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Abstract— The proposed work deals with robotic unfolding of
a garment that has been placed flat on a table and folded over
a certain axis. The algorithm combines image and depth data
to detect the bottom and top (folded) layer of the garment. The
detection is formulated as a labeling of the garment surface and
solved in an energy minimization framework. Once the garment
pose is known, several candidate folding axes are generated and
used to unfold the garment virtually. The correct folding axis
is selected from these candidate axes. The method does not
set any constraints on the garment shape; thus it can deal with
various types of garments including jackets, pants, shorts, skirts
or T-shirts of any sleeve lengths. The garment is unfolded by
the dual-arm robot. One arm grasps boundary of the top layer
and brings it over the estimated folding axis, while the second
arm is holding the bottom layer to prevent the garment from
slipping. The perception procedure was tested on the annotated
dataset that we are making publicly available. The experimental
evaluation of the robotic manipulation is also provided.

I. INTRODUCTION

Visual perception and robotic manipulation of garments is
a challenging task because of significant variance in their
appearance caused by deformations. The task has gained
an increasing interest in cognitive robotics recently. The
possible applications include housekeeping robots capable
of laundering or helping the physically challenged people
to get dressed. There are several industrial applications too,
including fully automated sewing machines or placing the
carpets and soft noise dampers on a car assembly line.

The presented work deals with robotic unfolding of a
garment laid on a table. The type of the garment is not known
in advance. It is assumed that the garment is posed in such
configuration that can be achieved by grasping the boundary
of the fully spread garment and pulling it over a certain
folding axis (Fig. 1a). It is also assumed that the part of the
garment folded over the axis does not cover the remaining
part completely. Let us call the folded part a fop layer and the
remaining one a bottom layer, distinguished by their height
above the table (Fig. 1a). Note that the majority of garments
consist of a front and back side sewn together, i.e. two layers
of material, but we consider them a single layer in this work.
We allow the garment to be folded multiple times if the top
folded layers do not overlap with each other (Fig. 6a).

The input of the method is formed by a color image
(Fig. 2a) and a depth map (Fig. 3a). The goal is to detect
both layers of the folded garment and estimate the folding
axis. Note that the axis forms an approximate segment on the
contour of the folded garment (Fig. 1a), which we utilize for
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(a) Folded garment

(b) Robotic unfolding

Fig. 1: a) The garment folded over the axis (black dashed line). Its visible
surface consists of the top (green) and bottom (red) layer. b) The top layer
is grasped and unfolded over the axis, while the bottom layer is pushed
against the table to prevent the garment from slipping.

its estimation. Once the pose of the garment is known, it is
unfolded by coordinated manipulation of two robotic arms.
The boundary of the top layer is grasped with a specialized
gripper and brought back over the folding axis, while the
other arm is pushing the bottom layer against the table in
order to prevent the garment from slipping (Fig. 1b).

The proposed task is motivated by a more general pro-
cedure for two-stage unfolding of a crumpled garment [1],
where the garment is untangled and stretched out in the air
at first and then the remaining fold is removed on the table.
Another motivation is the improvement of the unfolding skill
itself, which has been already studied previously [2], [3].

The main contributions of this work are:

« We formulate the detection of the stacked layers of the
folded garment as a labeling problem. Is is solved in an
energy minimization framework, fusing acquired image
and depth information.

o The parameters of the energy function are estimated
automatically from the currently observed data.

+ We show how to estimate the folding axis by generating
several candidate axes, unfolding the garment virtually
and analyzing the unfolded shapes.

o The proposed method was evaluated experimentally on
the dataset which we are making publicly available.

o The unfolding manipulation skill was implemented on
our dual-arm robot, with both arms cooperating.

II. RELATED WORK

Visual perception and robotic manipulation of garments
are closely related to their automated laundering. The manip-
ulation starts with grasping. Common strategy is to grasp the
central [4] or the highest observed point [5] of the garment.
There are attempts to quantify the graspability of locations on



the garment surface [6] and selecting the best one. Another
approach is grasping the detected garment boundary [7].

