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1 Introduction

This paper offers some reasoned suggestions for the best modality for au-
tonomous mobile robots sensors. The introduction follows this sequence of
arguments: amongst the senses, vision is usually the best choice; amongst
vision sensors, omnidirectional sensors are the best for navigation and map-
ping; amongst omnidirectional vision sensors, catadioptric sensors are the best
in dynamic environments; amongst catadioptric omnidirectional sensors, the
conical mirror with a perspective camera offers the best image quality and
resolution.

Passive visual sensors have known advantages in comparison with active sen-
sors currently popular in much of robotics; specifically no mutual interference
or detection and relatively accurate localisation of objects even at large dis-
tances. These are the overriding reasons why vision is the distal sense of choice
for most biological organisms in air and clear water. If a robot is to emulate
some aspects of (biological) mobility, then it needs, most of all, to emulate the
(biological) visual abilities.

Some of the most important tasks in vision for robotics include autonomous
navigation, site modelling (mapping) and surveillance. They all benefit from
using panoramic 360◦ images produced by omnidirectional visual sensors.

Early attempts at using omnidirectional sensors included camera clusters
(Swaminathan and Nayar, 2000) and various arrangements of mechanically
rotating cameras and planar mirrors, (Rees, 1970), (Kang and Szeliski, 1997),
(Ishiguro et al., 1992). These mostly had problems with registration, motion,
or both. Fisheye lens cameras have also been used to increase the field of
view (Shah and Aggarwal, 1997) but they proved difficult because of their
irreversible distortion of nearby objects and the lack of a single viewpoint.

Single viewpoint projection geometry exists when the light rays arriving from
all directions intersect at a single point known as the (single) effective view-
point. For example, by placing the centre of the perspective camera lens at
the outer focus of a hyperbolic mirror, the inner focus then becomes the single
effective viewpoint.

Catadioptric sensors (Nayar, 1997) consist of a fixed dioptric camera, usually
mounted vertically, plus a fixed rotationally symmetrical mirror suspended
above or below the camera. The advantages of catadioptric sensors derive from
the fact that, unlike the rotating cameras, their ‘scanning’ of the surroundings
is almost instantaneous, the camera exposure time being usually shorter than
the full circle mechanical rotation time. Shorter exposure time means fewer
image capture problems caused by motion and vibration of the camera, or by
moving objects.
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Suitability for use in dynamic environments is clearly an important considera-
tion, especially as one of the chief benefits of omnidirectional vision in general
is the ability to retain objects in view even when their bearings have changed
suddenly and significantly. Catadioptric omnidirectional sensors are therefore
ideally suited to visual navigation (Rushant and Spacek, 1998), visual guid-
ance applications (Pajdla and Hlavac, 1999), using stereopsis, motion analysis
(Yagi et al., 1996), and site mapping (Yagi et al., 1995).

The main practical problem with catadioptric sensors is that the details of the
image can have relatively poor resolution, as the image depicts a large area.
The resolution problem is unfortunately compounded by mirrors whose shapes
have curved cross-sections. Such radially curved mirrors include the three pop-
ular quadric surface mirrors (elliptic, hyperbolic and parabolic) which are
known to possess a single viewpoint at their focal points.

A single viewpoint is generally thought to be necessary for an accurate un-
warping of images and for an accurate perspective projection which is relied
on by most current computer vision methods (Baker and Nayar, 1999). The
single viewpoint projection has been endorsed and recommended by (Baker
and Nayar, 1998, 2001), (Daniilidis and Geyer, 2000), (Geyer and Daniilidis,
2000a,b, 2002b), (Svoboda and Pajdla, 2002) and others.

There have been few attempts at analysing multi-viewpoint sensors (Swami-
nathan and Nayar, 2001), (Fiala and Basu, 2002), (Spacek, 2003), although
various people (Yagi and Kawato, 1990) used them previously without analy-
sis.

