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Abstract— In this paper we present a new approach for
automated cell detection in single frames of 2D microscopic
phase contrast images of cancer cells which is based on learning
cellular texture features. The main challenge addressed in this
paper is to deal with clusters of cells where each cell has
a rather complex appearance composed of sub-regions with
different texture features. Our approach works on two different
levels of abstraction. First, we apply statistical learning to learn
6 different types of different local cellular texture features,
classify each pixel according to them and we obtain an image
partition composed of 6 different pixel categories. Based on this
partitioned image we decide in a second step if pre-selected
seeds belong to the same cell or not. Experimental results
show the high accuracy of the proposed method and especially
average precision above 95%.

I. INTRODUCTION

The motion pattern of cancer cells provides insight into

the functional state of the cells. In order to study the effect

on the motile behavior of the cells, when treating them with

an anti-cancer drug in the frame of an anti-migratory cancer

therapy approach [1], the motion of a large number of cells

has to be explored and quantified. For this purpose methods

for automated cell detection and cell tracking contribute

to systematic and reproducible measurements allowing to

handle large amounts of data where a manual evaluation

would be too time-consuming.

In the presence of single isolated cells, cell detection

reduces to the calculation of a foreground/background mask

[2]. However, in order to limit the effort of recording films

of the moving cancer cells we record approximately 50 cells

at a time (see Fig. 1(a)). The cells tend to agglomerate in

this case and, with increasing number and size of the cell

clusters, cell detection becomes more and more challenging.

In contrast to other cell detection methods which do not deal

with clusters at all [3], [4], or not with larger clusters [5],

we address such situations as well. Moreover, our aim is to

detect a cell by identifying its center of the nucleus which

is used for tracking the cells afterwards.

A point which makes the detection of a single cell in

a cell cluster difficult results from the specific appearance

of the cells in our images which differs with respect to

the images shown in other papers [6]. Fig. 1(b) illustrates
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that cell appearance can be described as being composed by

the following parts: a nucleus containing fine grains, a halo

around the nucleus, cytoplasm, membrane and the cell border

again showing a halo but also some dark coarse grains.

Clearly, this considerable number of different structures is

not easy to deal with when aiming at detecting the different

cells in a cluster. For instance, the halo around the nucleus

might be taken for the halo at the cell border and two cells

are detected instead of one.

Our approach works on two different levels of abstraction.

First, we apply statistical learning to learn 6 different types

of different local cellular texture features and partition the

image. At the same time we generate initial seeds for cell

centers where we use two different methods: radial symmetry

decomposition (RSD) [7], [8] and blob-like keypoint detec-

tion [9]. RSD decomposes larger cell clusters into radially

symmetric parts and it provides centers of radial symmetry.

Blob-like keypoint detection is a method based on eigenvalue

analysis of the Hessian of local neighborhoods in the image.

Using the partitioned image we decide in a second step if

these pre-selected seeds belong to cells or not. This is in

contrast to Pan et al. [10], who also use statistical learning

in order to draw conclusions about pre-selected points, but

make a decision based directly on the input image.

(a) input frame (b) subregion (magnified 4x)

Fig. 1. Example input frame from one of the sequences, enlarged subregion
shows nucleus (1), membrane (2), halo (3), border (4), float (5) and
background (6).

II. METHOD

The proposed method has three major steps in order to

accomplish cell detection: first, cell seeds are generated in

the form of small regions, second, the image is partitioned

based on cellular features, and last, seeds are filtered and

joined in order to reduce the number of false positives (FP)

as much as possible, see Figure 2.
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Fig. 2. Method scheme.

A. Preprocessing

Background mask distinguishing between the background

and cells greatly reduces the space we need to explore in

further steps. In order to extract such a mask M , thresh-

olding of statistical variation of input image F measured

by: intensity range, variance, median of absolute deviations

from median, sample-to-noise ratio, or entropy etc. is a usual

step [11], [12]. In our case measuring entropy in small

neighborhoods proved to work the best as it gives a bimodal

histogram where the two modes are easily separated, eg. by

expectation-maximization fitting of two Gaussians. One has

to keep in mind that this relies on the fact there is a sufficient

background area as well as a cell area.

B. Initial seed generation

The first step of our method after preprocessing is seed

generation, its goal is to produce probable locations of cell

centers based on local image intensity information without

missing any of the cells. Thanks to the general setup of

our method seed generation can be accomplished in any

meaningful way, here we propose two possibilities: first,

radial symmetry decomposition [7], [8], and second, blob-

like keypoint detection [9].

1) Radial symmetry decomposition (RSD): In RSD, each

image pixel with high gradient votes for centers of symmetry

(another pixels). Votes from all the pixels are accumulated.

First the pixels vote for a larger area in the direction of

gradient but with each iteration the voting area shrinks and

the voting direction is re-oriented towards local maximum in

the accumulator. Final local maxima serve as the generated

seeds. For further details please refer to [8], we apply the

RSD algorithm defined therein with small changes in the

weighing of votes where we take into account just the

gradient magnitude as opposed to a linear combination of

gradient magnitude and the actual intensity.

