
A Distributed Mincut/Maxflow Algorithm
Combining Path Augmentation and

Push-Relabel

Alexander Shekhovtsov and Václav Hlaváč

shekhole@fel.cvut.cz hlavac@fel.cvut.cz

Czech Technical University in Prague

Abstract. We present a novel distributed algorithm for the minimum
s-t cut problem, suitable for solving large sparse instances. Assuming
vertices of the graph are partitioned into several regions, the algorithm
performs path augmentations inside the regions and updates of the push-
relabel style between the regions. The interaction between regions is
considered expensive (regions are loaded into the memory one-by-one
or located on separate machines in a network). The algorithm works
in sweeps, which are passes over all regions. Let B be the set of ver-
tices incident to inter-region edges of the graph. We present a sequen-
tial and parallel versions of the algorithm which terminate in at most
2|B|2 + 1 sweeps. The competing algorithm by Delong and Boykov uses
push-relabel updates inside regions. In the case of a fixed partition we
prove that this algorithm has a tight O(n2) bound on the number of
sweeps, where n is the number of vertices. We tested sequential versions
of the algorithms on instances of maxflow problems in computer vision.
Experimentally, the number of sweeps required by the new algorithm is
much lower than for the Delong and Boykov’s variant. Large problems
(up to 108 vertices and 6 · 108 edges) are solved using under 1GB of
memory in about 10 sweeps.

Keywords: mincut, maxflow, distributed, parallel, large-scale, stream-
ing, augmented path, push-relabel, region

1 Introduction

Minimum s-t cut (mincut) is a classical combinatorial problem with applica-
tions in many areas of science and engineering. This research1 was motivated by
wide use of mincut/maxflow in computer vision, where large sparse instances
need to be solved. To deal efficiently with the large scale we consider distributed
algorithms, dividing the computation and the data between computation units
and assuming that passing information from one unit to another is expensive.
We consider the following two practical usage modes:
• Sequential (or streaming) mode, which uses a single computer with a limited

memory and a disk storage, reading, processing and writing back a part of

1 A. Shekhovtsov was supported by the EU project FP7-ICT-247870 NIFTi and
V. Hlavac by the EU project FP7-ICT-247525 HUMAVIPS.

2 A. Shekhovtsov and V. Hlavac

data at a time. Since it is easier for analysis and implementation, this mode
will be the main focus of this work.

• Parallel mode, in which the units are e.g . computers in a network. We show
that the algorithm we propose admits full parallelization. The theoretical
analysis is derived from the sequential variant. Details and preliminary ex-
periments on a single computer with several CPUs are presented in the
technical report [1].

To represent the cost of information exchange between the units, we use a spe-
cial related measure of complexity. We call a sweep the event when all units of
a distributed algorithm recalculate their data once. The number of sweeps is
roughly proportional to the amount of communication in the parallel mode or
disk operations in the streaming mode.

Previous Work. A variant of path augmentation algorithm was shown in [2]
to have the best performance on computer vision problems among sequential
solvers. There were several proposals how to parallelize it. Partially distributed
implementation [3] augments paths within disjoint regions first and then merges
regions hierarchically. In the end, it still requires finding augmenting paths in
the whole problem. A distributed algorithm was obtained in [4] using the dual
decomposition approach. The subproblems are mincut instances on the parts of
the graph (regions) and the master problem is solved using subgradient method.
This approach requires solving mincut subproblems with real valued capacities
(rather than integer ones) and does not have a polynomial iteration bound.

The push-relabel algorithm [5] performs many local atomic operations, which
makes it a good choice for a parallel or distributed implementation. A distributed
version [6] runs in O(n2) time using O(n) processors and O(n2

√
m) messages.

Delong and Boykov [7] proposed a coarser granulation, associating a subset of
vertices (a region) to each processor. Push and relabel operations inside a region
are decoupled from the rest of the graph. This allows to process several non-
interacting regions in parallel or run in a limited memory, processing one region
at a time. For the case of a fixed partition we prove that the sequential and
our novel parallel versions of their algorithm have a tight O(n2) bound on the
number of sweeps. We then construct a new algorithm, which works with the
same partition of the data but is guided by a different distance function than
push-relabel.

The New Algorithm. Given a fixed partition into regions, we introduce
a distance function which counts the number of region boundaries crossed by a
path to the sink. Intuitively, it corresponds to the amount of costly operations –
network communications or loads-unloads of the regions in the streaming mode.
The algorithm maintains a labeling, which is a lower bound on the distance
function. Within a region, we first augment paths to the sink and then paths to
the boundary nodes of the region in the order of their increasing labels. Thus the
flow is pushed out of the region in the direction given by the distance estimate.
We present a sequential and parallel versions of the algorithm which terminate
in at most 2|B|2 + 1 sweeps, where B is the set of all boundary nodes (incident
to inter-region edges).

Distributed Mincut/Maxflow Algorithm 3

Other Related Work. The following works do not consider a distributed
implementation but are relevant to our design. Partial Augment-Relabel algo-
rithm (PAR) [8] in each step augments a path of length k. It may be viewed as
a lazy variant of push-relabel, where actual pushes are delayed until it is known
that a sequence of k pushes can be executed. The algorithm of [9] incorporates
the notion of a length function and a valid labeling w.r.t. this length. It can be
seen that the labeling maintained by our algorithm corresponds to the length
function assigning 1 to boundary edges and 0 to intra-region edges. In [9] this
generalized labeling is used in the context of blocking flow algorithm but not
within push-relabel.