An omnidirectional sensor’s resolution can be improved by using several pla-
nar mirrors with a separate camera for each one. The mirrors are placed in
some spatial arrangement, for instance in a six sided pyramid (Yokoya et al.,
1998). The mirrors are carefully adjusted so that all the reflected camera
positions coincide and thus form a single effective viewpoint. However, such
arrangements are awkward, expensive, and sensitive to alignment errors. The
hexagonal pyramid apparatus would require no fewer than twelve precisely
placed cameras for stereopsis! Also, the coverage of the surrounding area is
not isotropic.

This paper proposes a solution to the above problems which combines the
benefits of the planar mirrors (no radial distortion, no radial loss of resolution)
with the advantages of the rotationally symmetric catadioptric sensor (short
exposure, isotropic imaging). The only shape of mirror that satisfies these
requirements is the cone.

Section 2 summarises the projection and the unwarping transformation for a
single conical mirror.
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Section 3 describes an omnidirectional stereo system using two coaxial conical
mirrors and two cameras.

2 Perspective Projection through a Conical Mirror

The benefits of the cone mirror over the radially curved mirrors were pointed
out by Lin and Bajcsy (2001). They can be summarised as:

(1) Curved cross-section mirrors produce inevitable radial distortions. Radial
distortion is proportional to the radial curvature of the mirror. We note
simply that the cone has constant zero radial curvature everywhere except
at its tip point which will only be reflecting the camera anyway.

(2) Radially curved mirrors produce ‘fish eye’ effects: they magnify the ob-
jects reflected in the centre of the mirror, typically the camera, the robot,
or the sky, all of which are of minimal interest. On the other hand, they
shrink the region around the horizon, thereby reducing the available spa-
tial resolution in the area which is of interest. See Figures 1 and 2 for the
comparison of the hyperbolic and the conical mirrors. The mirrors are
showing different scenes but both are pointing vertically upwards.

(3) The cone presents planar mirrors in cross-section. See Figure 3. The pla-
nar mirror does not distort the resolution density of the perspective cam-
era.

Some optimised shapes of radially curved mirrors have been proposed (Hicks
and Bajscy, 1999), as well as hybrid sensors, mirrors combining two shapes
into one, and other mirrors of various functions. However, it seems that none
of them completely address all of the above points.

The cone mirror has a single effective viewpoint located at the tip. However,
this is a degenerate case causing practical difficulties with obtaining images.
Lin and Bajcsy (2001) proposed cutting off the cone tip and placing the camera
lens in its place, or placing the tip at the forward focus point of the lens. Both
of these methods require the camera to be precisely positioned very close to
the mirror which results in difficulties with capturing enough light and with
focusing, so much so that the improvement in image quality over the radially
curved mirrors is doubtful.

Our solution consists of placing the camera at an arbitrary comfortable dis-
tance d and still obtaining a useful projection, despite the fact that there is
now an infinite number of viewpoints arranged in a circle of radius d around
the tip of the cone. See Figure 4. Relaxing the precision of the camera dis-
tance represents an additional practical benefit in comparison with hyperbolic
mirrors or the approach of Lin and Bajczy.
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2.1 Field of View and Distance of View

The maximum utilisable value φmax of the camera’s field of view angle is:

φmax = 2 ∗ arctan
R

R + d
(1)

R is both the radius and the height of the cone mirror with a 90◦ angle at the
tip. Given the field of view angle φ of a particular camera lens, the appropriate
camera distance d is found by:

d = (cotan
φ

2
− 1) · R (2)

Placing the camera at distance d from the tip of the cone just encloses the
base circle of the cone within the image. The field of view of the camera and
the size of the mirror are thus utilised to their best advantage. For example, a
mirror of radius R = 60mm and a camera with φ = π/4 results in d = 85mm
(rounded up). However, unlike for the focal mirrors, d is not critical. At worst,
one may lose a few pixels around the edges of the image.

