers differ in the
EPE threshold θ ∈ {1, 2, 3, 4, 5}, ranging from 1 to 5px.

During inference, the final cost map is constructed as a weighted average
of the soft (Sigmoid activation) classification maps Eθ ,

E =
M

∑
θ=1

2θ−1Eθ . (23)

The E should be low for well matched points and high for poorly matched
or occluded points.

The overall training loss, L, is computed as follows:

L =
1

H ×W

H×W

∑
i=1

Vi

(
Loccl

i +
1
M

M

∑
θ=1
Lmatch θ

i

)
, (24)

where Vi is a binary ground-truth validity flag of pixel i.

4.3.5 Implementation Details

For the DinoV2 features we use the author-provided ViT-S/14-reg network
checkpoint. The ResNet50 [94] network, pre-trained on the ImageNet1K [142]
dataset, is used to extract features from its first three blocks: the input block,
residual block 1, and residual block 2. Each output feature is up-sampled to
H
4 × W

4 and compressed to 32 channels using a convolutional layer.
The custom image features CNN is trained from scratch, and it is inspired

by NeuFlow’s feature CNN [140]. Initially, an image pyramid is created
by subsampling the input image at different scales (1/1, 1/2, 1/4). For
each level of the image pyramid, a convolutional layer is applied with
specific kernel sizes, strides, and padding to ensure the output resolution
is H

4 × W
4 (k4:s4:p0 | k8:s2:p3 | k7:s1:p3). The outputs from each pyramid
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level are concatenated and compressed to 32 channels using an additional
convolutional layer.

We trained the independent quality network using a synthetic dataset
from the Kubric rendering tool [136]. The dataset includes 200 sequences with
a variable number of static and dynamic objects rendered at a 1024×1024
resolution, each 240 frames long. The sequence length is much longer
than the typically used 24 or 48 frames. We had to ensure that the objects
do not become static after falling to the ground as in the default Kubric
scenario, otherwise the long sequences would not bring much. To do this
and keep the objects non-intersecting, we left the default Kubric physical
engine to simulate the scene for 48 frames, after which we disabled it and
replayed the simulated motions back and forth for the rest of the video. The
camera motion is generated independently, with the panning from TAPIR
and a random camera shake to introduce motion blur and make the camera
movement more realistic. Due to the independent non-looping motion of
the camera, the resulting video is not repetitive and information-rich for the
whole duration.

The training involved sampling random image pairs with temporal
separations, i.e., the flow ∆, ranging from 2 to 150 frames. We generated a
pre-sampled set of 20,000 training pairs with dense2 ground truth optical
flow, occlusion, and validity masks V. During each training iteration, the
input optical flow chains were uniformly drawn from RAFT [22], ground-
truth-initialized FlowFormer++ [28], and the ground truth flow. Both the
optical flow and the input images were augmented and resized to 368× 768
pixels.

The training was conducted on a single RTX A5000 GPU for approxi-
mately one day using a batch size of 8 for 200,000 iterations, with an initial
learning rate of 2.5× 10−3 and OneCycleLR [143] learning rate policy.

inference-time caching To speed up the proposed MFTIQ tracker,
we cache and re-use intermediate results where possible. Namely, the image
features are needed multiple times per frame and especially the DinoV2

network is slow, so we cache them in GPU memory. We also cache the optical
flows, which is useful when tracking from multiple query frames, like in
the strided TAP-Vid. Depending on the available memory, the caching is
automatically done to GPU memory, CPU memory, or to mass storage device
(typically a Solid-State Drive). If the application allows it, both the image
features and the optical flows can be precomputed to get fast tracking.

When storing optical flows in the mass storage device, each channel is
normalized and re-scaled to full range of unsigned 16 bit integers (between
0 and 216 − 1) and compressed using fast LZ4 algorithm, or as a PNG image
(3 8-bit channels, one filled with zeros). The normalization parameters are
stored alongside the compressed data for later de-normalization.

With optical flow and image features computed in advance, MFTIQ runs
at 3.7 FPS on 720× 1080 and at over 10 FPS on 512×512 video resolution.
Without the pre-computation, the speed depends on the flow method used.
For example on the 512×512 resolution it ranges from 0.2 FPS with RoMa to
2.7 FPS with RAFT, and 6 FPS with NeuFlow.

2 The public version of the Kubric tool supports only sparse ground truth generation
for point-tracking tasks.
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DAVIS - first DAVIS - strided
flow delta set D AJ <δx

avg OA AJ <δx
avg OA

(1) {1} 38.3 54.5 69.3 48.9 61.8 80.8
(2) {∞} 38.3 50.8 65.5 47.9 58.0 76.3
(3) {∞, 1} 46.4 63.7 76.7 55.0 68.1 85.8
(4) {∞, 1, 2, 4, 8, 16, 32} 47.3 66.8 77.8 56.1 70.8 86.9
(5) {1, 2, 4, 8, 16, 32} 47.4 66.2 77.3 55.7 70.2 86.5

Table 5: TAP-Vid Davis benchmark – evaluation of MFT on variants based
on different sets D of time differences ∆ used in optical flow; ∞ in-
dicates OF between the template and the current frame. Performance
measured by occlusion accuracy (OA), position accuracy (<δx

avg),
and combined measure AJ. For definition of <δx

avgand AJ, see text.
Bold best, underline second.

4.4 experiments

Since there is no benchmark for dense long-term point tracking, we evaluate
the MFT on the recently introduced TAP-Vid DAVIS and TAP-Vid Kinetics

datasets [126] for sparse point tracking. The datasets consists of 30 videos
from DAVIS 2017 [1] and 1189 videos from Kinetics-700 [144, 145] respectively,
rescaled to 256× 256 resolution, semi-automatically annotated with positions
and occlusion flags of ≈ 20 selected points. MFTIQ is additionally evaluated
on RoboTAP [146], which contains 265 videos of robotic arms picking up and
dropping objects in a lab scenario and annotated like the TAP-Vid datasets.
Evaluation protocol: The TAP-Vid benchmark uses two evaluation modes:
“first” and “strided”. In the “first” mode, the tracker is initialized on the first
frame where the currently evaluated ground-truth tracked point becomes
visible, and is only evaluated on the following frames. In the “strided” mode,
the tracker is initialized on frames 0, 5, 10, . . . if the currently evaluated
tracked point is visible in the given frame. The tracker is then evaluated on
both the following and the preceding frames, we thus run our MFT method
two times, forward and backward in time, starting on the initialization frame.
The resulting tracks are shorter (half the video length on average), making
the task simpler. Also, in the first mode, the query points are often on the
object boundary or just after de-occlusion, further complicating the tracking.
Evaluation metrics: The TAP-Vid benchmark uses three metrics. The occlu-
sion prediction quality is measured by occlusion classification accuracy (OA).
The accuracy of the predicted positions, <δx

avg, is measured by fraction of
visible points with position error under a threshold, averaged over thresholds
1, 2, 4, 8, 16. Both occlusion and position accuracy are captured by Average
Jaccard (AJ), see [126] for more details.