2 Mincut and Push-Relabel

We will be solving mincut problem by finding a maximum preflow2. In this
section, we give basic definitions and introduce the push-relabel framework [5].

By a network we call the tuple G = (V,E, s, t, c, e), where V is a set of
vertices; E ⊂ V × V , thus (V,E) is a directed graph; s, t ∈ V , s 6= t, are source
and sink, respectively; c : E → N0 is a capacity function; and e : V \{s, t} → N0

is an excess function. Excess can be equivalently represented as additional edges
from the source, but we prefer this explicit form. For convenience we let e(s) =∞
and e(t) = 0. We also denote n = |V | and m = |E|.

For X,Y ⊂ V we will denote (X,Y) = E ∩ (X × Y). For C ⊂ V such that
s ∈ C, t /∈ C, the set of edges (C, C̄), with C̄ = V \C is called an s-t cut. The
mincut problem is

min
{ ∑

(u,v)∈(C,C̄)

c(u, v) +
∑
v∈C̄

e(v)
∣∣∣C ⊂ V, s ∈ C, t ∈ C̄}. (1)

The objective is called the cost of the cut. Without a loss of generality, we
assume that E is symmetric – if not, the missing edges are added and assigned
zero capacity.

A preflow in G is a function f : E → Z satisfying the following constraints:

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E (capacity constraint), (2a)

f(u, v) = −f(u, v) ∀(u, v) ∈ E (antisymmetry), (2b)

e(v) +
∑

u | (u,v)∈E

f(u, v) ≥ 0 ∀v ∈ V (preflow constraint). (2c)

A residual network w.r.t. preflow f is a network Gf = (V,E, s, t, cf , ef) with
the capacity and excess functions given by

cf = c− f, (3a)

ef (v) = e(v) +
∑

u | (u,v)∈E

f(u, v), ∀v ∈ V \{t}. (3b)

2 A maximum preflow can be completed to a maximum flow using flow decomposition,
in O(m logm) time. Because we are primarily interested in the minimum cut, we do
not consider this step or whether it can be distributed.

4 A. Shekhovtsov and V. Hlavac

By constraints (2) it is cf ≥ 0 and ef ≥ 0. The costs of all s-t cuts differ in G
and Gf by a constant called the flow value, |f | =

∑
u | (u,t)∈E

f(u, t). Network Gf

is thus up to a constant equivalent to network G and |f | is a trivial lower bound
on the cost of a cut. Dual to mincut is the problem of maximizing this lower
bound, i.e. finding a maximum preflow:

max
f
|f | s.t. constraints (2). (4)

We say that w ∈ V is reachable from v ∈ V in network G if there is a
path (possibly of length 0) from v to w composed of edges with strictly positive
capacities. This relation is denoted by v → w. If w is not reachable from v we
write v 9 w. For any X,Y ⊂ V , we write X → Y if there exist x ∈ X, y ∈ Y
such that x→ y. Otherwise we write X 9 Y .

A preflow f is maximum iff {v | e(v) > 0} 9 t in Gf . In that case the cut
(T̄ , T) with T = {v ∈ V | v → t in Gf} has value 0 in Gf . Because all cuts are
non-negative it is a minimum cut.

A Distance function d∗ : V → N0 in G assigns to v ∈ V the length of the
shortest path from v to t, or n if no such path exists. A shortest path cannot
have loops, thus its length is not greater than n− 1. Let us denote d∞ = n.

A labeling d : V → {0, . . . , d∞} is valid in G if d(t) = 0 and d(u) ≤ d(v) + 1
for all (u, v) ∈ E such that c(u, v) > 0. Any valid labeling is a lower bound on
the distance d∗ in G. Not every lower bound is a valid labeling. A vertex v is
called active w.r.t. (f, d) if ef (v) > 0 and d(v) < d∞.

All algorithms in this paper will use the following common initialization.

Procedure Init

1 f := preflow saturating all ({s}, V) edges; G := Gf ; f := 0;
2 d := 0, d(s) := d∞;

The generic push-relabel algorithm [5] starts with Init and applies the fol-
lowing Push and Relabel operations while possible:
• Push(u, v) is applicable if u is active and cf (u, v) > 0 and d(u) = d(v) + 1.

The operation increases f(u, v) by ∆ and decreases f(v, u) by ∆, where
∆ = min(ef (u), cf (u, v)).

• Relabel(u) is applicable if u is active and ∀v | (u, v) ∈ E, cf (u, v) > 0 it is
d(u) ≤ d(v). It sets d(u) := min

(
d∞,min{d(v)+1| (u, v) ∈ E, cf (u, v) > 0}

)
.

If u is active then either Push or Relabel operation is applicable to u. The
algorithm preserves validity of labeling and stops when there are no active nodes.
Then for any u such that ef (u) > 0, we have d(u) = d∞ and therefore d∗(u) = d∞

and u9 t in Gf , so f is a maximum preflow.

3 Region Discharge Revisited

We now review the approach of Delong and Boykov [7] and reformulate it
for the case of a fixed graph partition. We then describe generic sequential and
parallel algorithms which can be applied with both push-relabel and augmenting
path approaches.