2) Blob-like keypoints (BK): Application of the Hessian

to analyze local structure comes from the context of interest

point detection [9]. We use it in the following way, a matrix

of partial derivatives of the image function F :

H =

[

∂F
∂2x

∂F
∂x∂y

∂F
∂x∂y

∂F
∂2y

]

is constructed and eigenvalue analysis of H performed.

Depending on the maximum, minimum eigenvalue λ1, λ2

one can argue about local structure, if both are large there

is a maximum or minimum according to the sign, if both

are small the function is flat, other cases are not interesting

for us. To generate the seeds we propose to take connected

regions with L(~x) > σL in:

L = λ1(~x)λ2(~x) over ~x ∈
{

R
2 | λ1(~x) > 0, λ2(~x) > 0

}

To approximate the derivatives we use a convolution

with a Gaussian derivative filter along with smoothing by

a Gaussian. Both have the same scale which is smaller than

that of nuclei so that we do not miss any cell. If the cell

scales would differ too much, it is possible to generate the

seeds using multiple filters at different scales and feed them

to the following steps of the method.

C. Image partitioning by learning cellular features

In order to abstract from the image data we want to

interpret the image in terms of cellular features. We define

the following six different features: nucleus, membrane, halo,

structured border, float,1 and the background. The selected

cellular features have differing appearance and biological

meaning, see Figure 3. Nucleus and the structured border

are both textured and slightly darker, the texture of nucleus

coarser, structured border is formed by ruffling and other

membrane extensions at the cell-background interface. Both

membrane and background are flat, membrane usually having

wider histogram but smoother texture. Halo and float are

prominent features typical for phase-contrast microscopy

which have high intensities, with halo there is a texture and

thin linear shape whereas float has nearly no texture and

covers larger areas.

nucleus membr. halo border float bg

Fig. 3. 15x15 patches of the six cellular features, first row original, second
row normalized for output. Only nucleus, membrane, and background cover
the whole patch, halo and border are mixed with each other and float appears
with a part of background.

Machine learning is used to learn these six cellular fea-

tures. Specifically our learner of choice is an ensemble of

randomized decision trees, aka random forest [13], for a dis-

cussion of this choice see Section III-A.1. The input space to

the classifier is based on analyzing local 5x5 neighborhoods

1This is no more than our label, definitely no well-established term, but
we think it describes well the fact that this cell feature is produced by
(mitotic) cells which are not settled on the substrate and float in the medium.

50



of each pixel in terms of texture using 14 texture features

[14]. Before the analysis we correct vignetting artifacts in

the image [15].

D. Seed selection

Inputs to seed selection are both the initial cell seeds and

the interpretation of the image in the form of cellular-feature

partitioning. Using the partioning we select the seeds that are

placed correctly over cells — we call this step filtering, and

merge the seeds that happen to lie inside a single cell — we

call this joining. The goal is to lower the number of false

positives as much as possible.

Filtering takes each cell seed and checks the underlying

cellular features computing the ratio rclass which expresses

seed area covered by each of them. If the seed is too small

it is enlarged in order to obtain reliable statistic. As the

right seeds should be placed over nucleus and never over

background, or membrane, and as sometimes the centers of

small cells are composed rather by float than by nucleus, the

decision is taken based on:

(rnucleus > tnucleus ∨ rfloat > tfloat) ∧
rmembrane < tmembrane ∧
rbackground < tbackground

where tclass are parameters of the method. This rule is

complemented by a rule checking that the distance d to the

closest background region is above a minimum D.

In the joining step, we construct a matrix of mutual inter-

connection costs which is achieved once more by looking at

the partitioning, the rclass ratios are computed for the region

separating the two seeds and when

rhalo + (rbackground + rmembrane)− (rnucleus + rborder)

is under a specified threshold J the two seeds are replaced

by their convex hull. Finally, seeds covering areas smaller

than S are discarded. To speed up the computation gating is

applied — costs are evaluated only for pairs of cells which

are close enough (twice the average cell radius was taken).

III. EXPERIMENTAL RESULTS

We evaluated our algorithm on 7 films (512x512 px 8-bit

grayscale) showing moving MDA-MB-435S breast cancer

cells. The cells have been imaged in average during 7 hours,

1 frame per 3 minutes, using an Axiovert laser scanning

microscope LSM 510 (Zeiss) with PNF 20 0.4 PH2 lens and

a HeNe laser at 543 nm in transmission scanning mode [16].

A. Training, testing and validation data

A single frame from one sequence was used for training

the partitioning which models the final setup in a biological

laboratory environment where a skilled biologist is to be

asked to mark different cellular features in one representative

frame. Three films were used for testing — to tune the

method parameters, another three films served as a means for

validation when all the parameters had already been fixed.

TABLE I

RECALL/PRECISION OF PARTITIONING FOR DIFFERENT MACHINE

LEARNING METHODS.