2.2 The Projection

Since the image of a rotationally symmetric mirror viewed along its axis of
symmetry is circular, it is convenient to use the polar coordinates (ri, θ) to
represent the image positions and the related cylindrical coordinates (r, θ, h)
for the 3D scene. See Figure 5 for the cross section in θ direction of the
perspective projection via the conical mirror. Suppose we are projecting scene
point P located at the 3D coordinates (r, θ, h). Note that the four points P ,
C, the centre of the lens, and the image projection of P all lie on the same
projection ray and are therefore collinear (forming similar triangles).

Let us denote the image radius value of the projection of P by hi (the image
height of P ). The perspective projection formula needs to relate hi to h. It
is obtained from the collinearity property (or two similar triangles in Figure
(5)):

hi =
v · h
d + r

(3)

hi values are always positive (image radius). This is equivalent to using front
projection to remove the image reversal. Equation (3) is much simpler than
the corresponding projection equations for the radially curved mirrors.
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v is the distance of the image plane behind the centre of the thin lens in Gaus-
sian optics. This model is also valid for thick lenses, which have a cylindrical
section inserted between two spherical surfaces. In that case d would denote
the distance to the front principal point of the lens (start of the cylindrical
section) and v would be measured from the back principal point (end of the
cylindrical section). The focal length is normally less than v, unless we reduce
v to focus on infinity, or use the simplifying pinhole camera assumption. The
calibration of v is obtained by substituting rm for hi and R for both h and r
in equation (3):

v = (
d

R
+ 1) · rm (4)

The image radius of the mirror rm is determined by locating the outer con-
tour of the mirror in the image by using Hough transform or other methods.
Suppose it is found that rm = 100 pixel units. Substituting the values for d
and R from our previous example, we get v = 242 pixel units (rounded up). v
in (3) now acts as the conversion constant between h in mm units and hi in
pixel units.

The perspective projection function using the single effective viewpoint at the
tip of the mirror at (0, 0, 0) is just a special case of equation (3), where d = 0.
Suppose that a thought-experiment (Gedanken) world exists in which all the
objects are pushed distance d further away from the mirror axis. The single
viewpoint projection of such world would result in the same image as our
multiple viewpoint projection of the real world.

It is also clear that once r is known (see the stereopsis method below), it is
possible to reconstruct the single viewpoint projection of the real world by
using equation (3) and setting d = 0.

The relationship between these two projection geometries is illustrated in Fig-
ure 4, using the concept of virtual projection cylinders with the same axis as
the cone. The projection cylinder for the single viewpoint at (0, 0, 0) has the
radius v (the innermost circle in Figure 4). The projection cylinder for the
multiple viewpoints, depicted by the outermost circle in the top view cross-
section in Figure 4, has the radius d + v. This is the only difference between
the two projections.

So far, we considered the projection for a fixed value of θ and identified its
associated viewpoint. Now we fix the elevation angle ε = arctan (h/(d + r))
and allow θ to vary.

Imagine spinning Figure 5 around the mirror axis. All projection lines with
the same elevation angle will intersect the cone axis at the single point C at
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coordinates (0, θ, hc). Thus the intersection point C is the viewpoint associated
with the elevation ε.

We can determine hc of C from h of P by again using the collinearity property:

hc =
(d · h)

(d + r)
(5)

Sensors with a single (global) effective viewpoint have perspective projections
of the same form in both orthogonal image dimensions (usually x, y). However,
we get a different perspective projection in the θ dimension, as the effective
viewpoint C for the θ dimension is different from the effective viewpoint (d, θ+
π, 0) for the h dimension, which is the centre of the lens of the reflected camera
as discussed earlier.

Specifically, suppose that the size of some 3D object in θ dimension is w (ie. the
object’s width). The image width wi, as projected onto the virtual projection
cylinder, is given by the following perspective projection formula:

wi =
(v + d) · w

r
(6)

Equation (6) is not needed for our stereopsis which uses only the h projection
but it could be utilised if we placed two mirrors side-by-side. It has been used
in this fashion by Brassart et al. (2000).