Distributed Mincut/Maxflow Algorithm 5

Delong and Boykov [7] introduce the following operation. The discharge of a
region R ⊂ V \{s, t} applies Push and Relabel to v ∈ R until there are no active
vertices left in R. This localizes computations to R and its boundary, defined as

BR = {w | ∃u ∈ R (u,w) ∈ E,w /∈ R, w 6= s, t}. (5)

When a Push is applied to an edge (v, w) ∈ (R,BR), the flow is sent out of
the region. We say that two regions R1, R2 ⊂ V \{s, t} interact if (R1, R2) 6=
∅. Discharges of non-interacting regions can be performed in parallel since the
computations in them do not share the data. The algorithm proposed in [7]
repeats the following steps until there are no active vertices in V :
1. Select several non-interacting regions, containing active vertices.
2. Discharge the selected regions in parallel, applying region-gap and region-

relabel heuristics3.
3. Apply global gap heuristic.

While the regions in [7] are selected dynamically in each iteration trying to
divide the work evenly between CPUs and cover the most of the active nodes, we
restrict ourselves to a fixed collection of regions (Rk)Kk=1 forming a partition of
V \{s, t} and let each region-discharge to work on its own separate subnetwork.
We define a region network GR = (V R, ER, s, t, cR, eR), where V R = R ∪ BR ∪
{s, t}; ER = (R ∪ {s, t}, R ∪ {s, t}) ∪ (R,BR) ∪ (BR, R); cR(u, v) = c(u, v) if
(u, v) ∈ ER\(BR, R) and 0 otherwise; eR = e|R∪{s,t} (the restriction of function
e to its subdomain R ∪ {s, t}). This network is illustrated in Fig. 1(a). Note
that the capacities of edges coming from the boundary, (BR, R), are set to zero.
Indeed, these edges belong to a neighboring region network. The region discharge
operation of [7], which we refer to as Push-relabel Region Discharge (PRD), can
now be defined as follows.

Procedure (f, d) = PRD(GR,d)

/* assume d : V R → {0, . . . , d∞} valid in GR */

1 while ∃v ∈ R active do
2 apply Push or Relabel to v; /* changes f and d */

3 apply region gap heuristic (see [7], [1, sec.5]); /* optional */

Generic Region Discharge Algorithms. We give a sequential and a paral-
lel algorithms in Alg. 1 and Alg. 2, resp. The later allows to discharge interacting
regions in parallel, resolving conflicts in the flow similar to the asynchronous
parallel push-relabel [5]. These two algorithms are generic, taking a black-box
Discharge function. In the case Discharge is PRD the sequential and parallel
algorithms are implementing the push-relabel approach and will be referred to as

3 All heuristics (global-gap, region-gap, region-relabel) serve to improve the distance
estimate. Details in [10,7,1]. They are very important in practice, but do not affect
theoretical properties.

6 A. Shekhovtsov and V. Hlavac

S-PRD and P-PRD respectively. S-PRD is a sequential variant of [7] and P-PRD
is a novel variant, based on results of [5] and [7].

Algorithm 1: Sequential Region Discharge

1 Init;
2 while there are active vertices do /* a sweep */

3 for k = 1, . . .K do
4 Construct GRk from G;

5 (f ′, d′) := Discharge(GRk , d|V Rk);
6 G := Gf ′ ; /* apply f ′ to G */

7 d|Rk
:= d′|Rk

; /* update labels */

8 apply global gap heuristic (see [10], [1, sec.5]); /* optional */

Algorithm 2: Parallel Region Discharge

1 Init;
2 while there are active vertices do /* a sweep */

3 (f ′k, d
′
k) := Discharge(GRk , d|V Rk) ∀k; /* in parallel */

4 d′|Rk
:= d′k|Rk

∀k; /* fuse labels */

5 α(u, v) := [[d′(u) ≤ d′(v) + 1]] ∀(u, v) ∈ (B,B); /* valid pairs */

/* fuse flow */

6 f ′(u, v) :=

{
α(v, u)f ′k(u, v) + α(u, v)f ′j(u, v) if (u, v) ∈ (Rk, Rj)

f ′k(u, v) if (u, v) ∈ (Rk, Rk)
;

7 G := Gf ′ ; /* apply f ′ to G */

8 d := d′; /* update labels */

9 global gap heuristic; /* optional */

We prove in [1] that both S-PRD and P-PRD terminate with a valid labeling
in at most 2n2 sweeps. Parallel variants of push-relabel [11] have the same bound
on the number of sweeps, so the mentioned result is not very surprising. On the
other hand, the analysis in [1] allows for more general Discharge functions.
We also show in [1] an example, which takes O(n2) sweeps to terminate for a
partition into two regions, interacting over two edges. Hence the bound is tight.

4 Augmented Path Region Discharge

We will now use the same setup of the problem distribution, but replace
the discharge operation and the labeling function. Because this is our main
contribution, it is presented in full detail.

4.1 New Distance Function

Let the boundary w.r.t. partition (Rk)Kk=1 be the set B =
⋃

k B
Rk . The region

distance d∗B(u) in G is the minimal number of inter-region edges contained in a
path from u to t, or |B| if no such path exists:

d∗B(u) =

 min
P=((u,u1),...,(ur,t))

|P ∩ (B,B)| if u→ t,

|B| if u9 t.
(6)

Distributed Mincut/Maxflow Algorithm 7

This distance corresponds well to the number of region discharge operations
required to transfer the excess to the sink.