DT SVM RF

bg .98 / .96 .98 / .96 .98 / .96
border .57 / .62 .58 / .53 .67 / .79

float .87 / .93 .80 / .91 .93 / .97
halo .86 / .72 .61 / .60 .93 / .86

membrane .53 / .65 .55 / .70 .56 / .74
nucleus .75 / .76 .78 / .76 .88 / .81

summary .76 / .77 .72 / .74 .82 / .85

1) Test 1: partitioning space and the machine learning

algorithm: Apart from random forest (RF, implementation

from [17]), we tested support vector machines (SVM),

specifically C-SVM as implemented in [18], and decision

trees (DT) [19], always applying hyper-parameter tuning and

keeping the data set balanced. Differences between DT and

SVM were not significant while both were outperformed by

RF in the sense of recall and precision, see Table I. Fur-

thermore, an advantage of RF was its easy hyper-parameter

setup. A typical output of partitioning is shown in Figure 4.

The cell features which are hard to be distinguished are

membrane vs. background and border vs. nucleus, most

probably higher-level information would be needed. As long

as in joining we treat these features identical and in filtering

nearly identical, current scale was retained.

(a) partitioning (b) subregion (magnified 4x)

Fig. 4. Typical partitioning output, different cell features are color coded:
nucleus (blue), membrane (gray), halo (light blue), border structures (dark
blue), float (green), and background (yellow).

Apart from the Haralick texture features [14] finally

applied, we further experimented with the input space fed

into the classifier. The simplest space formed only by the

25 original patch intensities did not yield good results.

Variable importance output by RF confirmed that the central

intensity I00 is by far the most important which led us to

the assumption that a space formed by a combination of

I00 and the texture features would perform better. However

the improvement obtained (recall increased from 82 to 84%,

precision from 85 to 86%) did not outweigh more com-

mon overfitting. We also experimented with different texture

spaces formed by statistical measures such as mean, variance,

second normalized image moments, covariances etc. without

getting significantly better results.
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TABLE II

FINAL RSD/BK RESULTS AFTER THE JOINING STEP.

method average minimum maximum

RSD

FP 1.0 0. 5.
FN 33. 16. 48.
Recall 0.50 0.28 0.63
Precision 0.98 0.91 1.0

BK

FP 2.1 0. 6.
FN 18. 6. 35.
Recall 0.73 0.58 0.85
Precision 0.96 0.92 1.0

2) Test 2: comparison of seed generators: We tested the

quality of seed generation for further processing by our

method, therefore we looked at FN/recall, not caring much

about FP/precision. As the methods generate a lot of seeds

close to the background in completely incorrect positions,

we removed such seeds by dilating the background mask to

obtain better comparison.

The evaluation of the obtained seeds was done in the

following way, from each of the films we took 5 random

frames, for each of these frames ground truth was defined

interactively and the results of the method were compared to

it. Evaluation was done automatically assigning each ground

truth cell location to the closest detected seed using the

Gale/Shapley algorithm [20]. In situations where the closest

seed did not lie within 20 pixels2 the cell was considered

undetected. On the three test sequences, RSD gave 90%

recall and BK 94%. The average number of false negatives

with RSD was 4.9 (max. 8), with BK 3.1 (max. 6).

The runtimes for the two different seed generation meth-

ods differ greatly, BK runtime being in the order of seconds

and RSD up to several minutes.

3) Test 3: method evaluation: Finally, in the last experi-

ment the whole method was tested first fixing the parameters

on the three testing sequences, tnucleus = 0.6, tmembrane =
0.2, and tbackground = 0.1, tfloat = 0.8, D = 7 px for

filtering, and J = 0.3, S = 20 px2 for joining. Afterwards

the method was evaluated with the validation sequences.

Filtering as well as joining steps are crucial for the

good performance of the method. Regardless of the seed

generation method we reached over 95% precision (avg. 1.0

FP for RSD and 2.1 for BK), starting as low as 50% precision

for RSD and 27% for BK. Nonetheless, we consider the final

results of BK after joining to be much better as there is a

great difference in the runtime of both methods as well as

in recall (73% over 50% in favor of BK). Although recall

is not crucial, when we consider post-processing by user

which can add cells with more ease than spot and delete the

wrong ones, the value of RSD is probably too low as in the

interactive setup it would mean adding half of the cells to

the ones detected by the algorithm. For the results after the

joining steps see Table II.

IV. CONCLUSION

The proposed method gives high precision with a rea-

sonably high recall, if we consider our challenging input

2Approx. half the size of a typical cell.

sequences it is unparalleled among the currently available

state-of-the-art methods for cell detection from single image

in phase-contrast microscopy. High precision (with both seed

generators over 95% on the validation data) is especially

important to limit necessary user interaction (adding cells is

easier than deleting). Further, we plan to investigate other

seed generators apt for special types of cells, as well as, to

learn the decision criteria for filtering and joining. Finally

we plan to integrate the method in our cell tracking software

so that we are able to exploit temporal information extracted

by tracking to improve detection.
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