We now define the projection property whereby the viewpoints are said to be
dimensionally separable:

• Each radial line in the image (or equivalently each column in the unwarped
image) has its own unique viewpoint.

• Each concentric circle in the image (or equivalently each row in the un-
warped image) has its own unique viewpoint.

• Each pixel is aligned with its two (row and column) viewpoints, along the
projection line from P .

2.3 Registration

We have just described the idealised projection which will be valid and accu-
rate after registration, when the tip of the mirror is precisely aligned with the
centre of the image and the axis of view coincides with the axis of the mir-
ror. In general, registration needs to be performed to find the two translation
and three rotation parameters needed to guarantee this. Existing registra-
tion methods will also apply and work in this situation. Geyer and Daniilidis
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(2001, 2002a) present good solutions to this problem within the context of
omnidirectional vision.

Straight lines in the 3D world become generally conic section curves when
projected. However, lines which are coplanar with the axis of the mirror will
project into radial lines. Concentric circles around the mirror will project
again into concentric circles. These properties can be utilised for a simple test
card registration method, where the test card is of the ‘shooting target’ type
consisting of cross-hairs and concentric circles, centered on the cone axis.

2.4 Unwarping of the Input Image

Cutting and unrolling the virtual projection cylinder results in the required
unwarped rectangular panoramic image g(x, y). Therefore unwarping is the
backprojection of the input image f(xi, yi) onto the virtual projection cylinder.
The mapping from coordinates of g(x, y) to the polar coordinates (hi, θi) of
the input image is:

hi =
rm

ym

y , θi =
2π

xm

x (7)

where (xm, ym) are the desired dimensions of g(x, y) in pixel units, rm is the
radius of the mirror as seen in the input image in pixel units, and θi is in
radians. The correct aspect ratio of g(x, y) is: xm/ym = 2π, based on the
perimeter of the mirror which maps to the bottom row of the unwarped image.

In order to generate the correct pixel values of g(x, y), we need the mapping
(lookup) from any given (x, y) to the corresponding sub-pixel position (xi, yi)
in the original rectangular coordinates of the input image. We use polar coor-
dinates as an intermediate step, and then equations (7). We also need to find
the centre of the mirror in the input image (xc, yc).

xi = xc + hi cos θi = xc +
rm

ym

y · cos( 2π

xm

x) (8)

yi = yc + hi sin θi = yc +
rm

ym

y · sin(
2π

xm

x) (9)

This can be used as it stands by simply assigning the nearest input image
pixel f(round(xi), round(yi)) to g(x, y).

We implemented the unwarping using two dimensional DCT (discrete cosine
transform) of the omnidirectional input image, instead of the usual less precise
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pixel rounding or interpolation. The main advantage of this approach becomes
apparent when performing the polar edge-finding in the next section.

We use the forward DCT as follows:

c(q, p) =
a(q, p)

XY

Y −1∑
yi=0

X−1∑
xi=0

f(xi, yi) · cos(
πq

Y
(yi + 0.5)) · cos(πp

X
(xi + 0.5))(10)

where: a(q, p) = 1 when q = p = 0; a(q, p) = 2 when q 6= p and qp = 0;
a(q, p) = 4 otherwise. This definition of a(q, p) allows us to leave it out of the
inverse DCT. X,Y are the dimensions of the discrete input image f(xi, yi).
c(q, p) is the normalised coefficients array of dimensions P, Q produced by the
forward DCT.

Inverse DCT:

f(xi, yi) =
Q−1∑
q=0

P−1∑
p=0

c(q, p) · cos(πq

Y
(yi + 0.5)) · cos(πp

X
(xi + 0.5)) (11)

Choosing P = X
4

and Q = Y
4

for the coefficients array dimensions usually
gives nearly perfect continuous fit to the discrete input data.