In majority of tasks, the type of the garment needs to
be classified and its pose estimated to choose the proper
manipulation strategy. The garment is usually grasped and
lifted to a hanging position at first to reduce the space
of its possible configurations [8]. Then one strategy is to
match the acquired point cloud to virtual models of vari-
ously posed garments of different categories, select the best
matching model and therefore solve the classification and
pose estimation jointly [8], [9]. Different approach is to train
a classifier, using either hand-crafted features [10], [11] or
features learned automatically from data [12].

Folding of a spread garment is another broadly studied
task. The pose of the spread garment is usually recognized
by matching a polygonal model to its contour [13], [14].
The matching can be repeated after each fold to check the
manipulation result [15]. There exist several strategies how to
move the arm holding the garment to prevent it from slipping
while folding it, including a simple triangular path [13] or
more stable circular path [16]. More advanced approaches
select the optimum trajectory based on the estimated material
properties and physics-based simulation [17], [18].

The task related to the topic of this work is flattening. It
is supposed that the garment is nearly spread on a table, but
its surface is wrinkled [19], [20]. Size and orientation of the
wrinkles are analyzed and the optimum strategy is planned
how to pull the garment to side in order to remove them.

The proposed paper deals with unfolding. The majority of
existing works unfold the garment while holding it hanging
in the air [7], [11], [21], [22]. The garment is regrasped sev-
eral times to be held at some predefined positions in the end,
e.g. two corners of a towel. Different strategy is to unfold the
garment only partially in the air and finish its unfolding on a
table [1]. The partial unfolding is accomplished by detecting
points on the garment outline, grasping them and stretching
the garment out to a nearly planar state. The configuration
of the garment laid on the table is then similar to our case.

The exact configuration and type of the partially unfolded
garment are estimated by shape matching [1], [2]. The con-
tour of the observed folded garment is partially matched to
various templates of unfolded garments, giving a hypothesis
on the location of the folding axis for each template. The
observed contour is then unfolded virtually and registered to
all templates, while allowing certain local deformations [2].
The best matching template determines both pose and type.

In [3], they acquire a depth map of a folded garment,
segment the depths with the watershed algorithm and select
the highest region for unfolding. The unfolding direction is
determined by examining height changes on various paths
from that region to the outer contour.

III. PREPROCESSING

The input of our method is formed by an RGB image I
and depth map D. The image and depth map are equally
sized and calibrated, i.e. the color I(p) and depth D(p) of
the pixel p correspond to the same real world location.
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(a) Input image (b) Segmentation (c) Erosion and dilation

Fig. 2: a) The input image is b) segmented. ¢) The segmentation mask P
is eroded to P (removed green strip) and dilated to P (added red strip).

A. Segmentation

The image I is used to segment the observed garment
from its background, which is a wooden table in our case.
Fig. 2a shows a sample input. It is assumed that the back-
ground differs from the garment and does not change in the
experiment. It is therefore possible to learn a probabilistic
model of the background color in the form of the Gaussian
mixture model (GMM) of RGB triples.

The segmentation consists of two phases. In the first
phase, each pixel p is labeled based on the likelihood of
its color I(p) in the learned GMM. Less likely pixels are
labeled as the foreground (garment), more likely pixels as
the background (table) and the remaining ones as unknown.
In the second phase, the foreground and background pixels
are used to initialize the GrabCut [23] algorithm yielding the
final segmentation mask (Fig. 2b). See [14], [15] for details.

Let us denote P the set of garment pixels from the mask.
The mask is morphologically eroded and dilated [24] with
a disc structuring element, the radius of which corresponds
approximately to 2 cm. Let us denote the eroded pixels P
and the dilated ones P,. It holds P, C P C P, Fig. 2¢
shows an example of the eroded and dilated mask.