Statement 1. If u→ t then d∗B(u) < |B|.
Proof. Let P be a path from u to t given as a sequence of edges. If P contains a
loop then it can be removed from P and |P ∩ (B,B)| will not increase. A path
without loops goes through each vertex at most once. For B ⊂ V there is at
most |B| − 1 edges in the path which have both endpoints in B.

We now let d∞ = |B| and redefine a valid labeling w.r.t. to the new distance.
A labeling d : V → {0, . . . , d∞} is valid in G if d(t) = 0 and for all (u, v) ∈ E
such that c(u, v) > 0:

d(u) ≤ d(v) + 1 if (u, v) ∈ (B,B), (7)

d(u) ≤ d(v) if (u, v) /∈ (B,B). (8)

Statement 2. A valid labeling d is a lower bound on d∗B.

Proof. If u 9 t then d(u) ≤ d∗B. Otherwise, let P = ((u, v1), . . . , (vl, t)) be a
shortest path w.r.t. d∗B, i.e. d∗B(u) = |P∩(B,B)|. Applying the validity property
to each edge in this path, we have d(u) ≤ d(t) + |P ∩ (B,B)| = d∗B(u).

4.2 New Region Discharge

In this subsection, reachability relations “→”, “9”, residual paths, and la-
beling validity will be understood in the region network GR or its residual GR

f .
The new Discharge operation, called Augmented Path Region Discharge

(ARD), works as follows. It first pushes excess to the sink along augmenting paths
inside the network GR. When it is no longer possible, it continues to augment
paths to nodes in the region boundary, BR, in the order of their increasing labels.
This is represented by the sequence of nested sets T0 = {t}, T1 = {t} ∪ {v ∈
BR | d(v) = 0}, . . . , Td∞ = {t}∪ {v ∈ BR | d(v) < d∞}. Set Tk is the destination
of augmentations in stage k. As we prove below, in stage k > 0 residual paths
may exist only to the set Tk\Tk−1 = {v | d(v) = k − 1}. Algorithm 1 and 2
with this new discharge operation will be referred to as S-ARD and P-ARD,
respectively.

Procedure (f, d) = ARD(GR,d)

/* assume d : V R → {0, . . . , d∞} valid in GR */

1 for k = 0, 1, . . . , d∞ do /* stage k */

2 Tk = {t} ∪ {v ∈ BR | d(v) < k}
/* Augment(R, Tk) */

3 while ∃ a residual path (v0 ∈ R, . . . , vl ∈ Tk), ef (v0) > 0 do
4 augment ∆ = min(ef (v0),min

i
cf (vi−1, vi)) along the path.

/* Region-relabel */

5 d(u) :=


min{k |u→ Tk} u ∈ R, u→ Td∞ ,

d∞ u ∈ R, u9 Td∞ ,

d(u) u ∈ BR.

8 A. Shekhovtsov and V. Hlavac

The labels on the boundary, d|BR , remain fixed during the algorithm and the
labels d|R inside the region do not participate in augmentations and therefore
are updated only in the end.

We claim that ARD terminates with no active nodes inside the region, pre-
serves validity and monotonicity of the labeling, and pushes flow from higher
labels to lower labels w.r.t. the new labeling. These properties will be required
to prove finite termination and correctness of S-ARD. Before we prove them
(Statement 6) we need the following intermediate results:
• Properties of the network GR

f maintained by the algorithm (Statement 3,
Corollaries 1 and 2).

• Properties of valid labellings in the network GR
f (Statement 4).

• Properties of the labeling constructed by region-relabel (line 5 of ARD) in the
network GR

f (Statement 5).

Lemma 1. Let X,Y ⊂ V R, X ∩ Y = ∅, X 9 Y . Then X 9 Y is preserved
after i) augmenting a path (x, . . . , v) with x ∈ X and v ∈ V R; ii) augmenting a
path (v, . . . , y) with y ∈ Y and v ∈ V R.

Proof. Let X be the set of vertices reachable from X. Let Y be the set of vertices
from which Y is reachable. Clearly X ∩ Y = ∅, otherwise X → Y . We have
that (X , X̄) is a cut separating X and Y and having all edge capacities zero.
Any residual path starting in X or ending in Y cannot cross the cut and its
augmentation change the edges of the cut. Hence, X and Y will stay separated.

Statement 3. Let v ∈ V R and v 9 Ta in Gf in the beginning of stage k0,
where a, k0 ∈ {0, 1, . . . d∞}. Then v 9 Ta holds until the end of the algorithm.

Proof. We need to show that v 9 Ta is not affected by augmentations performed
by the algorithm. If k0 ≤ a, we first prove v 9 Ta holds during stages k0 ≤ k ≤
a. Consider augmentation of a path (u0, u1, . . . , ul), u0 ∈ R, ul ∈ Tk ⊂ Ta,
ef (u0) > 0. Assume v 9 Ta before augmentation. By Lemma 1 with X = {v},
Y = Ta (noting that X 9 Y and the augmenting path ends in Y), after the
augmentation v 9 Ta. By induction, it holds till the end of stage a and hence
in the beginning of stage a+ 1.