4.4.1 MFT Flow Delta Ablation

In Table 5, we show the impact of using different sets D of ∆s. We evaluate
two baselines – (1) basic chaining of consecutive optical flows (∆ = 1), and
(2), computing the optical flow directly between the template and the current
frame (∆ = ∞). The first one performs better in all metrics, as the OF is
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Resolution H×W
DAVIS - first DAVIS - strided

AJ <δx
avg OA AJ <δx

avg OA
(1) 256×256 33.0 47.7 70.2 41.4 54.6 83.6
(2) 256×256→512×512 47.3 66.8 77.8 56.1 70.8 86.9
(3) 256×256→256×ratio 40.5 58.5 76.9 49.2 63.8 86.4
(4) 256×256→480×ratio 49.2 69.2 77.9 58.8 73.9 87.7
(5) orig res.→480×ratio 52.3 71.9 79.5 61.9 76.1 88.8
(6) orig res.→720×ratio 54.0 74.0 79.1 64.3 78.7 88.1

Table 6: TAP-Vid Davis benchmark – evaluation of MFT for different
image resolutions. Performance measured by occlusion accuracy
(OA), position accuracy (<δx

avg), and combined measure AJ. For
definition of <δx

avgand AJ, see text. Bold best, underline second.

computed on pairs of consecutive images, which it was trained to do, and
the test sequences are not long enough to induce significant drift by error
accumulation. Note that the performance in the strided evaluation mode is
better, because the sequences are on average two times shorter and contain
less occlusions.

Combining the basic chaining with the direct OF, line (3) in Table 5, the
performance increases in all metrics, showing the effectivity of the proposed
candidate selection mechanism. Row (4) is the full MFT method which
achieves the overall best results. The final experiment (5) works without the
direct flow. This means that we can pre-compute all the optical flows needed
to track from any frame in any time direction, and store them in storage
space proportional to the number of frames 2N|D|. Note that attempting
to do that with ∞ ∈ D would result in storage requirements proportional
to N2. The last version achieves second best overall performance. Visual
performance of the baselines and full MFT is shown in Fig. 23. All results
in Table 5 were obtained on 2× upscaled images as discussed in the next
section which is equivalent to adding one upsampling layer to the RAFT
feature pyramid.

4.4.2 MFT Input Resolution Ablation

The official TAP-Vid benchmark is evaluated on videos rescaled to 256× 256
resolution, which is small compared with the RAFT training set. Because
of this, we upscale the 256× 256 videos to 512× 512 resolution. In all the
experiments, the output positions are scaled back to the 256× 256 resolution
for evaluation. Rows (1) and (2) in Table 6 show that this upscaling improves
the performance by a large margin on all three metrics. This shows that
RAFT is sensitive to input sizes, note that no information was added to the
images when upscaling.

The aspect ratio of the original videos is changed during the scaling from
full DAVIS resolution to the 256× 256. This makes the video contents appear
distorted and changes the motion statistics. Consequently we perform several
experiments with varying video resolutions but keeping the original aspect
ratio. In the first two, (rows (3), (4) in Table 6), we upsample the 256× 256
videos. This way we stick as close to the TAP-Vid protocol as possible, only
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Figure 23: Result visualizations sampled at 25%, 50%, 75% and 100% of the
input video (top) length. We take the first frame of a video and set
its transparency with a checkerboard pattern. We then warp the
resulting image using the outputs of each method and overlay the
result on the current frame. The checkerboard pattern is visible
when the tracking results are incorrect, or when the illumination
changed between the template and the current frame. Pixels with-
out a correspondence on the template frame are darkened. Row 2:
simple flow chaining ∆ = 1. A short occlusion by the tail makes
the tracker lose track in the back half of the cow. Row 3: direct
flow ∆ = ∞. The tracker survives the occlusion but loses track
when the cow rotates away from the camera. Bottom: the proposed
MFT handles both the short occlusion and the appearance change,
tracking well on background and most of the cow’s body. All
trackers fail on the legs which are too thin for the RAFT optical
flow. Best viewed zoomed-in on a screen.
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requiring the original video aspect ratio as an extra input. In (3), we keep
the image height unchanged and only upscale the width such that the aspect
ratio is not changed wrt the full resolution videos. All the metrics improve
compared to the no scaling variant (1). Also, when we upscale the images to
larger size (4), the performance increases.

In the last two rows (5), (6), we skip the TAP-Vid downscaling to 256×
256 and instead downscale to the target resolution directly from the full-
resolution DAVIS videos. This preserves high-frequency details more than
doing the downscale-upscale cycle. Thanks to this, row (5) is better than (4),
although the input resolution is the same in both. Even larger resolution (6)
again improves the <δx

avgand the AJ metric for the cost of small (below one
percent point) decrease in occlusion accuracy.

Because we downscale directly from the full resolution, without the 256×
256 intermediate step, the results of (5) and (6) are not directly comparable
with the original TAP-Vid benchmark table, but are closer to a real-world
scenario.

4.4.3 MFT Comparison With the State-of-the-Art

On the TAP-Vid benchmark, the proposed MFT tracker performs third
best, after the state-of-the-art sparse point-tracking methods [113, 112], out-
performing the other dense point tracker OmniMotion [132]. MFT runs at
over 2FPS, which is orders of magnitude faster than the alternative meth-
ods evaluated densely, tracking every pixel and not just selected few. The
speed/performance balance makes MFT favorable for dense point-tracking.
Additionally, the optical flows can be pre-computed (only 2N log N flows
needed for a video of length N with logarithmically spaced flow delta set
D) resulting in tracking at over 100FPS from any frame in the video, both
forward and backward. This makes MFT a good candidate for interactive
applications such as video editing. The complete results, including the in-
ference speeds, are shown in Table 7. Both MFT and OmniMotion [132]
can be seen as post-processing of a set of RAFT optical flows. The MFT
strategy performs better than the complex model and global optimization in
OmniMotion.

tracking speed In Tab. 7, we show inference speeds in a scenario
of dense tracking (every pixel) on 512× 512 video of 50 frames. Here, we
describe how we computed the numbers. The 2.32 FPS for MFT was directly
measured, including the computation time for RAFT optical flows. We have
also measured the official CoTracker v1 [113] implementation in the dense
tracking configuration on 50 frame 512× 512 video, resulting in 0.04 FPS.
Note that CoTracker achieves better results in its default setting — tracking
a single query accompanied by an auxiliary query grid at a time. This
would result in even lower FPS. Both MFT and CoTracker experiments were
conducted on a single GeForce RTX 2080 Ti GPU.

We did not measure the speeds of the other methods, and instead esti-
mated them as follows. OmniMotion [132], is trained for approximately 9

hours on each sequence using an A100 GPU3. We have estimated the runtime
by dividing the 50 frames by those 9 hours. This does not include the pre-

3 https://github.com/qianqianwang68/omnimotion/tree/ad080e750a8b67cc568a79b0e7f049e420fa895a#training
accesed 2023-08-30

https://github.com/qianqianwang68/omnimotion/tree/ad080e750a8b67cc568a79b0e7f049e420fa895a#training
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Method FPS
DAVIS - first DAVIS - strided Kinetics - first

AJ <δx
avg OA AJ <δx

avg OA AJ <δx
avg OA

TAP-Net [126] 0.11† 33.0 48.6 78.8 38.4 53.1 82.3 38.4 54.4 80.6
PIPs [127] 2e-4† - - - 42.0 59.4 82.1 31.7 53.7 72.9
OmniMotion [132] 2e-3† - - - 51.7 67.5 85.3 - - -
MFT (ours) 2.32 51.1 67.1 84.0 56.1 70.8 86.9 39.6 60.4 72.7
TAPIR [112] 0.04† 56.2 70.0 86.5 61.3 72.3 87.6 49.6 64.2 85.0
CoTracker [113] 0.04 60.6 75.4 89.3 64.8 79.1 88.7 48.7 64.3 86.5

Table 7: Evaluation on TAP-Vid benchmark. MFT performs well while
being orders of magnitude faster than other methods when evalu-
ated densely. Performance measured as in Table 5. Results for other
methods are from [126, 113, 132, 112]. FPS: speed of dense (every
pixel) tracking on 512× 512 video in Frames Per Second. Speeds
marked with † were extrapolated from timing info in [112, 132].

processing time, which includes among other steps computing RAFT flows
between all pairs of frames, making our estimate of 0.002 FPS optimistic.