B. Height extraction

The depth map D is acquired by the ASUS Xtion sensor
attached to the wrist of the robot. Although the arm points
approximately downwards during the acquisition, the view
direction is not perfectly perpendicular to the table surface.
Another issue is that the depths are not known for all pixels
due to the limitations of the structured light technology. See
Fig. 3a for an example of the depth map.

The contour of the dilated mask Py is extracted. All pixels
on the contour should belong to the table. The depth values
in the contour pixels are used to estimate the parameters of
a plane approximating the table surface with RANSAC [25].
The input depth map D is then subtracted from that table
plane. This results in a height map H, where H(p) is a
height of the pixel p above the table (Fig. 3b).

IV. DETECTION OF LAYERS

The fold detection task, as defined in Sec. I, can be
formulated as a labeling problem. Each garment pixel p € P
needs to be assigned a label z, € {T', B}. Label T represents
the top layer of the garment, B its bottom layer. The labeling
relies on the presence of edges in the image I, which are
coincident with the boundary of the layers, and on different
heights of the top and bottom pixels in the height map H.
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(a) Depths acquired by the sensor (b) Heights above the table

Fig. 3: a) Depths acquired by the range sensor are subtracted from the plane
approximating the table surface to get b) heights above the table. The depths
and heights are unknown in white areas.

Since the outer contour of the garment is a source of
undesirable edges in the image I, only the inner eroded
pixels P, (Fig. 2c) are labeled at first. The labeling is then
extrapolated to the boundary pixels of the original mask P.

A. Energy minimization

The labeling of pixels p € P. by labels z, € {T, B} is
formulated as the following energy minimization problem,
which is used in many computer vision applications [26]:

Z Up(zp) + Z Via(2p, 24) (1)

pEPe {p7Q}eNe

Z* = argmin

Ze{T,B}|Pel

The functions U,: {T, B} — R are called unary poten-
tials. They express costs of assigning pixels to the particular
layer. The functions V,,: {T,B}> — R are pairwise
potentials. They are defined for pairs of neighboring pixels
{p,q} € N,, where p,q € P.. We use 8-connected neigh-
borhood, i.e. all pairs of vertically, horizontally or diagonally
adjacent pixels. The pairwise costs are used to align the
boundary between the labeled layers with the edges observed
in the image. They also make the boundary smooth.

The pairwise potentials, as defined in Sec. IV-C, are
regular in the sense of [27], i.e. for each {p,q} € N, it
holds V;, 4(T,T) + Vp,(B, B) < V(T B) + V;4(B,T).
Therefore, the globally optimum labeling Z* with respect
to (1) can be found effectively by constructing a certain
weighted graph and finding its minimum cut [26].

B. Unary potentials

The unary potential U, (z) for the pixel p € P. and the
label z € {T, B} is defined as follows:

| —log N (H(p); p,0?), H(p) is known
Up(z) = .
0, otherwise
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We suppose that heights of pixels above the table in one
layer are distributed normally. Therefore, the potentials have
the form of negative log-likelihood. The mean height of the
top layer is s and the bottom one is . The variance o2,
shared by both distributions, is caused by wrinkled surface
of the garment and by the noise present in the input depths.
Sec. IV-D explains how ur, up and o2 can be estimated
from the observed heights. Fig. 4 shows an example of
the unary potentials computed from Fig. 3b. The definition
of unary potentials was inspired by [23], which uses dis-
tributions of foreground and background colors (instead of
heights) for color-based segmentation of images.

(a) Bottom layer

(b) Top layer

Fig. 4: Unary potentials of pixels being assigned to bottom and top layer
of the folded garment, i.e. the potentials Uy, (B) and Uy, (T) for p € Pe.