Using equations (8) and (9) to substitute for xi and yi in the right hand side
of equation (11), we get the unwarping function:

g(x, y) = f(xi, yi) =
Q−1∑
q=0

P−1∑
p=0

c(q, p)cos(
πq

Y
(yc +

rm

ym

y · sin(
2π

xm

x) + 0.5))·

cos(
πp

X
(xc +

rm

ym

y · cos( 2π

xm

x) + 0.5)) (12)

This evaluates the now continuous image function f(xi, yi) exactly at the
required (sub-pixel) position. To sum up, the DCT unwarping consists of the
following steps:

(1) Perform the forward DCT transform on the input image, using equation
(10) to compute c(q, p).

(2) Generate the unwarped rectangular image g(x, y) by evaluating equation
(12) in the usual x, y scanning order.

(3) For colour images, this process should be applied separately to each colour
plane (r, g, b).
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2.5 Unwarping Results and Discussion

Figure 6 shows the unwarping applied to the hyperbolic mirror image in Fig-
ure 1. Figure 7 shows the unwarping of the conical mirror image in Figure 2.

Note that the conical mirror image utilises the available vertical resolution of
the image better. About half way up the image in Figure 7 is where most of the
extra resolution is gained in comparison with Figure 6. This provides better
resolution of nearby objects for visual robot guidance and for stereopsis.

Note from the paved area that the correct perspective view of the curves and
lines has been restored.

The θ resolution near the tip of the mirror (top of the unwarped image) is
clearly limited: any registration errors will produce distortions at the top of
the unwarped image, as shown in Figure 7. Even if a few pixel rows at top of
the image become quite useless, this represents fewer wasted pixels than the
typical image area of the sky in the hyperbolic mirror images.

It is perhaps better to point the tip of the mirror downwards as in our dia-
grams, so that the available image resolution increases towards the (higher)
horizon. The ratios of the number of available pixels per unit of length on the
depicted objects at various distances are then better balanced.

3 Coaxial Omnidirectional Stereo

Various arrangements have been proposed for binocular systems using cata-
dioptric sensors. Two mirrors situated side by side can be used to compute the
distance of objects in terms of the disparity measured as the arising difference
in angles θ (Brassart et al., 2000). However, such arrangement is not truly
omnidirectional, as a large part of the scene will be obstructed by the other
catadioptric sensor.

It is better to arrange the cameras coaxially to avoid this problem. The coax-
ial arrangement has the further major advantage of having simple aligned
radial epipolar lines. Lin and Bajcsy (2003) used a single conical mirror and
attempted to place two cameras at different distances along its axis. They had
to use a beam-splitter to avoid the nearer camera obstructing the view of the
more distant camera. See Figure 8.

We propose an omnidirectional stereo system consisting of two coaxial conical
mirrors pointing in the same direction, each with its own camera, as outlined
in Figure 9.
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3.1 Radial Triangulation

We wish to obtain a triangulation formula for the radial distance of objects.
The radial distance r is measured from the axis of the mirror(s) to any 3D
scene point P , which has to be in the region that is visible by both cameras
(the common region). See Figure 9. The common region is annular in shape in
3D, with a triangular cross-section extending to infinity. It is bounded above
and below in the (r, h) plane by the lines: h = (r+d)·R

d+R
, and h = s. The angle

at the tip of the common region triangle is φ
2
. Let the distance of the nearest

point (the tip of the common region) be rmin. Stereopsis cannot be employed
anywhere nearer than rmin:

rmin = s · ( d

R
+ 1) − d (13)

In order to obtain the triangulation formula, we use two instances of equation
(3) for two coaxial mirrors separated by distance s between them (s is mea-
sured along the h axis). We assume here that the parameters v and d are the
same for both cameras, though this can be easily generalised if necessary.