For TAP-Net [126], PIPs [127] and TAPIR [112], we have used the timing
info in the Table 9 in the appendix of [112]. This table lists the execution time
of all three methods with varying number of queries and varying sequence
length. All the measurements were performed on a 256× 256 resolution
video using a V100 GPU. As we want to access the inference speed on dense
tracking on an arbitrary 512× 512 video (of length 50), we have extrapolated
the timing on 50 frames long video with 50 query points by multiplying
the reported runtime by 5122/50, as if the methods would track densely in
batches of 50 query points. While somewhat better parallelization should
be possible, tracking all the queries at the same time is not possible due to
high GPU RAM usage. Also this estimate does not include the increased
computation needed to process 512× 512 videos.

mft badja evaluation In addition to TAP-Vid DAVIS, we evaluate
the MFT on BADJA [147] benchmark with videos of animals annotated with
2D positions of selected joints. The benchmark measures the percentage
of points with position error under a permissive threshold 0.2

√
A, where

A is the area of the animal segmentation mask. Thanks to this, the MFT
performs well even though the ground truth points (joints) are located under
the surface, and thus, MFT cannot track them directly. In Table 8, we evaluate
against the BADJA results of PIPs [127] and their RAFT baseline. In terms of
median of the per-sequence results, MFT performs the best. The mean score
is affected by a single failure sequence, dog-a, on which the dog turns shortly
after the first frame, making most of the tracklets occluded. The assumption
that a joint can be approximately tracked by tracking a nearby point on the
surface becomes invalid in such case.

4.4.4 MFTIQ Plug-n-Play Optical Flow

After training the MFTIQ flow quality estimation with RAFT [22] and ground-
truth-initialized FlowFormer++ [28], we fixed the model and evaluated it
with various different OF methods. The table 9 shows that the RAFT-based
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a b c d e f g Avg. Med.
RAFT 64.6 65.6 69.5 13.8 39.1 37.1 29.3 45.6 39.1
PIPs 76.3 81.6 83.2 34.2 44.0 57.4 59.5 62.3 59.5
MFT 81.8 82.0 75.7 6.9 47.9 55.8 62.7 59.0 62.7

Table 8: BADJA [147] benchmark – evaluation of MFT against PIPs [127].
Performance measured by the PCK-T measure, i.e., the percentage of
points with error under a threshold. Bold best. Results for PIPs and
RAFT from [127]. The labeled individual sequences include (a) bear,
(b) camel, (c) cows, (d) dogs-a, (e) dog, (f) horse-h, and (g) horse-l.

OF runtime [ms] ↓
method AJ ↑ <δx

avg↑ OA ↑ 512x512 720x1080

MFT [10] 56.28 71.03 86.96 47 142

MFTIQ with
RAFT [22] 60.54 74.22 84.42 47 142

NeuFlow [140] 55.73 70.26 80.87 10 18
MemFlow [17] 62.30 75.97 85.95 121 610

FFormer++ [28] 62.72 76.22 86.34 142 782

RoMa [43] 65.67 79.82 87.75 714 729

Table 9: TAP-Vid DAVIS [126] (strided) evaluation with single MFTIQ model
using various OF methods. The first two rows compare the original
MFT with the proposed MFTIQ both using the RAFT [22] OF. The
rest of the table shows MFTIQ results when used with different OF
methods. Runtime of a single OF computation shown on right.
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Figure 24: Comparison of flow candidate selection in MFT (left) and MF-
TIQ (right). MFT often selects (blue) the direct optical flow, i.e. the
flow chain with ∆ = t− 1 with probability increasing during the
video. The probability of the selected direct flow to be accurate as
measured by Average Jaccard (AJ) is, however, decreasing with
time (orange) and choosing a different ∆ would be more better
(green). In contrast, the proposed MFTIQ (right) chooses the di-
rect optical flow more conservatively (bottom) and mostly when
it has high accuracy (orange). Both methods are evaluated on
TAP-Vid DAVIS strided using RAFT OF. Non-direct OF accuracy
(green) represents the average over all cases, when some ∆ ̸= t− 1
was selected.
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MFTIQ already outperforms the original MFT. More importantly, we get
even better results when using other off-the-shelf optical flows and dense
matchers. The best performance is achieved with the wide-baseline matcher
RoMa [43] thanks to its ability to match densely both between consecutive
and between more distant frames. Table 9 also lists the runtime of the
respective OF methods, measured on a RTX A5000 GPU. While the best-
performing RoMa is also the slowest on smaller images, it scales better
than the second-best FlowFormer++ to larger images. Depending on the
intended application, one could also use a fast optical flow method, such
as NeuFlow [140], for a cost of reduced tracking quality. For the rest of the
experiments we use the RoMa-based MFTIQ.

4.4.5 MFTIQ vs MFT Chain Selection

We further evaluate the MFTIQ chain selection and how it compares to the
original MFT on TAP-Vid DAVIS. The fig. 24 shows that the uncertainty
score chaining of MFT leads to a significant preference of selecting short
chains with big ∆s. In particular, the optical flow matching directly between
the template and the current frame (∆ = t− 1) without chaining is selected
with probability increasing with the current frame number. However the
probability of this selection being accurate decreases rapidly during the
video. On the other hand MFTIQ selects the short chains with big deltas
conservatively, keeping the result accuracy high.

4.4.6 MFTIQ evaluation against state-of-the-art

The overall results of the proposed RoMa-based MFTIQ tracker are shown
in table 10. MFTIQ achieves the best (DAVIS) and the second-best (RoboTAP,
Kinetics) position accuracy <δx

avg. This is thanks to the quality of the used
RoMa dense matcher. Note that we also used RoMa with MFT in our
paper [11], however due to better flow quality estimation, MFTIQ performs
much better on all metrics. Also we have designed MFTIQ to be independent
on the OF method, so we expect it to get better with future even-higher-
quality optical flows and dense matchers without re-training.

The occlusion accuracy (OA) of MFTIQ is comparatively lower, also af-
fecting the overall AJ score. While it is an improvement over MFT, achieving
state-of-the-art occlusion accuracy is yet an open challenge.

While MFTIQ does not achieve performance as good as the most recent
sparse point trackers, it tracks densely and out-performs the original MFT.
Note that the point trackers in 10 are not causal, i.e., the trackers can “see”
into the future which is helpful to resolve occlusions. Both MFT and MFTIQ
only use the previous frames. For dense tracking the inference time is
significantly faster than methods with similar accuracy, as measured by the
points-per-second metric in table 10.