C. Fairwise potentials

The pairwise potential V), 4(zp, z,) for two neighboring
pixels {p,q} € N, is defined similarly to [23]:

HZ;D #Zq]] ex 79(Iap,q)
d(p,q) p( 2E]g] ) ®

The term d(p, q) denotes the spatial distance of the pixels
p and ¢q. It is equal to 1 for horizontally and vertically
adjacent pixels and /2 for diagonal neighbors. The function
g evaluates the visual difference of the pixels p and ¢ in
the image I. The term E[g] denotes the mean value of the
difference function g over all neighboring pixels. We set
~2 = 50 as in [23] to balance the typical values of the unary
and pairwise potentials. In addition to [23], we extend the
potentials with the constant term v; = 1 to prefer labelings
with a shorter boundary between the top and bottom layer.

There are several options for choosing the function g. We
smooth the image I by the bilateral filter [24], estimate the
magnitudes of its gradient by convolving the image with the
Sobel filter [24], and average these magnitudes among pairs
of neighbors. Nevertheless, the experiments showed that the
exact choice of g is not crucial, as long as it somehow
expresses the presence of edges.

Voa(2ps 2¢) = 71 + 72

D. Estimating parameters of unary potentials

We show how to estimate the expected height of the top pr
and bottom p p layer above the table as well as their variance
o2. They are used to compute the pairwise potentials from
Sec. IV-B. We model the heights of pixels from P, using the
Gaussian mixture model (GMM) with two components, each
of them corresponding to a single layer. The components are
weighted by priors mp, mp that are also unknown. Let us
denote 6 = (ur, pp, 0%, nr, 7g) all unknown parameters of
the mixture. The likelihood of the pixel p having the height
H(p) is given by:

LO;Hp) = Y mN(H@);p0") @)

ze{T,B}

The unknown parameters 6 are estimated by the
expectation-maximization (EM) algorithm [28]. It is based
on the incremental refinement 6(*) of their initial estimate
0 for t = 1,2,... The EM algorithm alters between the
expectation and maximization steps, while increasing the
lower bound on the likelihood from (4). Our algorithm is
similar to estimation of the standard GMM with independent
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Fig. 5: Normalized histograms of table heights and garment heights. The
garment heights are fitted GMM with two components by EM algorithm to
estimate p17, pup and o2.

components [29]. However, the components are not inde-
pendent in our case. They share the variance o2. Moreover,
denoting A, the unknown thickness of one layer of the
garment, the mean heights are linked as follows:
uB = Au ur = 2A,u ©)

The initial values of the parameters 6(°) are estimated
by applying the k-means algorithm [30] on the heights of
eroded pixels P, for k = 2. It results in a cluster of bottom
layer pixels and a cluster of top pixels. The thickness A(O
computed based on (5) from the heights correspondmg to the
centers of clusters. The priors 7r§9 ) and 7r(0 are initialized to
the relative sizes of clusters and o(?) is the population value
of the standard deviation.

In the estimation (E) step, a variational distribution

{1)(2) is built for each pixel p € P, using 6®):

N ()l (00)?)
> 70N (HE) A (00)?)

z'e{T,B}

QW (z) = (6)

In the maximization (M) step, the variational distributions

;E,t)(z) are used to estimate the new values of parameters

9(t+1)_ The thickness of the layer A'tY) is estimated at first:
Y W

> (200(1) + QP(B)) H(p)

A+ — pEP.

a > QT

pEP,

0
)+ QY (B)

Using (5) to compute ,u(tH), ,ugH), the variance and

priors are estimated as in the standard EM for GMM [29]:

2
(t+l _ (t+l)
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The EM algorithm is guaranteed to converge to a local
optimum [28], which takes 30-50 iterations in our case.
Fig. 5 shows an example of the final GMM estimated from
the height map H shown in Fig. 3b.

(a) Input image (b) Detected layers (c) Single fold
Fig. 6: a) Twice folded garment with top layers not overlapping. b) Result
of layers detection. Both top folded layers (green) were detected. ¢) Two

modified labelings where only a single top layer is forced.

