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o)

% Label Distributions &

FGVCx Flower and Fungi Classification datasets available for training
follow a “long-tail distribution” of classes, which may not correspond with
the test-time distribution.
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%%% Label Distributions &

We recently observed a similar problem in the LifeCLEF plant
identification challenge: majority of training data comes from the web,
while test images come from a different source.

Can we compensate for this imbalance?
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Figure: PlantCLEF 2017 label distribution in the “trusted” training set.

[1] Improving CNN classifiers by estimating test-time priors. Milan Sulc and Jifi Matas. arXiv:1805.08235 [cs.CV], 2018.
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o)

ﬁ%ﬁé CNN Outputs as Posterior Estimates &

Training neural networks (f with parameters ) by cross-entropy loss
minimization means training it to estimate the posterior probabilities:

0* = arg min Lcg = arg max c;k log f(ck|x;, 0
9 ) WAL

k
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—

%%% CNN Outputs as Posterior Estimates &

Experiment on selected subsets of CIFAR-100 with different class priors:
How well do the posterior estimates marginalize over dataset samples?
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f%% Adjusting Estimates to New Priors &

Assuming that the probability density function p(X?; ‘Ck)
remains unchanged:

(cr|xi)p(xi) Pe (Ch|Xi)Pe (i)

p(xilcr) = L = pe(Xi|ck) =
p(ck) pe(ck)
The mutual relation of the posteriors is:
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% When Test Set Priors Are Unknown &

How to estimate the test-set priors?

Saerens et al. [1] proposed a simple EM procedure to maximize the
likelihood L(x,,x,,X,,...):
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This procedure is equivalent [2] to fixed-point-iteration minimization of
K

the KL divergence between p.(x) and q.(x) = > Prp(x|ck).
k=1

[1] Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Marco Saerens, Patrice Latinne,
and Christine Decaestecker. Neural computation 14.1 (2002): 21-41.

[2] Semi-supervised learning of class balance under class-prior change by distribution matching. Marthinus Christoffel Du
Plessis and Masashi Sugiyama. Neural Networks, 50:110-119, 2014.
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@ Test Set Prior Estimation in LifeCLEF @

Preliminary experiments (using the 2017 test set for validation):

* When the whole test set is available:
Inception-ResNet-v2: 82.9% - 85.8%
Inception-v4: 82.8% — 86.3%

* On-line [1] after each new test image:
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%%% When New Priors Are Known W
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o)

ﬁ%% When New Priors Are Known &

Note: in the iNaturalist 2017 challenge, the winning GMV
submission [1] approached the change in priors as follows:

“To compensate for the imbalanced training data, the models
were further fine-tuned on the 90% subset of the validation
data that has a more balanced distribution.”

We, instead, only use the validation set statistics — I.e.
uniform class distribution in this case.

[1] The iNaturalist Species Classification and Detection Dataset-Supplementary Material. Grant Van Horn, Oisin Mac
Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. Reptilia 32, no.
400: 5426.
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%%ﬂ% When New Priors Are Known &
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@ Tricks used Iin both challenges &

Predictions re-weighted simply assuming uniform class
priors.

Moving average of trained variables (exponential decay).
Training time augmentation:
- Random crops

- Color distortions

Test-time data augmentation:
14X perimage : 7 crops X2 (mirror)
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@ Final Ensembles &

FGVCx Fungi: 6 nets (averaged)

2X Inception-v4 299%299 initialized from ImageNet and LifeCLEF ckpts
2X Inception-v4 598x598 initialized from ImageNet and LifeCLEF ckpts
2X Inception-ResNet-v2 299x299 from imageNet and LifeCLEF ckpts

FGVCx Flowers: 5 nets (modus)

3X |ﬂC€ptiOﬂ-V4 299%299 initialized from ImageNet, LifeCLEF, iNaturalist ckpts
1x Inception-v4 598x598 initialized from LifeCLEF ckpt
1x Inception-ResNet-v2 299x299 initialized from LifeCLEF ckpt
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%%% Leaderboard
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@ Discussion &

» Standard CNN classifiers (and their ensembles) achieve
best results in plant and fungi recognition.
* Future work: Learning from Ensembles?

* Important to take into account change in class prior distribution [1]
* New priors can be estimated on-line, as new test-samples appeatr.

¢ Q & A sulcmila@cmp.felk.cvut.cz

[1] Improving CNN classifiers by estimating test-time priors. Milan Sulc and Jifi Matas. arXiv:1805.08235 [cs.CV], 2018.
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