We can assume now that k0 > a. Let A = {u ∈ R | ef (u) > 0}. At the end of
stage k0−1 we have A9 Tk0−1 ⊃ Ta by construction. Consider augmentation in
stage k0 on a path (u0, u1 . . . , ul), u0 ∈ R, ul ∈ Tk0 , ef (u0) > 0. By construction,
u0 ∈ A. Assume {v} ∪ A 9 Ta before augmentation. Apply Lemma 1 with
X = {v} ∪ A, Y = Ta (we have X 9 Y and u0 ∈ A ⊂ X). After augmentation
it is X 9 Ta. By induction, X 9 Ta till the end of stage k0. By induction on
stages, v 9 Ta until the end of the algorithm.

Corollary 1. If w ∈ BR then w 9 Td(w) throughout the algorithm.

Proof. At initialization, it is fulfilled by construction ofGR due to cR(BR, R) = 0.
It holds then during the algorithm by Statement 3.

In particular, we have BR 9 t during the algorithm.

Corollary 2. Let (u, v1 . . . vl, w) be a residual path inGR
f from u ∈ R to w ∈ BR

and let vr ∈ BR for some r. Then d(vr) ≤ d(w).

Distributed Mincut/Maxflow Algorithm 9

Proof. We have vr 9 Tvr . Suppose d(w) < d(vr), then w ∈ Tvr and because
vr → w it is vr → Tvr which is a contradiction.

Statement 4. Let d be a valid labeling, d(u) ≥ 1, u ∈ R. Then u9 Td(u)−1.

Proof. Suppose u → T0. Then there exist a residual path (u, v1 . . . vl, t), vi ∈ R
(by Corollary 1 it cannot happen that vi ∈ BR). By validity of d we have
d(u) ≤ d(v1) ≤ · · · ≤ d(vl) ≤ d(t) = 0, which is a contradiction.

Suppose d(u) > 1 and u→ Td(u)−1. Because u9 T0, it must be that u→ w,
w ∈ BR and d(w) < d(u) − 1. Let (v0 . . . vl) be a residual path with v0 = u
and vl = w. Let r be the minimal number such that vr ∈ BR. By validity of
d we have d(u) ≤ d(v1) ≤ · · · ≤ d(vr−1) ≤ d(vr) + 1. By corollary 2 we have
d(vr) ≤ d(w), hence d(u) ≤ d(w) + 1 which is a contradiction.

Statement 5. For d computed on line 5 and any u ∈ R it holds:
1. d is valid;
2. u9 Ta ⇔ d(u) ≥ a+ 1.

Proof. 1. Let (u, v) ∈ ER and c(u, v) > 0. Clearly u→ v. Consider four cases:
• case u ∈ R, v ∈ BR: Then u→ Td(v)+1, hence d(u) ≤ d(v) + 1.
• case u ∈ R, v ∈ R: If v 9 Td∞ then d(v) = d∞ and d(u) ≤ d(v). If
v → Td∞ , then d(v) = min{k | v → Tk}. Let k = d(v), then v → Tk and
u→ Tk, therefore d(u) ≤ k = d(v).

• case u ∈ BR, v ∈ R: By Corollary 1, u 9 Td(u). Because u → v, it is
v 9 Td(u), therefore d(v) ≥ d(u) + 1 and d(u) ≤ d(v)− 1 ≤ d(v) + 1.

• case when u = t or v = t is trivial.
2. The “⇐” direction follows by Statement 4 applied to d, which is a valid
labeling. The “⇒” direction: we have u9 Ta and d(u) ≥ min{k |u→ Tk} =
min{k > a |u→ Tk} ≥ a+ 1.

Statement 6 (Properties of ARD). Let d be a valid labeling in GR. The output
(f ′, d′) of ARD satisfies:

1. There are no active vertices in R w.r.t. (f ′, d′); (optimality)
2. d′ ≥ d, d′|BR = d|BR ; (labeling monotonicity)
3. d′ is valid in GR

f ′ ; (labeling validity)
4. f ′ is a sum of path flows, where each path is from a vertex u ∈ R to a
vertex v ∈ {t} ∪BR and it is d′(u) > d(v) if v ∈ BR. (flow direction)

Proof. 1. In the last stage, the algorithm augments all paths to Td∞ . After
this augmentation a vertex u ∈ R either has excess 0 or there is no residual
path to Td∞ and hence d′(u) = d∞ by construction.

2. For d(u) = 0, we trivially have d′(u) ≥ d(u). Let d(u) = a + 1 > 0.
By Statement 4, u 9 Ta in GR and it holds also in GR

f by Statement 3.
From Statement 5.2, we conclude that d′(u) ≥ a + 1 = d(u). The equality
d′|BR = d|BR is by construction.

3. Proven by Statement 5.1.
4. Consider a path from u to v ∈ BR, augmented in stage k > 0. It follows
that k = d(v)+1. At the beginning of stage k it is u9 Tk−1. By Statement 3,
this is preserved till the end of the algorithm. By Statement 5.2, d′(u) ≥ k =
d(v) + 1 > d(v).

10 A. Shekhovtsov and V. Hlavac

4.3 Complexity of the Sequential ARD

Let us first verify that the labeling in S-ARD is globally valid.