(b) True axis (c) False axes

(a) Candidate axes

Fig. 7: a) Outer contour of the top layer (green) approximated with 4
candidates for folding axis (various colors). b) Unfolding over the true axis
(cyan). ¢) Unfolding over the false candidate axes leads to overlap (red) or
complex unfolded contour (yellow).

V. ESTIMATION OF THE FOLDING AXIS

Once the layers detection is finished, each pixel p € P is
assigned either to the top or bottom layer. As stated in Sec. I,
we allow the garment to be folded multiple times, as long
as the top layers do not overlap (Fig. 6a). Each top layer
then forms a connected component in the computed labeling
(green components in Fig. 6b). The top layer to be unfolded
in the next step is chosen in a greedy manner. A modified
labeling is constructed for each component, in which only the
pixels from that component are labeled as top and all other
pixels are forced to be bottom (Fig. 6¢). The cost of each
modified labeling with respect to the energy function (1) is
computed and the minimum is chosen for unfolding.

As stated in Sec. I, the folding axis forms an approximate
segment on the outer contour of the top layer (Fig. 1a). In
order to estimate the folding axis, the outer contour of the
top layer is approximated with a polyline [31]. If the polyline
consists of a single segment (Fig. 1a), the axis is estimated
from it. Otherwise, each segment forms a candidate for the
axis (variously colored segments in Fig. 7a). To estimate the
folding axis from the segment, a line is fitted to the contour
points adjacent to the segment by a robust M-estimator [32].

The detected top layer (green polygon in Fig. 7a) is then
unfolded virtually by reflecting it over each candidate axis
(Fig. 7b, 7c). The candidate axes, for which the reflected
top layer overlaps the bottom layer, are rejected from further
processing (red unfolded layer in Fig. 7c). Otherwise, the
contour of the unfolded garment is estimated for the candi-
date axis (cyan contour in Fig. 7b and yellow one in Fig. 7c).
Since the true shape of the garment below the top layer is not
known, the contour of the bottom layer is simply connected



(a) Grasping and holding candidates

(b) Unfolding path

Fig. 8: a) The grasping candidates on the inner contour of the top layer
(black dots) and holding candidates on the surface of the bottom layer (red
dots). b) The unfolding path (black arrow) for the most prioritized grasping
point and for different orientations of the grippers. The sliding direction
(green arrow) is same for all orientations.

to the contour of the unfolded top layer with two straight
segments. The candidate axis giving the shortest unfolded
contour is chosen as the true folding axis (cyan contour in
Fig. 7b is shorter than yellow one in Fig. 7c).

VI. UNFOLDING

The robotic unfolding uses two cooperated arms. The first
arm grasps the inner boundary of the top layer and follows a
triangular unfolding path afterwards. The second arm holds
the bottom layer to prevent the garment from slipping during
unfolding. Several grasping and holding position candidates
are sampled to increase the robustness of the method, which
is affected mainly by the robot kinematic restrictions.

The grasping position candidates are sampled uniformly
on the inner boundary of the top layer (Fig. 8a). Several
orientations of the gripper, limited by shape of the top layer
and by the gripper mechanics, are sampled for each candidate
grasping point to find such configuration that allows the
gripper to slide under the top layer while grasping it.

To prevent the garment from slipping while sliding the
gripper under the top layer, the second arm pushes the
garment against the table. The holding position candidates
are sampled uniformly on the bottom layer (Fig. 8a), with
the orientations allowed by the gripper mechanics.

The planning algorithm repeatedly selects a pair of grasp-
ing and holding candidates and tries to follow the triangular
unfolding path (Fig. 8b). If the unfolding path is feasible for
the robot, the planning ends. Otherwise, the next grasping
and holding pair is selected and checked. The grasping
positions are selected based on the priority queue, with
higher priority given to the positions further away from the
folding axis. The grasping orientations and holding positions
are checked in an arbitrary order for each grasping position.