(d + r)hi1 = v(h − s) (14)

(d + r)hi2 = vh (15)

Subtracting (14) from (15) and manipulating a little, we obtain the triangu-
lation formula:

r =
vs

hi2 − hi1

− d (16)

This is very similar to the usual triangulation formula from classical side-by-
side stereopsis but here the disparity (hi2 − hi1) is radial. Note that the extra
distance d of the reflected camera is correctly subtracted out. The familiarity
of our formula is not surprising, as the two reflected cameras form a classical
stereo system which happens to have a vertical baseline.

3.2 Polar Edge Finding and Radial Matching

The edges are located by our polar edge-finder using the inverse DCT and
the polar coordinates (hi, θi) of the input image. This is a convenient way to
compute the partial derivatives of the input image in hi and θi directions.
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The polar edge finding approach entirely avoids the slow unwarping process.
The unwarping is needed only for the convenience of human viewing, such as
in Figure 10, showing a traditional edge map of the unwarped image, using
(Spacek, 1986). In this example, a naive coaxial stereopsis implementation
would match edges with close to vertical image gradients along the vertical
epipolar lines. Our faster direct method matches the (same) edges with nearly
radial gradients along the radial epipolar lines in the original (warped) input
images.

We now develop the first derivative polar edge finder. Similar process can be
followed to apply higher derivatives or other functions to the input image.
Substituting the polar coordinates from equations (8),(9) for xi, yi in the right
hand side of equation (11), we get the inverse DCT in polar form:

f(xi, yi) =
Q−1∑
q=0

P−1∑
p=0

c(q, p)cos(
πq

Y
(yc + hisin(θi) + 0.5)) ·

cos(
πp

X
(xc + hicos(θi) + 0.5)) (17)

We can differentiate equations (11) or (17) instead of differentiating the input
image. This is legitimate as the inverse DCT has finite number of terms PQ.
Differentiating with respect to hi we get:

∂f(xi, yi)

∂hi

= −
Q−1∑
q=0

P−1∑
p=0

π · c(q, p)√
(xi − xc)2 + (yi − yc)2

·

{q(yi − yc)

Y
· sin(

πq

Y
(yi + 0.5)) · cos(πp

X
(xi + 0.5)) +

p(xi − xc)

X
· sin(

πp

X
(xi + 0.5)) · cos(πq

Y
(yi + 0.5))} (18)

Differentiating with respect to θi produces the second component of the polar
image gradient:

∂f(xi, yi)

∂θi

= −
Q−1∑
q=0

P−1∑
p=0

π · c(q, p)·

{q(xi − xc)

Y
· sin(

πq

Y
(yi + 0.5)) · cos(πp

X
(xi + 0.5)) −

p(yi − yc)

X
· sin(

πp

X
(xi + 0.5)) · cos(πq

Y
(yi + 0.5))} (19)

The polar edge finding consists of the following steps:
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(1) Perform forward DCT transform of the input image, using equation (10).
(2) Use equations (18),(19) to find the polar image gradient vector at any

image position.

We now have a global continuous gradient function (a polar edge map) of the
input image. It follows that it is not necessary to generate edge maps of the
whole images when doing the stereo matching. The image gradient can be
evaluated on demand at any sub-pixel point. The outline of the radial stereo
matching algorithm is as follows:

(1) Given a pair of stereo images f1 and f2, find all significant points in f1

where abs(∂f1

∂hi
) passes some threshold (abs() is the absolute value func-

tion). Store the ∂f1

∂hi
values at such points.

(2) At each significant point, evaluate and store ∂f1

∂θi
as well.

(3) Select the next significant point s in f1 and note its θi value.
(4) Find and store, in the same way as above, all significant points along the

radial line of θi orientation in f2. If done before for this θi, retrieve from
memory instead.

(5) Find the best match for s along this line, looking for the most similar

image gradient vector (∂f2(hi,θi)
∂hi

, ∂f2(hi,θi)
∂θi

). Pay attention to sensible or-
dering of the matches plus any other stereopsis matching constraints, e.g.
the interest horizon of the next section.