Statement 7. For a labeling d valid in G and (f ′, d′) = ARD(GR, d), the exten-
sion of d′ to V defined by d′|R̄ = d|R̄ is valid in Gf ′ .

Proof. Statement 5 established validity of d′ inGR
f ′ . For edges (u, v) ∈ (V \R, V \R)

labeling d′ coincides with d and f ′(u, v) = 0. It remains to verify validity on
edges (v, u) ∈ (BR, R) in the case cRf (v, u) = 0 and cf (v, u) > 0. Because

0 = cRf (v, u) = cR(v, u)− f(v, u) = −f(v, u), we have cf (v, u) = c(v, u). Since d
was valid in G, d(v) ≤ d(u) + 1. The new labeling d′ satisfies d′(u) ≥ d(u) and
d′(v) = d(v). It follows that d′(v) = d(v) ≤ d(u) + 1 ≤ d′(u) + 1. Hence d′ is
valid in Gf ′ .

Theorem 1. The sequential ARD terminates in at most 2|B|2 + 1 sweeps.

Proof. The value of d(v) does not exceed |B| and d is non-decreasing. The total
increase of d|B during the algorithm is at most |B|2.

After the first sweep, active vertices are only in B. Indeed, discharging region
Rk makes all vertices v ∈ Rk inactive and only vertices in B may become active.
So by the end of the sweep, all vertices V \B are inactive.

Let us introduce the quantity

Φ = max{d(v) | v ∈ B, v is active in G }. (9)

We will prove the following two cases for each sweep after the first one:
1. If d|B is increased then the increase in Φ is no more than total increase in
d|B. Consider discharge of Rk. Let Φ be the value before ARD on Rk and Φ′

the value after. Let Φ′ = d′(v). It must be that v is active in G′. If v /∈ V R,
then d(v) = d′(v) and e(v) = ef ′(v) so Φ ≥ d(v) = Φ′.
Let v ∈ V R. After the discharge, vertices in Rk are inactive, so v ∈ Bk

and it is d′(v) = d(v). If v was active in G then Φ ≥ d(v) and we have
Φ′ − Φ ≤ d′(v) − d(v) = 0. If v was not active in G, there must exist an
augmenting path from a vertex v0 to v such that v0 ∈ Rk∩B was active in G.
For this path, the flow direction property implies d′(v0) ≥ d(v). We now have
Φ′−Φ ≤ d′(v)−d(v0) = d(v)−d(v0) ≤ d′(v0)−d(v0) ≤

∑
v∈Rk∩B[d′(v)−d(v)].

Summing over all regions, we get the result.
2. If d|B is not increased then Φ is decreased at least by 1. We have d′ = d.
Let us consider the set of vertices having the highest active label or above,
H = {v | d(v) ≥ Φ}. These vertices do not receive flow during all discharge
operations due to the flow direction property. After the discharge of Rk there
are no active vertices left in Rk∩H (property 6.1). After the full sweep, there
are no active vertices in H.
In the worst case, starting from sweep 2, Φ can increase by one |B|2 times

and decrease by one |B2| times. In at most 2|B|2 + 1 sweeps, there are no active
vertices left.

On termination we have that the labeling is valid and there are no active
vertices in G. The proof that P-ARD terminates is similar and is given in [1].

Distributed Mincut/Maxflow Algorithm 11

5 Experiments

We tested the algorithms on synthetic and real problems. The machine had
Intel Core 2 Quad CPU@2.66Hz, 4GB memory, Windows XP 32bit and Microsoft
VC compiler. All tested algorithms are sequential, 32bit and use only one core
of the CPU. The memory limit for the algorithms is 2GB.

As a baseline we used augmenting path implementation [2] v3.0 (BK) and
the highest level push-relabel implementation [10] v3.6 (HIPRα, where α is a
parameter denoting frequency of global relabels, 0.5 is the default value).

ARD was implemented4 using BK as a core solver. PRD is based on our
reimplementation of the highest level push-relabel for the case of a given label-
ing on the boundary. This reimplementation (denoted HPR) uses linked list
of buckets (rather than array) to achieve the time and space complexity inde-
pendent of n and otherwise is similar to HIPR. The sequential Alg. 1 for each
region loads and saves all the internal data of the core solver, so that discharge
is always warm-started. Please see [1] for details of implementation and more
experimental results.

5.1 Synthetic Instances

We generated simple synthetic 2D grid problems with a regular connectivity
structure. Fig. 1(b) shows an example of such a network. Nodes are arranged
into 2D grid and edges are added at the the following relative displacements:
(0, 1), (1, 0), (1, 2), (2, 1), so the number of edges incident to a node far enough
from the boundary (connectivity) is equal to 8. Each node is given an integer ex-
cess/deficit distributed uniformly in the interval [−500 500]. A positive number
means a source link and a negative number a sink link. All edges in the graph,
except of terminal links, are assigned a constant capacity, called strength. The
network is partitioned into regions by slicing it in s equal parts in both dimen-
sions. Let us first look at the dependence on the strength, shown in Fig. 1(c).
Problems with small strength are easy because they are very local – long aug-
mentation paths do not occur. For problems with large strength long paths needs
to be augmented. However, finding them is easy because bottlenecks are unlikely.
Therefore BK and S-ARD have a maximum in the computation time somewhere
in the middle. It is more difficult to transfer the flow over long distances for
push-relabel algorithms. This is where the global relabel heuristic becomes effi-
cient and HIPR0.5 outperforms HIPR0. The region-relabel heuristic of S-PRD
allows it to outperform other push-relabel variants.

