1. Goals
- Evaluate state of the art multi-target multi-view tracking algorithm with a publicly available implementation.
- Introduce a new team sport benchmark dataset.

2. Conclusions
- The used implementation doesn’t include appearance model and fails frequently on preserving person/player identity. Also most of the published appearance models can’t distinguish between similar players of one team.
- Special attention should be payed to background subtraction of slowly moving objects.

3. Dataset
- multi-camera floorball dataset with tracking ground truth
- acquired indoor with constant lighting
- 8 synchronized cameras
- 12 players of 2 teams
- 20 frames per second
- resolution 960 × 768 pixels
- camera calibration included
- groundtruth: player positions every 2 seconds or 40 frames until the first player switch in the 21st second, 3d player positions triangulated from multiple views

4. Methods
- input: multi-view sequences of images
- perform background subtraction to get sequences with foreground objects
- for every camera view:
 - using camera calibration generate ground grid positions and player bounding boxes (only a few shown)
 - create probabilistic occupancy map
- for every time frame:
 - create probabilistic occupancy map
 - for every position repeat:
 - for every camera view:
 - update probability of a player on the position by comparing actual image with synthetic images
 - until convergence

5. Results
- evaluation of 10 players - without goalkeepers
- slowly moving goalkeepers are incorrectly segmented to background
- identity is not preserved

6. References

7. Acknowledgments
Matěj Šmid would like to thank his supervisor prof. Ing. Jiří Matas, Ph.D.
The authors would like to thank Software Competence Center GmbH and its partners for floorball sequence acquisition, calibration and for creating ground truth.
Matěj Šmid was supported by CTU Student Grant Competition, grant no. SG13/142/DHKO/27/13.