2D Discrete Fourier Transform

Tomáš Svoboda

Abstract

This is assistant text for Signal and Image Processing subject. It reminds some properties of 2-D Discrete Fourier Transform and discrete convolution. It probably helps to solve problem of motion blur removing.

1 2D DFT

The discrete Fourier transform pair is

$$
\begin{equation*}
F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \exp [-j 2 \pi(u x / M+v y / N)] \tag{1}
\end{equation*}
$$

remind that
$\exp [-j 2 \pi(u x / M+v y / N)]=\cos (2 \pi(u x / M+v y / N))-j \sin (2 \pi(u x / M+v y / N))$.

2 Discrete Fourier transformation of discrete step function

Suppose discrete function f defined as

$$
\begin{equation*}
f[0,1,2, \ldots, A]=1, \text { and } f[A+1, \ldots, N-1]=0 \tag{3}
\end{equation*}
$$

DFT is computed using

$$
\begin{equation*}
F(u)=\frac{1}{N} \sum_{x=0}^{N-1} f(x) \exp (-j 2 \pi u x / N) \tag{4}
\end{equation*}
$$

Note discrete nature of $u=0 \ldots N-1$ and $x=0 \ldots N-1$. Using (3) the equation (4) can be simplified to

$$
\begin{equation*}
F(u)=\frac{1}{N} \sum_{x=0}^{A} \exp (-j 2 \pi u x / N) \tag{5}
\end{equation*}
$$

This summation gives the same value for each $u=k N / A$. The Fourier transform of the step function (3) is a periodic function with the period

$$
\begin{equation*}
T=\frac{N}{A} \tag{6}
\end{equation*}
$$

Figure 1: 1D discrete function.

Figure 2: Shifted amplitude of DFT of the function from the figure above.