As the function of the number of regions (Fig. 2(a)), both the number of
sweeps and the computation time grow slowly.

As the function of the problem size (Fig. 2(b)), computation efforts of all
algorithms grow proportionally. However, the number of sweeps shows different
asymptotes. It is almost constant for S-ARD but grows significantly for S-PRD.

4 Implementations are available at cmp.felk.cvut.cz/~shekhovt/d_maxflow.

cmp.felk.cvut.cz/~shekhovt/d_maxflow

12 A. Shekhovtsov and V. Hlavac

(a)

(b)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

strength

nu
m

be
r

of
 s

w
ee

ps

S-ARD

S-PRD

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

strength

C
P

U
, s

ec
.

BK
HIPR0
HIPR0.5
HPR
S-ARD
S-PRD

(c)

Fig. 1. (a) Region Network. (b) Example of a synthetic problem: a network of size
6×6, connectivity 8, partition into 4 regions. The source and sink are not shown.
(c) Dependence on the interaction strength for size 1000×1000, connectivity 8 and 4
regions. Plots show the mean values over 100 random samples and intervals containing
70% of the samples.

4 16 36 49 64 81 100 121 144 169 196 225

30

100
150
200
250
300
350

of regions

nu
m

be
r

of
 s

w
ee

ps

S-ARD

S-PRD

4 16 36 49 64 81 100 121 144 169 196 225
0

10

20

of regions

C
P

U
, s

ec
.

200 400 600 800 1000 1200 1600 1800 2000
8

50
100
150
200
250
300
350

vertices1/2

nu
m

be
r

of
 s

w
ee

ps

S-ARD

S-PRD

200 400 600 800 1000 1200 1600 1800 2000
0

50

100

150

vertices1/2

C
P

U
, s

ec
.

 BK

HIPR0

HIPR0.5

HPR

S-ARD

S-PRD

(a) (b)
Fig. 2. (a) Dependence on the number of regions, for size 1000×1000, strength 150.
(b) Dependence on the problem size, for strength 150, 4 regions.

5.2 Real Instances

We tested our algorithms on the maxflow problem instances published by
the Computer Vision Research Group at the University of Western Ontario
(http://vision.csd.uwo.ca/maxflow-data/). The data consists of typical max-
flow problems in computer vision, graphics, and biomedical image analysis, in-
cluding 2D, 3D and 4D grids of various connectivity. The results are presented
in Table 1.

We select the regions by slicing the problems in 4 parts in each dimension: into
16 regions for 2D BVZ grids and into 64 regions for 3D segmentation instances.

http://vision.csd.uwo.ca/maxflow-data/

Distributed Mincut/Maxflow Algorithm 13

Problems KZ2 are not regular grids, so we sliced them into 16 regions just by
the node number. The same we did for the multiview LB06 instances, for which
we do not know the grid layout. In 3D segmentation instances the arcs which
are reverse of each other are spread in the file. Because we did not match them,
we had to create parallel arcs in the graph (multigraph). This is seen, e.g . in
babyface.n26c100, which is 26-connected, but we construct a multigraph with
average node degree of 49. For some other instances, however, this is not visible
because there are many zero arcs.

Table 1. Real instances. CPU – the time spent purely for computation, excluding the
time for parsing, construction and disk I/O. The total time to solve the problem is not
shown. K – number of regions. RAM – memory taken by the solver; for BK in the case
it exceeds 2GB limit, the expected required memory; for streaming solvers the sum of
shared and region memory. I/O – total bytes read or written to disk.

problem BK HI-
PR0

HI-
PR0.5

HPR S-ARD S-PRD

name CPU CPU CPU CPU CPU sweeps K CPU sweeps K
n(106) m/n RAM RAM RAM RAM RAM I/O RAM I/O

stereo
BVZ-sawtooth(20) 0.68s 3.0s 7.7s 3.8s 0.68s 6 16 2.7s 26 16

0.2 4.0 14MB 17MB 0.3+0.9MB 91MB 0.7+1.1MB 0.6GB
BVZ-tsukuba(16) 0.36s 1.9s 4.9s 2.6s 0.40s 5 16 1.7s 23 16

0.1 4.0 9.7MB 11MB 0.2+0.6MB 55MB 0.5+0.7MB 349MB
BVZ-venus(22) 1.2s 5.7s 15s 6.2s 1.6s 6 16 5.8s 29 16

0.2 4.0 15MB 17MB 0.3+0.9MB 94MB 0.7+1.1MB 0.8GB
KZ2-sawtooth(20) 1.8s 7.1s 22s 6.1s 2.2s 6 16 6.0s 21 16

0.3 5.8 33MB 36MB 1.2+2.0MB 212MB 1.5+2.3MB 1.1GB
KZ2-tsukuba(16) 1.1s 5.3s 20s 4.4s 1.8s 6 16 5.4s 15 16

0.2 5.9 23MB 25MB 1.1+1.4MB 148MB 1.1+1.6MB 0.5GB
KZ2-venus(22) 2.8s 13s 39s 10s 4.0s 7 16 12s 29 16