VII. EXPERIMENTAL EVALUATION

A. Dataset of folded garments

We have acquired a dataset of folded garments that we are
making publicly available'. It contains manually annotated
images and depth maps of garments posed in various folded

! Annotated dataset of folded garments, detailed experimental results and
videos: http://cmp.felk.cvut.cz/~striajan/iros2017

(b) Gripper

(a) Testing garments

Fig. 9: a) Garments used for experimental evaluation, including jacket, jeans,
shorts, 2 skirts, 2 sweaters, sweatshirt, towel and 4 T-shirts of various sleeve
lengths. b) Gripper designed for grasping of textiles and ASUS Xtion sensor.

configurations. To the best of our knowledge, it is the first
such dataset available. The dataset contains 13 garments of
8 categories (Fig. 9a). They are made of different materials,
e.g. cotton, polyester, denim or leather. Therefore they vary
significantly in thickness, stiffness or friction. They are also
variously colored. Each garment was placed on the table and
posed into 15 different folded configurations, which gives
195 data items in total.

The images and depth maps were acquired by the ASUS
Xtion sensor. They have the same resolution 640 x 480 pixels.
The sensor was calibrated properly. Therefore the images
and depths are registered. The acquired data were annotated
manually by drawing a polyline between the folded layers
observed in the image and also by denoting the folding axis.

B. Testbed description

The real world experiments were performed on our dual-
arm robot that was developed by the consortium of CloPeMa
(Clothes Perception and Manipulation) project’. The robot
is composed mainly of standard industrial components,
including two Motoman MA1400 arms mounted to R750
turntable and controlled by two DX100 units. The left arm
is attached the custom-made jaw-like gripper [33] designed
specifically for grasping of textiles (Fig. 9b). Its wrist is
mounted the ASUS Xtion sensor that is used for perception.

C. Folds detection

The dataset was used to evaluate the methods for layers
detection (Sec. IV) and folding axis estimation (Sec. V).
The results are summarized in Tab. I. The first column
states the type of the garment and eventually the number
of items of that type. The second column presents the ratios
of the correctly recognized folded configurations. The next
two columns analyze the counts of failures caused either
by the layers detection or the folding axis estimation. The
overall success rate is 87 %. It does not vary significantly
for various garments, which proves the generality of the
proposed method. The layers detection mechanism tends to
be more error-prone, having 11 % failure rate.

2CloPeMa project: http://clopema.eu



Failure Displac. [mm]

Garment Success

Layers Axis Mean  Stdev.
Jacket 14 /15 1 0 6.4 8.6
Jeans 12/ 15 3 0 34 45
Shorts 14715 1 0 35 34
Skirt (2) 25/ 30 5 0 4.1 8.9
Sweater (2) 26 / 30 2 2 4.2 4.8
Sweatshirt 14715 0 1 2.7 32
Towel 14/ 15 1 0 3.4 2.4
T-shirt (4) 51760 9 0 42 3.8

170 / 195 22 3

Total 37 % H% 2% 4.0 52

TABLE I: Performance evaluation of layers detection and folding axis
estimation on various garments included in the published dataset.

(a) Undetected top layer (b) Wrong detection due to depth

(d) Wrong folding axis

(c) Wrong detection due to edges

Fig. 10: Analysis of observed failures: a) All pixels assigned to a single
layer. b) Wrongly detected layers due to misleading depth information or
¢) misleading edges in the image. d) Wrongly selected folding axis.

The last two columns of Tab. I provide a quantitative
evaluation of the layers detection. For each of 173 config-
urations, in which the layers were detected correctly, we
compute the displacement of the detected and annotated
boundary between the layers. Namely, for each point of
the correctly detected boundary, we find its closest point on
the manually annotated boundary. The usual displacement is
several millimeters which is more than sufficient for reliable
grasping, considering the size of the gripper. The detailed
results for all configurations are provided on our website!.