4.4.7 Planar object tracking with MFTIQ

In addition to the point-tracking benchmark, we have evaluated the proposed
MFTIQ on the planar object tracking task on the POT-210 [8] benchmark
described in section 3.5. This dataset captures the flat objects in seven
challenging scenarios: motion blur, occlusion, out-of-view, perspective distortion,
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DAVIS strided DAVIS first RoboTAP first Kinetics first
method PPS↑ AJ↑ <δx

avg↑ OA↑ AJ↑ <δx
avg↑ OA↑ AJ↑ <δx

avg↑ OA↑ AJ↑ <δx
avg↑ OA↑

TAP-Net [126] † 555 38.4 53.1 82.3 33.0 48.6 78.8 45.1 62.1 82.9 38.5 54.4 80.6
CoTracker [113] ‡ 0.8 64.8 79.1 88.7 60.6 75.4 89.3 54.0 65.5 78.8 48.7 64.3 86.5
TAPIR [112] † 200 61.3 72.3 87.6 56.2 70.7 86.5 59.6 73.4 87.0 49.6 64.2 85.0
BootsTAP [129] – 66.4 78.5 90.7 61.4 74.0 88.4 64.9 80.1 86.3 54.7 68.5 86.3

MFT[10] 10671 56.3 71.0 87.0 51.1 67.1 84.0 – – – 39.6 60.4 72.7
MFT RoMa[11] – 58.0 77.2 80.5 52.1 72.7 77.1 – – – – – –
MFTIQ [12] 709 65.7 79.8 87.8 59.9 75.5 84.5 60.0 77.5 85.2 48.7 65.9 85.2

Table 10: MFTIQ RoMa evaluation on TAP-Vid [126] and RoboTAP [146]
benchmarks. On the Kinetics dataset, MFTIQ was evaluated only
on the first 465 sequences due to time constraints. Results of the
other trackers were taken from their papers and from [129] in
case of RoboTAP. The RoMa-based correspondences chained by
MFTIQ provide a very good position precision (<δx

avg) - best on
DAVIS, second on RoboTAP and Kinetics. The occlusion accuracy
(OA) is lower, also affecting the AJ score. The speed is compared
with points-per-second (PPS). Values with † obtained from [112]
and ‡ from [148].

in-plane rotation, scale change, and unconstrained combining all of the previous
challenging factors. From these only the partial occlusion factor is present in
TAP-Vid point-tracking benchmark.

4.4.7.1 Point-tracking on POT-210

The POT-210 annotations can be converted into dense correspondences on the
planar target by projecting the pixel coordinates in the first frame initial mask
with the ground-truth homography. We use this point-tracking ground truth
to evaluate MFTIQ on all the different scenarios. Since there is no occlusion
ground truth available on POT-210, we evaluate only the <δx

avgTAP-Vid

metric. We scale the output coordinates to 256× 256 resolution as usual [126]
and evaluate with the standard 1, 2, 4, 8, 16 point error thresholds. The results
in table 11 indicate overall good performance, with RoMa-based MFTIQ
being particularly good on rotation and scale change scenarios compared to
the plain RoMa.

4.4.7.2 Planar tracking on POT-210

To use MFTIQ as a planar tracker, we initialize it on the first frame and let it
tracking all the initial frame pixels to get dense correspondences between
the first and the current frame. On each frame we mask out the background
correspondences, i.e. outside the initial rectangle on the first frame. Finally
we use the correspondences and RANSAC to estimate a planar homography
H ∈ R3×3 mapping from the initial to the current frame. Inspired by
a optical-flow-based state-of-the-art planar tracker WOFT [9], we further
increase the tracking accuracy by the pre-warping trick. We warp the current
image into the template view using H−1, followed by estimating the residual
flow and the residual homography Hr between the template and the warped
current frame. The original homography H is combined with the residual
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RoMa MFTIQ
challenge <δx

avg↑ <δx
avg↑

blur 88.4 86.9 (−1.5)

occlusion 99.2 96.9 (−2.3)

out-of-view 90.7 89.2 (−1.5)

perspective 96.8 94.8 (−2.0)

rotation 72.8 96.5 (+23.7)

scale 92.2 98.0 (+5.8)

unconstrained 93.5 93.3 (−0.2)

all 90.5 93.7 (+3.2)

Table 11: MFTIQ RoMa performance on POT-210 using a point-tracking
metric, compared to plain RoMa. While the plain RoMa performs
slightly better on some of the challenging scenarios, MFTIQ is
significantly better on rotations and scale change due to the flow
chaining, making it better on average – all.

homography Hr to get the final estimate H∗ = HHr. Finally we transfer the
control points from the initial frame into the current frame with H∗ to get
their current position.

We set new state-of-the-art on the POT-210 benchmark as shown in ta-
ble 12. The MFTIQ planar tracker performs particularly well on the blur
subset of POT-210, which contains many frames on which trackers fail due
to big motion blur. MFTIQ is able to recover from such failures by “jumping”
over the problematic frames using the optical flows with bigger frame delta.

4.5 limitations

One MFT weakness we have observed are spurious re-detections. MFT
sometimes matches out-of-view parts of the template to visually similar parts
of the current frame. Single such incorrect re-detection can “restart” a flow
chain, affecting the performance for the rest of the video. A typical example
is tracking of a point on a road surface. When the camera moves such that
the original point moves far out of view, the tracklet sometimes suddenly
jumps to a newly uncovered patch of the road. Both the appearance of the
incorrectly matched point and its image context is often very similar to the
template frame, e.g., a relatively texture-less black road some distance below
a car wheel.

One of the goals of the MFTIQ was to get a better quality occlusion
(or match/non-match) decision. Since the uncertainties are not chained
but estimated directly between the template and the current frame, MFTIQ
doesn’t have the failure mode of MFT where a single bad re-detection could
make the tracker lost for the rest of the sequence. On the other hand, there
are two cases in which MFTIQ cannot work well. First, when the point (and
the surrounding context) appearance changes too much, making the features
extracted from the initial and the current frame dissimilar.

Imagine a video in which a target object is close to the camera on the
initial frame and gradually moves away as shown in fig. 25. This way, its
images area shrinks by many orders of magnitude to just few pixels. In
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method BL OCCL OOV PERS ROT SC UNC all

LISRD [89, 7] 54.1 93.8 83.7 65.0 86.3 30.0 67.1 68.3
HDN [100] 48.8 78.2 66.1 54.4 91.4 94.8 60.7 70.9
CGN [149] 41.6 88.1 82.8 76.5 96.1 90.3 72.4 78.5
WOFT [9] 60.4 98.6 96.3 95.4 99.3 94.0 88.2 90.4
HVC-Net [150] 60.5 98.6 97.2 92.7 99.3 100.0 90.1 91.4
MFTIQ (ours) 72.0 98.6 95.0 96.6 99.5 100.0 89.1 93.1

Table 12: MFTIQ evaluation on planar tracking POT-210 [8] benchmark. Per-
centage of frames with alignment error under 5px threshold evalu-
ated on the improved ground truth (section 3.5.1). The RoMa-based
MFTIQ followed by a RANSAC homography estimation on the
resulting correspondences sets a new state-of-the-art performance.
It achieves the most significant performance gain +11.5% on the
BLur sequences.

Figure 25: MFTIQ failure case. Example of a video with zooming out. Every
100th frame shown. Even with flow correctly chained (red circle) it
is impossible to estimate the occlusions and uncertainties directly
between the first and the last frame. Video source: https://www.
youtube.com/watch?v=r1bIXAV9Cnc

https://www.youtube.com/watch?v=r1bIXAV9Cnc
https://www.youtube.com/watch?v=r1bIXAV9Cnc
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Figure 26: Tracking failure due to mixing of information from foreground
and background. Frames cropped around the tracked point (red
circle). Query point on the first frame of the horsejump-high se-
quence [126] (left), the ground-truth position on frame 17 (middle),
and the incorrect MFTIQ prediction on the same frame (right). The
features of the query point describe both the horse (foreground)
and the background structures. The incorrect prediction (right) is
supported by large area of unchanged background.

such case it could be possible to track by chaining flows, uncertainties,
and occlusions, but completely impossible to track by chaining flows and
estimating uncertainties and occlusions directly between the initial frame
and the current one.

A second failure case of the MFTIQ flow-independent estimation of flow
quality are repetitive structures. For example a video of a fish school, where
most of the fish look practically identically. In order to correctly evaluate the
uncertainty and occlusion state, the independent quality module would have
to take the motion history into account.