0.3 5.8 34MB 37MB 1.2+2.1MB 255MB 1.5+2.4MB 1.5GB
multiview

BL06-camel-lrg 81s 116s 11 16 308s 418 16
18.9 4.0 1.6GB 19+116MB 25GB 86+122MB 0.6TB

BL06-camel-med 25s 29s 77s 59s 36s 12 16 118s 227 16
9.7 4.0 0.8GB 1.0GB 13+60MB 13GB 46+63MB 225GB

BL06-gargoyle-lrg 245s 91s 191s 20 16 318s 354 16
17.2 4.0 1.5GB 1.7GB 23+106MB 33GB 82+112MB 0.8TB

BL06-gargoyle-med 115s 17s 58s 37s 91s 14 16 143s 340 16
8.8 4.0 0.8GB 0.9GB 15+55MB 12GB 44+58MB 235GB

surface
LB07-bunny-lrg 16min 6 64 416s 43 64
49.5 6.0 5.7GB 49+101MB 34GB 226+99MB 276GB

LB07-bunny-med 1.6s 20s 41s 26s 20s 8 64 16s 25 64
6.3 6.0 0.7GB 0.8GB 14+14MB 4.1GB 34+13MB 24GB

segm
liver.n26c100 12s 26s 28s 39s 26s 15 64 35s 98 64

4.2 11.1 0.8GB 0.7GB 18+15MB 11GB 30+14MB 66GB
liver.n6c100 15s 30s 34s 44s 25s 17 64 32s 94 64

4.2 10.5 0.8GB 0.7GB 16+14MB 11GB 29+13MB 70GB
babyface.n26c100 264s 36 64 262s 116 64

5.1 49.0 3.8GB 165+72MB 95GB 180+57MB 0.6TB
babyface.n6c100 13s 71s 65s 87s 32s 17 64 74s 191 64

5.1 11.5 1.0GB 0.9GB 22+19MB 17GB 37+17MB 189GB
adhead.n26c100 185s 16 64 269s 129 64
12.6 31.6 6.3GB 154+106MB 70GB 196+86MB 0.8TB

adhead.n6c100 48s 13 64 121s 165 64
12.6 11.7 2.5GB 35+44MB 29GB 77+39MB 354GB

bone.n26c100 32s 15 64 68s 124 64
7.8 32.4 4.0GB 122+79MB 31GB 147+63MB 321GB

bone.n6c10 7.7s 5.7s 17s 12s 7.8s 10 64 37s 195 64
7.8 11.5 1.5GB 1.4GB 27+28MB 10GB 52+25MB 188GB

Continued on next page

14 A. Shekhovtsov and V. Hlavac

Table 1 – continued from previous page.
bone.n6c100 9.1s 9.1s 22s 14s 9.8s 11 64 23s 65 64

7.8 11.6 1.6GB 1.5GB 27+28MB 12GB 52+25MB 104GB
abdomen long.n6c10 179s 11 64 > 35 64
144.4 11.8 29GB 170+497MB 196GB >1TB

abdomen short.n6c10 82s 11 64 64
144.4 11.8 29GB 170+497MB 138GB

6 Conclusion

We have developed a new distributed algorithm for mincut problem on
sparse graphs and proved an O(|B|2) bound on the number of sweeps. Both in
theory and practice (randomized tests) the required number of sweeps is asymp-
totically better than for a variant of parallel push-relabel. Experiments on real
instances showed that S-ARD, while sometimes doing more computations than
S-PRD or BK, uses significantly fewer disk operations.

We proposed a sequential and a parallel version of the algorithm. The best
practical solution could be a combination of the two, depending on the usage
mode and hardware (several CPUs, several network computers, sequential with
storage on Solid State Drive, using GPU for region discharge, etc.).

There is the following simple way how to allow region overlaps in our frame-
work. A sequential algorithm can keep 2 regions in memory at a time and al-
ternate between them until both are discharged. With PRD this is efficiently
equivalent to discharging twice larger regions with a 1/2 overlap and may sig-
nificantly decrease the number of sweeps required.

References
1. Shekhovtsov, A., Hlavac, V.: A distributed mincut/maxflow algorithm combining

path augmentation and push-relabel. Research Report K333–43/11, CTU–CMP–
2011–03, Czech Technical University in Prague (2011)

2. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. In: PAMI. Volume 26. (2004)

3. Liu, J., Sun, J.: Parallel graph-cuts by adaptive bottom-up merging. In: CVPR.
(2010)

4. Strandmark, P., Kahl, F.: Parallel and distributed graph cuts by dual decomposi-
tion. In: CVPR. (2010)

5. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem.
Journal of the ACM 35 (1988)

6. Goldberg, A.V.: Processor-efficient implementation of a maximum flow algorithm.
Inf. Process. Lett. 38 (1991)

7. Delong, A., Boykov, Y.: A scalable graph-cut algorithm for N-D grids. In: CVPR.
(2008)

8. Goldberg, A.V.: The partial augment–relabel algorithm for the maximum flow
problem. In: Proceedings of the 16th annual European symposium on Algorithms.
(2008)

9. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM (1998)
10. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the

maximum flow problem. Technical report (1994)
11. Goldberg, A.: Efficient graph algorithms for sequential and parallel computers.

PhD thesis, Massachusetts Institute of Technology (1987)