(6) Compute the distance of object for the successful match, using the ob-
tained values hi1 and hi2 and the triangulation equation (16).

(7) Repeat from 3.

There are other sophisticated stereo matching methods that could be adapted
to these circumstances, for example (Sara, 2002).

3.3 Stereopsis Error Analysis

Image position errors are produced by image discretisation (pixelation) and
feature finding (edge localisation). Denote the resulting imaged position error
as a displacement dhi to hi. Given dhi, what is the stereopsis distance error
dr?

Let p = hi2 − hi1 be the disparity; then dp = dhi2 − dhi1. Substitute p for
the denominator in equation (16), differentiate w.r.t. p, and simplify using
vs
p

= d + r:

dr = −vs

p2
dp = −d + r

p
dp = (d + r)

dhi1 − dhi2

hi2 − hi1

(20)
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Sometimes the stereo matcher selects a wrong target, which results in a sig-
nificant and essentially unpredictable error dp. The occurances of this error
are reduced primarily by ensuring the stability and uniqueness of the image
features descriptions, which are common aims of most good vision systems.

The p2 term in the denominator of equation (20) suggests eliminating stereo
matches whereby p2 falls below some threshold. This is equivalent to imposing
an interest horizon, whereby all points that are too distant are eliminated even
before their distance was explicitly found!

We tested the stereopsis errors on artificially generated 3D scenes of random
shapes and points with known ground truth rtrue. Omnidirectional 2D images
were then generated by a graphics projection of those scenes using the per-
spective equation (3). Finally, the created images were used to compute rstereo

as described in this paper (dr = rstereo−rtrue). Admittedly, such testing is not
as demanding as using real images to start with, particularly with regard to
the stereopsis matching.

3.4 Stereopsis Discussion

Each sensor consists of one conical mirror and one ordinary perspective cam-
era. Each sensor’s visible region is bounded by the plane perpendicular to the
axis of the mirror and touching the tip of the mirror. The visible region is on
the same side of the plane as the mirror. The image resolution increases with
the elevation angle ε.

The illustrated stereo arrangement (both cone tips pointing down) projects the
best image resolution at the edge(s) of the mirror(s) at the elevated objects
on the horizon. The horizon is normally rich in natural visual features of
high contrast that make it useful for general outdoors navigation (Rushant
and Spacek, 1998). For visual guidance indoors, the entire stereo apparatus
can be simply inverted (turned upside down). The best resolution will then be
directed at the nearest objects on the ground, which is more useful for accurate
stereopsis. Very close range stereo with narrow common region centered on the
mid-point between the mirrors is obtained by making the tips of the mirrors
face away from each other. In each case the triangulation and matching will
be the same. The only combination to be avoided for stereopsis is where the
tips of the mirrors are facing each other, as this results in no common region
being visible by both cameras.

Our arrangement is quite different from that proposed by Lin and Bajczy. The
resulting triangulation formula is different. Our system is simpler, there is no
loss of light through the beam splitter, and we gain better image quality by
being able to view large size conical mirrors.
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It is possible to generalise the projection equations to a cone with any an-
gle at the tip. The dimensional separability property of the viewpoints still
holds. The virtual projection cylinder becomes a cone. There are image qual-
ity (focusing) advantages to using flatter cone mirrors with α > 90◦. This is
especially to be recommended for smaller scenes, such as those typically used
in obstacle avoidance.

The general benefits of the coaxial omnidirectional stereopsis are both practi-
cal (objects do not disappear from view due to vehicle rotation), and theoret-
ical/computational (the epipolar geometry is simpler than in classical stere-
opsis).

The presented polar edge finder methodology should be of interest to omnidi-
rectional vision generally, as it can be used with any rotationally symmetric
mirrors. We demonstrated that the unwarping is made unnecessary by working
in polar coordinates.

4 Conclusion

This paper has identified the conical mirror as a good solution for catadioptric
omnidirectional sensors.