Another failure mode is related to large receptive fields of the optical
flow and quality estimation networks and mixing of feature representation
of the foreground and the background. Sometimes the tracker stops tracking
the target point and switches to tracking the background that was behind
the query point on the initial frame, as shown in fig. 26. Both the optical flow
estimation and the flow quality estimation get distracted by well-matched
background (which may span most of the receptive field) and ignore the
mismatch on the foreground object.

We have performed an experiment in which a segmentation tracker
(SAM2 [151]) is initialized with the query point prompt and is left to track
alongside the MFTIQ. Flow chain candidates that fall outside the segmen-
tation mask predicted by the segmentation tracker are marked as occluded
regardless of the MFTIQ occlusion prediction. This procedure improved the
TAP-Vid DAVIS first-mode AJ score from 59.9 to 61.7, outperforming both
the CoTracker and the BootsTAP (see table 10).



5
C O I N - T R A C K I N G

This chapter describes the coin-tracking task introduced in our paper [14],
which is a continuation of work done in my masters thesis [13] and pre-
dates our work on planar object tracking (see chapter 3 and point-tracking
(see chapter 4). The chapter is based on our paper [14], in which the coin-
tracking task and dataset was first published on peer-reviewed conference.
While the coin-tracking task itself was introduced in the masters thesis, here
we have evaluated various statistics of the dataset to show its unique chal-
lenges and how it is distinct from the standard tracking benchmarks. We
also propose a completely new baseline coin-tracking method, CTR-Base,
and although it relies on currently rather old neural network models and is
hand-crafted ad-hoc, we find that our best point-tracking method does not
out-perform it (see section 5.6). The current state-of-the-art coin-tracker [152]
outperforms the CTR-Base by 8%, but the dataset is nowhere near to be
solved even in the simplest setting where the tracker is initialized by tem-
plates of both the front and the back side of the target. The coin-tracking is
thus still an open challenge.

5.1 introduction

Visual tracking is an active research field and performance of trackers im-
proves significantly every year. This holds for bounding-box and segmen-
tation trackers [153, 154, 155], for planar trackers [7, 150] and for point
trackers [126, 129]. Nevertheless, a particular class of every-day objects
remains challenging even for state-of-the-art methods, namely, rigid flat
double-sided objects like cards, books, smartphones, magazines, coins1, tools
like knives, hand saws, sport equipment like table tennis rackets, paddles
etc. Such objects often rotate fast producing unique challenges for trackers
like fast incident light and aspect ratio change and rotational motion blur.
The results of recent bounding-box level trackers on the PlanarTrackBB [6]
benchmark show that the flat targets contained in PlanarTrack are more
challenging to track than the general objects captured in standard tracking
benchmarks [65, 66]. For example, the SwinTrack [156] tracking success score
SUCBB drops from 0.840 on TrackingNet and 0.713 on LaSOT to just 0.663

on PlanarTrackBB.
Tracking of double-sided objects introduces even more extreme object

poses / views than usual in planar tracking datasets [6, 7, 5], making the
tracking even harder. Also the extreme poses occur more frequently in coin-
tracking sequences than in other datasets. For example the targets often flip
from being seen from the front side to the back side and vice versa. Near
the moment of flipping the target surface normals are often close to being
perpendicular to the camera rays.

In this paper, we introduce an annotated coin-tracking dataset2, CTR
dataset in short, containing video sequences of coin-like objects. We then
show that the proposed dataset is fundamentally different from the standard

1 Hence the problem name.
2 Available at http://cmp.felk.cvut.cz/coin-tracking.
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ones [154, 157]. Finally, we propose a baseline coin-tracking method, called
CTR-Base, that outperforms classical state-of-the-art trackers in experiments
on the CTR dataset.

5.2 the coin-tracking task

We define coin-tracking as tracking of rigid, approximately planar objects
in video sequences. This means that at any time only one of the two sides
- obverse (front) and reverse (back) - is visible. Unlike general objects, the
rigidity and planarity of the coin-like objects means that the boundary
between their two sides is always visible, except for occlusions by another
object and position partially outside of the camera field of view. In this
settings, the currently invisible side is fully occluded by the visible side and
the visible side does not occlude itself at all. The state of a coin-like object is
thus fully characterized by a visible side identification and a homography
transformation to a canonical frame together with a possible partial occlusion
mask.

However, because the objects in the CTR dataset are often symmetric,
reflecting the real world coin-like object properties, the homography trans-
formation might not be uniquely identifiable and thus we characterize the
object state by a segmentation mask instead. Notice that unlike in standard
general tracking sequences, where the exact extend of the tracked object is
often not well defined due to the ambiguity of the initialization bounding
box or segmentation, there is an unambiguous correspondence between a
segmentation mask and a physical object in the case of coin-tracking.

Recent video object segmentation datasets [67, 68] represent the object
pose by segmentation as well, nevertheless, they contain mostly outdoor
sequences of animals, people and vehicles. Therefore, there is a significant
domain gap between these datasets and the proposed coin-tracking problem.
Other datasets for tracking planar object exist, such as [8, 5], but they only
contain sequences with single side of the planar object visible. Moreover, in
most cases the objects are fixed and the camera moves around them. This
induces both different dynamics and appearance changes in the sequences
as discussed in section 5.3.1.

The are multiple levels of tracking of coin-like objects. In the simplest
form, level one, the tracker is initialized by a template of each side of the
object and the object pose on the first frame of the sequence. Level two coin-
tracker is initialized only on the first side of the target and has to discover
the reverse side without any supervision. Level three requires a full 6D pose
output, i.e. rotation and translation, together with a complete object surface
reconstruction, including even the initially occluded parts of the object. In
this work we focus on the level one coin-tracking task.

5.3 the coin-tracking dataset

The introduced CTR dataset contains 17 video sequences of coin-like objects,
with total of 9257 frames and segmentation ground truth masks on every
fifth frame. See Fig. 27 for examples of the sequences in the CTR dataset.
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Figure 27: Examples from the coin-tracking dataset (frame number in the
top-right corner). Notice the effects of the out-of-plane rotation –
fast illumination change, blur and significant aspect ratio change
of the objects.

5.3.1 A Comparison with Other Datasets

The main motivation for introducing a new tracking dataset is its difference
from the currently available tracking sequences. In this section we show
some of the novel aspects of the proposed dataset.

The planar object tracking datasets [5, 8] are the closest to the CTR
dataset, but they only contain a single sided view of the object; the viewing
angle range is limited. In most of the sequences the tracked object is fixed to
the background behind it, e.g. a poster fixed on a wall and the object motion
in the sequence is induced by the camera motion only. On the contrary, the
camera is static or close to static in many of the CTR sequences and it is
the object that causes the motion. This difference is important since the two
situations introduce different challenges to the visual tracking task.

When a planar object is fixed and a camera moves around it, the perceived
out-of-plane rotation is relatively slow as the camera needs to move along a
long arc in order to change the viewing angle significantly. On the other hand,
when the main part of the perceived motion of the object in the sequence
is caused by the physical motion of the object itself, as it is the case in the
proposed sequences, the object out-of-plane rotation happens faster as it is
physically easy to rotate coin-like objects.