The observed failures can be split into three categories.
The first is the failure in the layers detection when all pixels
are assigned to a single layer. It appears when the heights
of the layers differ insignificantly and their boundary is not
clearly visible in the image (Fig. 10a). The second category
corresponds to the wrong detection of the layers. It can be
caused by misleading depth information (Fig. 10c) or by
presence of strong image edges not adjacent to the boundary
between the layers (Fig. 10c). The last and rarest type of
failure is a wrongly chosen folding axis. It is caused by the
employed heuristics on choosing the candidate axis with the
shortest unfolded contour (Fig. 10d).

Reason of failure

Garment Success

Detection  Planning  Execution
Shorts 375 1 1 0
Sweatshirt 475 1 0 0
Towel 5/5 0 0 0
T-shirt 5/5 0 0 0
Total 17 /20 2 1 0

TABLE II: Performance evaluation and failure analysis of unfolding.

The proposed perception method was tested on a notebook
with Intel i7-3740QM 2.7 GHz processor and 8 GB memory.
The preprocessing stage (Sec. III) takes 3.1 seconds on the
average, spent mostly by the segmentation. Time spent by the
detection of layers (Sec. IV) varies from 0.4 to 1.8 seconds. It
is directly proportional to the size of the observed garment, as
it is solved by labeling each pixel. Estimation of the folding
axis (Sec. V) takes 0.1 seconds at most.

D. Robotic unfolding

The described robot was used to test the proposed unfold-
ing procedure (Sec. VI). The manipulation performance is
affected by two factors. First, the space of positions reachable
by the robot is limited. We are able to unfold rather small
garments placed close to the robot. Second, only the left
arm is equipped with the griper suitable for grasping of
garments (Sec. VII-B). We are therefore able to unfold only
such configurations, where the folding axis is located on the
left side (Fig. 8a). This issue could be solved by equipping
the right arm with the specialized griper as well and trying to
plan the manipulation for both possible combinations of the
grasping and holding arm. Since both limiting factors are
rather technical than methodological, we tend to place the
garments into the suitable configurations in our experiments.

Tab. II summarizes the experimental results. Each garment
was placed into 5 different folded configurations. All trials
for each garment were performed in a continuous series and
video-recorded!. The garments were unfolded successfully
in 17 attempts out of 20. Two failures were caused by the
wrong detection of folds. In one case, the garment was
placed in such configuration that it was impossible to plan
its unfolding. The robotic manipulation itself was always
successful in the experiment.

Selection of the grasping and holding position and plan-
ning of the folding trajectory takes 1-15 seconds, depending
strongly on the ranking of the successfully planned candidate
in the priority queue (Fig. 8a). The unfolding manipulation
takes usually 40-50 seconds, with the robot starting and
finishing in the initial position and moving rather slowly due

to the safety reasons’.

VIII. CONCLUSION

We proposed a novel method for recognizing the configu-
ration of an unknown garment that was folded once or more
times over an unknown folding axis. The algorithm is based
on the detection of the bottom and top layer. The detection of
the layers is formulated as an optimization problem in which
information coming from camera and range sensor is fused
effectively. The correct folding axis is selected by unfolding



the garment virtually over all candidate folding axes and
checking the unfolded states. Once the garment configuration
is known, it is unfolded by a cooperative manipulation
with two robotic arms. The performed experiments show a
promising 85-87 % success rate on a variety of garments.

The proposed method does not utilize any model of the
garment shape and therefore it is usable for all garment types
without modifications. Such model could, however, improve
the robustness for highly textured garments made of thin
textile, where the edge and depth information is unreliable.
Another possible improvement is to generalize the method to
deal with several overlapping folded layers. It is, in principle,
possible to extend the labeling task to three or more layers.
The emerged task is NP hard, but it can be solved effectively
using the available approximation methods.
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