The benefits of conical mirrors had been hitherto mostly overlooked because of
the demand for a single viewpoint projection. This has resulted in the general
use of the hyperbolic mirror viewed by a perspective camera from a precise
focal distance, or of other quadric focal mirrors of similar shapes.

Three theoretical arguments were put forward here in support of our multi
viewpoint projection. First, the multi viewpoint projection was shown to be
equivalent to the single viewpoint projection of a more distant scene. Second,
once stereopsis has been solved, it is possible to project the points of interest
to a new image through a virtual single viewpoint. Third was the new concept
of dimensionally separable viewpoints.

We conclude that the single viewpoint is not necessary for a useful perspective
projection when using the conical mirror as described in this paper.

This means that such conical mirrors of any size provide a useful model of
projection when viewed from any reasonable distance by any ordinary per-
spective camera. Conical mirrors are less sensitive to the precise distance of
the camera than are hyperbolic, elliptic, or other focal mirrors. The ability
to view the mirror from a greater distance allows the use of larger mirrors
with relatively better optical quality. Given the same physical surface quality
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(roughness), the optical quality will be proportional to the dimensions of the
mirror.

The radial distortion properties of conical mirrors are better when compared
to other circular mirrors.

Last but not least, conical mirrors direct the camera resolution into more
useful parts of the surroundings and their resolution density is well behaved.
In particular, conical mirrors deflect the central (foveal) projection beams
towards the horizon. Hyperbolic (and other ‘blunt tip’) mirrors reflect the
foveal beams back towards the camera. Therefore the conical mirror makes
better use of the available image pixels.

The unwarping methods and experiments demonstrated the concept of an
accurate perspective projection via multiple viewpoints and provided a solid
basis for the stereopsis computation.

Apart from the coaxial omnidirectional stereopsis system presented here, this
sensor is very suitable for a number of other interesting activities which are
currently under investigation, such as: virtual reality, active vision, and om-
nidirectional optic flow for autonomous vehicle and robot guidance.
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Fig. 1. An omnidirectional image obtained using a hyperbolic mirror and an ordinary
perspective camera. Note the typical predominance of the sky in the image.
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Fig. 2. A conical mirror image showing a grass area, a paved area, and a part of a
jacket, taken with an ordinary perspective camera. The entire mirror image depicts
useful data. The tip of the cone pointed upwards.
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Fig. 3. Cross section of the conical mirror projection geometry. According to the laws
of optics, mirrors can reflect either the objects or the viewpoints. The two situations
are equivalent. In this case, the real camera with a field of view φ is reflected in two
planar mirrors, creating two effective viewpoints. Each viewpoint has a field of view
φ/2 between its central projection ray and its extreme ray. The angle at the tip of
the cone is α = 90◦ to ensure that the two effective lines of sight (central rays 1&2)
are oriented directly towards each other. R is the radius of the mirror.
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Fig. 4. Schematic top view of the perspective projection of P via the conical mirror.
The inner circle of radius v represents the virtual projection cylinder associated with
the single viewpoint at the tip of the mirror. The circle of radius d is the locus of
the viewpoints of the real camera at distance d. The outermost circle of radius d+v
is the projection cylinder associated with the real camera.
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Fig. 5. Cross section of the perspective projection of P via the conical mirror: d is
the distance from the tip of the cone to the centre of the thin lens, v is the distance
from the centre of the thin lens to the image.

Fig. 6. Unwarping of Figure 1.

Fig. 7. Unwarping of Figure 2 showing the correct linear perspective of the straight
edges on the paving.
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Fig. 8. Lin and Bajcsy’s omnidirectional stereo using a single conical mirror and
two cameras at different distances. The beam splitter avoids an obstruction of the
second camera’s view but reduces the amount of available light.
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Fig. 9. Omnidirectional stereo using two coaxial mirrors.

Fig. 10. Edge map of the unwarped image in Figure 7.
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