Most state-of-the-art trackers, e.g. the winners of the VOT2018 tracking
challenge [154] – MFT [158] (name clash with our MFT dense point tracker
from chapter 4) and UPDT [159], represent the object pose as axis-aligned
or rotated bounding box, while the aspect ratio change modeling is not
common. Later in this section, we show that both the range and the speed
of aspect ratio change in the CTR sequences is higher than in the VOT [160]
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Figure 28: Comparison of object “textureness” in the proposed CTR and
VOT 2016 datasets, measured by the absolute value of Laplacian
of Gaussian σ = 0.8 averaged over the tracked object pixels.

and OTB [157] tracking datasets. Besides causing significant aspect ratio
changes, the 3D rotation of the coin-like objects often induces fast changes of
illumination as the object plane normal direction relative to the light sources
changes rapidly. Apart from these differences, the objects in the CTR dataset
are also less textured than the ones appearing in standard visual tracking
datasets as discussed in the next section.
Textureness. As a measure of object textureness, we computed the Laplacian
of Gaussian (LoG) responses and averaged their absolute values over the
object pixels and all frames. Fig. 28 shows that the typical object textureness
in the CTR dataset is significantly lower than on the VOT 2016 dataset [160].
The lack of texture prevents tracking to be implemented by classical methods
for homography estimation based on key-point correspondences.
Aspect ratio change. One of the unique properties of the coin-tracking
dataset is the presence of strong changes in object aspect ratios, not usu-
ally encountered in the standard visual tracking datasets as shown in the
following two experiments. In order to compute the aspect ratio statistics,
we first compute minimal (rotated) rectangle bounding the ground truth
segmentation mask on each frame. The aspect ratio (25) of the resulting
rectangle with sides a, b is defined as

r(a, b) = max
(

a
b

,
b
a

)
(25)

We define the relative change in aspect ratios of two rectangles A, B with
sides a1, a2 and b1, b2, respectively, as (26)

∆r(A, B) = max
(

r(a1, a2)

r(b1, b2)
,

r(b1, b2)

r(a1, a2)

)
(26)

The maximum of the two ratios is chosen because only the magnitude of the
aspect ratio change matters.

aspect ratio change relative to the first frame . We have
computed aspect ratio changes ∆r(R1, Rt) between the bounding rectangle
on the first frame and each of the other annotated frames in the sequence.
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Figure 29: Histogram of aspect ratio changes

We then represent each tested dataset (VOT2016, OTB, CTR) by a histogram
of these aspect ratio changes in all the dataset sequences as shown in Fig. 29a.
Notice that although the VOT2016 and OTB datasets are not restricted to
rigid objects, i.e. their segmentation masks can change shape arbitrarily
during the sequences, the CTR dataset contains significantly bigger changes
in the aspect ratios.

aspect ratio change speed. In the proposed CTR dataset, the
change in object aspect ratio is also faster than in the other compared datasets
as shown in Fig. 29b. Instead of computing the aspect ratio change with
respect to the first frame, the change is computed relative to the previous
frame. Notice that because the CTR dataset does not contain ground truth
segmentation masks on every frame, but only on every fifth, we measure
∆r(Rt−5, Rt) on all three datasets.

5.3.2 Evaluation Metric

We address the simplest form of the coin-tracking task, in which the tracker
is initialized by an image of the front side of the tracked object on the first
frame and an image of the back side later in the sequence, together with the
respective ground truth segmentation masks.

We use intersection over union (IoU) as the evaluation metric – it is the
standard metric for evaluating both segmentation and bounding box quality.
In order to deal with frames with empty ground truth segmentation, i.e. with
the object fully occluded or fully outside of the view, we augment the scoring
function such that these frames do not contribute into the per-sequence total
as proposed in [154].

5.4 the baseline coin-tracking method

Standard trackers represent the object by a bounding box and are thus unable
to capture the perspective transformations common for coin-like objects.
Trackers based on key-point correspondences can estimate homographies, but
the low textureness of CTR objects prevents their use. Convolutional neural
networks recently used for video object segmentation, e.g. [57, 161, 162],
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classify pixels as object or background taking into account large context
thanks to large receptive fields of the neurons in the final layers. They do not
consider the underlying homography transformations, but the segmentations
capture the object extent in the image with high granularity.

Most video object segmentation methods use a deep neural network
trained offline for general object segmentation. The network is then fine-
tuned for tracking of a particular object at the initialization. One of the
significant challenges in visual tracking is object appearance change and
changes in the background in the video sequence. Because of this, trackers
usually have to perform some kind of online adaptation to prevent performance
deterioration soon after initialization. A simple adaptation scheme for video
object segmentation has been proposed in OnAVOS [162], where the pixels
classified as object with high confidence are treated as new object appearance
examples. Background examples are taken from the parts of the image
over a certain distance from the object. However, the online adaptation
requires lengthy fine-tuning of the segmentation neural network on each
frame, making the method slow.

An alternative approach has been proposed in fast-vos [163], where the
segmentation is done by k-nearest neighbor search in an embedding space
learned offline by a CNN. Instead of fine-tuning the embedding network on
the first frame or later during online adaptation, the fast-vos method inserts
dense embeddings into a k-NN classifier index. This makes the adaptation
to a particular object faster and easier to interpret, compared to the network
fine-tuning methods. The online adaptation proposed in [163] is similar to
the original method in [162], selecting high confidence pixels – all of their
k = 5 neighbors agree with the label – for the model update.

With all this in mind, we propose a baseline tracking method CTR-Base,
which is based on the tracking-by-segmentation fast-vos [163] method. After
an input frame is segmented using the k-NN classifier, we explicitly model
the object pose and possibly perform online adaptation.

5.4.1 Object Pose Estimation

We have performed experiments with the adaptation scheme of fast-vos

but it did not work well on the coin-tracking sequences. The adaptation has
quickly drifted and led to a complete failure of the tracker, either segmenting
almost all of the background as the object or vice versa. Our experiments
with distance-threshold based background adaptation as in [162] as well
as experiments with other heuristics based on analysis of the connected
components and other properties of the segmentation mask were not suc-
cessful either. We hypothesize that one of the reasons that those adaptation
techniques work reasonably well on the DAVIS dataset, but fail on the coin-
tracking task, might be the length of the sequences. The mean number of
frames in the DAVIS 2017 sequences is only 69.7 [1] while the mean number
of frames in the coin-tracking sequence in the CTR dataset is 544, with several
sequences as long as 1000 frames. The robustness of the online adaptation
scheme is crucial on sequences of such length.

In order to address the online adaptation in coin-tracking more robustly,
we explicitly model the object pose using the homography to the ground-
truth canonical frame. Both the object and the background pixel online
adaptation is controlled by the agreement between the segmentation output
by the k-NN classifier and the estimated pose model.
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#t

#t-1

Figure 30: Homography score computation. Left: the segmentation mask
split into pixels inside (white) the object pose hypothesis (dashed
green) and the rest (red). Right: Object visibility mask for the
current and the last frames.

5.4.1.1 Objective Function.

In each video frame, we search for the homography H∗→t mapping the
object on a ground truth frame into the current one, optimizing the objective
function s, Eq. 29, composed of four parts computed as follows. First, we
map the segmentation mask from the ground truth frame into the current
frame using the homography. This splits the segmentation mask in the
current frame into two parts, one inside and the other one outside of the
hypothesized object contour as shown in Fig. 30. The sobj part of the score
function is set to the fraction of the segmentation mask located inside the
contour, indicating the fraction of the segmentation explained by the object.
This part of the score function penalizes segmentation outside of the object
with the pose given by H∗→t.

The scover part of the score function s is the fraction of the pixels inside
the hypothesized object contour being classified as the object. This part
penalizes homographies mapping the object contour such that it is not
well covered by the segmentation. Notice, however, that in the case of
partial occlusion by other object, the segmentation should not cover the
whole object. Since the occlusion mask is changing relatively slowly in CTR
sequences, the soccl component of the score function s is the IoU overlap
of the current and last visibility mask, which is transformed to the current
frame by Ht−1→t = H∗→tH−1

∗→t−1. This prefers homographies with a small
occlusion change with respect to the previous frame.

Finally, the appearance score sappearance is the zero-offset coefficient of
the zero-normalized cross-correlation (ZNCC) score

sappearance =
1
2
+

∑
x,y∈O

(It(x, y)− µ(It))(I∗(x, y)− µ(I∗))

2
√

∑
x,y∈O

(It(x, y)− µ(It))2 ∑
x,y∈O

(I∗(x, y)− µ(I∗))2
(27)

of the object image in the current frame and the template from the ground-
truth frame, where It(x, y) and I∗(x, y) are the image values at coordinates
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[x, y] in the current frame and the ground truth frame projected using the
homography H∗→t respectively and

µ(I) =
1
|O| ∑

x,y∈O
I(x, y) (28)

with O being the set of points segmented as object in both the ground truth
and the current frame. The rationale behind introducing the appearance
score is that it helps distinguishing a correct homography in case of objects
with symmetric shape or partial occlusions. The final score, Eq. 29, of the
homography is the product of these four components giving a number in 0-1
range:

s = sobj · scover · soccl · sappearance (29)

Notice that compared to summing the score components, taking their product
highlights drops in any of the score components and thus it is preferable for
making our adaptation method conservative.

5.4.1.2 Optimization.

Since the cost function described above is not differentiable, we use a prob-
abilistic optimization procedure based on simulated annealing for finding
H∗→t for each frame. The optimization is initialized using either the homog-
raphy found in the previous frame or using optical flow from the previous
frame, in which case we uniformly sample 4 points from inside the object
and transform them by the flow field to get 4 correspondences necessary
for estimating the inter-frame homography. This is repeated 50 times and
the H∗→t maximizing the score function is chosen as the initialization of the
following iterative optimization procedure.

In each step of the optimization a random homography matrix is sampled
by randomly perturbing 4 control points at the corners of the object bounding
box and computing the homography from the resulting 4 correspondences.
Next, the homography score s is computed and compared to the current best
score, s∗. The H∗→t hypothesis is accepted as the current estimate of the
optimum with probability

p(s, s∗, T) =

{
1 if s > s∗,

e−
s∗−s

T otherwise,
(30)

where the T is decreasing in each iteration, allowing jumps from local minima
but with decreasing probability during the optimization procedure. We also
decrease the control point perturbation σ in each of the 350 iterations.

Depending on the ratio of pixels being classified as belonging to the
obverse or the reverse side of the object, the optimization procedure is run
against the respective ground truth frame. Finally, when the score of the best
found homography is low, the tracker switches into a lost state and stays in
it until a successful re-detection of the object.

The re-detection procedure is the same as the optimization described
above, except for spending more time (400 iterations) sampling for the
initialization pose and not using the information from the previous frame.
The previous visibility mask used in computation of soccl is replaced by the
full object mask.
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5.4.2 Online Adaptation

The proposed homography optimization procedure reduces the overall speed
of the tracker, but we have observed that it finds a good solution reliably,
unless the segmentation is grossly incorrect, enabling us to use online-
adaptation on the long sequences in the CTR dataset. In particular, no online
adaptation is attempted when the tracker is in the lost state, reducing the
probability of making incorrect adaptation.

If the tracker is in the tracking state, new background and object embed-
ding examples are added into the segmentation k-NN classifier. To stay on
the safe side, only the pixels that are far from the object boundary and were
incorrectly classified (with respect to the hypothesized object pose) are used
as new background examples. Moreover, these pixels must not be connected
to the object by the segmentation mask, otherwise they are not used for
adaptation even if they are very far from the image.

For the new object examples, we select the pixels classified as background
by the segmentation k-NN classifier that are not connected to the object edges,
in other words only closed ‘holes‘ in the object segmentation are adapted.

Altogether, the proposed online adaptation technique allows for conser-
vative online adaptation, not making severe mistakes that would lead to
complete failure of the tracker, as shown in the experiments in section 5.5.2.

5.4.3 Implementation details

We use a DeepLabv3+ [164] segmentation head on top of MobileNetv1 [165]
backbone architecture. The MobileNet backbone was pretrained3 on Im-
ageNet [142], then trained for semantic segmentation on PASCAL VOC
2012 [166] enriched by the trainaug augmentations by [167]. We have used the
Adam [168] optimizer with batch size 5 and initial learning rate of 7× 10−4

decaying to 10−6 according to the poly schedule with decay power 0.9 for
53000 iterations. Finally, using the augmented triplet loss proposed by [163],
we have fine-tuned the network for 492000 iterations on the YouTubeVOS
dataset [68] to output dense 128-dimensional embeddings useful for segmen-
tation by k-NN classifier. Given an H ×W image, the network produces a
per-pixel 128-D embeddings with output stride 4 (resolution H

4 × W
4 ). We use

FAISS [169] library4 with a flat L2 index for speeding up the nearest neighbor
searches used in the segmentation. For the optical flow computation, we use
ContinualFlow [23].

The method runs at around 7 seconds per frame at 1280× 720 resolution
with the majority of time spent optimizing the pose. The runtime drops
without losing much performance when the pose optimization is done on
lower resolution.

5.5 experiments

In this section we show that the proposed CTR-Base method outperforms
general state-of-the-art trackers on the CTR dataset and retains good perfor-
mance on the POT-210 [8] dataset. Then we demonstrate that the homography-

3 Code and weights available at https://github.com/tensorflow/models/
4 Available at https://github.com/facebookresearch/faiss

https://github.com/tensorflow/models/
https://github.com/facebookresearch/faiss
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based pose modeling prevents the CTR-Base tracker from making fatal
mistakes.

5.5.1 Baseline Experiment

In the standard visual tracking formulation, the tracker is initialized by the
ground truth object pose, which can be represented by axis-aligned bounding
box, rotated bounding box or segmentation mask [154, 67, 68]. This means
that standard state-of-the-art trackers cannot be directly evaluated on the
coin-tracking task in which the tracker is initialized on one frame from each
side of the object. On the other hand, the coin-tracking task can be viewed as
a long-term tracking on single side, enabling us to evaluate state-of-the-art
long term trackers MBMD [170] and DaSiam LT [171] – the winners of the
VOT 2018 [154] long-term tracking challenge on the CTR dataset. Moreover,
the VOT long-term tracking challenge requires a tracker confidence output on
each frame, which allows us to run each tracker two times - once initialized
from the obverse and once from the reverse side, merging the results by
picking the one with higher tracker confidence. We have represented the
axis-aligned bounding box outputs of the long-term trackers as segmentation
masks and evaluated using the IoU metric. The results are shown in Tab. 13.

The proposed CTR-Base method significantly outperforms both state-of-
the-art bounding box trackers and a bounding box oracle, which outputs
the bounding boxes of the ground truth segmentation masks. Computing
IoU from the bounding boxes might not seem fair, but the performance gap
demonstrates the need of representing the tracked object by segmentation,
even with relatively compact objects present in the CTR dataset.

In order to further test the CTR-Base method, we evaluated it on the
POT-210 [8] dataset, converting the ground – object corners – to segmentation
(not modeling occlusions). The mean IoU (mIoU) is 0.81, showing that our
method generalizes to POT-210 well. The best results were achieved on the
out-of-view and the perspective distortion subsets of [8] with mIoU 0.89 and
0.88 respectively, while the worst on the motion blur subset with mIoU of 0.71.

5.5.2 Results on confident frames

The mean IoU score computed only on the frames where the CTR-Base

method is in the tracking state, i.e. online adaptation is allowed, improves
from 0.70 to 0.88. This shows that the proposed tracker can correctly detect
its own failures and only adapt when tracking reliably. Overall the tracker
spends 47% of the frames in the tracking state as shown in Tab. 14.

5.6 coin-tracking using the mftiq point tracker

In this section we take the dense long-term tracker described in chapter 4

and evaluate it on the coin-tracking task. To convert the point-tracking to
the target segmentation masks needed for coin-tracking evaluation, we used
two approaches. First, taking the initial target mask and forward-warping
it directly with the flow field output of the MFTIQ. Second, computing a
homography from the flow field and using that to warp the initial mask.
We estimate the homographies with RANSAC, which should ignore grossly
incorrect flow correspondences (outliers) and average out small inaccuracies
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sequence MBMD DaSiam LT bbox oracle CTR-Base (ours)
beermat 0.70 0.18 0.78 0.83
card1 0.72 0.71 0.73 0.79
card2 0.71 0.68 0.79 0.93
coin1 0.60 0.62 0.71 0.80
coin3 0.32 0.46 0.63 0.38

coin4 0.33 0.41 0.56 0.65
husa 0.35 0.40 0.51 0.73
iccv bg handheld 0.27 0.31 0.54 0.33
iccv handheld 0.32 0.39 0.55 0.50
iccv simple static 0.37 0.31 0.51 0.65
iccv static 0.34 0.40 0.55 0.67
pingpong1 0.42 0.38 0.64 0.33

plain 0.44 0.50 0.60 0.74
statnice 0.53 0.57 0.67 0.87
tatra 0.47 0.54 0.66 0.86
tea diff 2 0.54 0.57 0.61 0.87
tea same 0.53 0.52 0.63 0.85
Mean over all frames 0.47 0.44 0.63 0.70

Table 13: The evaluation of the IoU overlap metric on the proposed CTR
dataset. Notice that the CTR-Base method outperforms both state-
of-the-art long-term trackers and the bounding box oracle.
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frames in tracking state % 89 68 93 64 02 21 69 17 15 29 28 17 42 46 34 87 47 47

Table 14: The IoU score of the CTR-Base tracker evaluated only on the frames,
where it is in the confident tracking state and the online adaptation
is enabled. Notice that indeed the tracker is confident on the frames,
where it performs well.
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on inliers. We evaluate the RoMa[43]-based MFTIQ, which performs the best
on the point-tracking task. The results are shown in table 15. Apart from few
sequences where the RoMa-based correspondences help, namely card1, coin1,
and beermat, the MFTIQ performance is poor. This may be due to the targets
being usually quite small, non-trivial amount of complicated (induced by
in- and out-of-plane rotations) motion blur, and overall low quality of the
CTR dataset videos. RoMa was trained on the MegaDepth [49] dataset of
landmarks where the main object usually occupies most of the image and
there is very little or no blur.
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Table 15: Coin-Tracking with RoMa-based MFTIQ compared to the CTRBase baseline in the segmentation mask mean IoU score. The MFTIQ point
tracker tracks well on relatively simple sequences, like beermat, or card1 where the motions are slow and the object is big and well textured.
However, overall it did not achieve the baseline performance on the whole dataset.



6
C O N C L U S I O N S

In this thesis we have studied the problem of dense long-term visual tracking.
Optical flow gives dense correspondences, but only between pairs of consec-
utive frames. We have adapted it to long-term tracking of planar objects and
also to long-term dense point-tracking in arbitrary scenes.

The combination of frame pre-warping, optical flow correspondences and
a differentiable homography estimation neural network introduced in our
planar tracker WOFT results in state-of-the-art performance on multiple stan-
dard planar object tracking benchmarks. On the PlanarTrack [6] dataset
(which was published after the WOFT [9] tracker) and on the POT [8, 7]
datasets, WOFT out-performs other trackers by a large margin.

The work on dense point-tracking in arbitrary scenes resulted in two
trackers based on optical flow, MFT and MFTIQ. Both work by chaining
optical flows estimated over varying number of frames, which allows them
to “jump over” temporary occlusions, blurred frames and other difficult
cases. The final prediction is formed by selecting the most reliable from
a small number of such flow chain candidates in each pixel. The most
reliable flow chain selection from MFT was improved in MFTIQ to achieve
point-tracking performance close to the current state-of-the-art. In contrast
to other point trackers, our trackers are causal and track densely (every point
in the reference frame) effectively. We have also tested the MFTIQ point
tracker on the planar object tracking task and it sets a new state-of-the-art
performance, slightly outperforming WOFT. The WOFT is still our preferred
planar tracker, because the accuracy gains of MFTIQ are not significant
enough to justify the lower tracking speed. The results however show that
MFTIQ generalizes well to challenging videos atypical for the point-tracking
community.

During our research, we have identified issues with annotation quality
in standard planar object tracking POT benchmarks. We have precisely
re-annotated the ground truth on a uniformly spaced subset of frames and
published it. In the planar tracking benchmark, the original ground-truth
annotation errors accounted for half of the benchmark error of the top
trackers. Thus the re-annotation should help the planar tracking community
to benchmark the trackers more accurately and to prevent over-fitting to the
incorrect ground truth.

Finally, we have published the coin-tracking problem, significantly ex-
tending the work started in my masters thesis. The coin-tracking is a special
version of the planar object tracking task, in which thin planar rigid objects
are tracked from both front and back side. This poses unique challenges. We
have selected 17 coin-tracking videos and manually annotated them with
segmentation masks, and published the resulting CTR dataset. We have also
shown its dissimilarity to standard tracking datasets.

We have proposed a new CTR-Base coin-tracking method that enables
robust online adaptation through explicit modeling of the target pose and
through failure detection. It outperforms our best MFTIQ point tracker,
showing the difficulty of the coin-tracking task and the CTR dataset. The
advanced variants of the coin-tracking task described in section 5.2, like the
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unsupervised back side discovery or full surface reconstruction, are even
more challenging topics left for future research.

We have seen significant advances in many areas of computer vision,
with performance of CNN- and vision transformer-based methods improving
constantly. New self-supervised approaches combined with huge amount of
training data and vast computational power resulted in foundation models
that provide off-the-shelf visual features that perform well on various tasks.
However, even for these state-of-the-art models, the performance drops fast
when applied to low-quality videos, non-standard difficult tasks, under
presence of non-trivial amount of motion blur, lack of texture, presence
of repetitive structures and small thin objects. For example, the currently
used neural networks have a tendency to unpredictably mix the information
coming from the particular pixel and its neighborhood on the same object
with the information coming from the background and other objects, making
it impossible to reliably deal with thin objects. Future research in this
direction has potential to greatly improve dense long-term tracking.

Another interesting open research topic is tracking of all points in a
video, not just all points on a single reference frame. This is addressed
by OmniMotion [132] and follow-up works [134, 135], but all of them are
computationally demanding and slow test-time optimization techniques, in
which the tracker has to be trained for the particular video. Designing an
efficient tracker of all points is an important next step for the point-tracking
community.

Also we think computer vision researchers should pay more attention
to the quality of the benchmarks, ensuring high-quality annotations and/or
knowing their accuracy and using meaningful metrics. Chasing tiny per-
formance improvements on saturated or low quality benchmarks leads to
manual over-fitting and does not help to advance knowledge.



B I B L I O G R A P H Y

[1] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeláez, A. Sorkine-Hornung,
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[9] J. Šerých and J. Matas, “Planar object tracking via weighted optical
flow,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 1593–1602, 2023.
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Jonáš Šerých: conceptualization, methodology, software, validation, formal
analysis, investigation, writing - original draft, visualization.
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