2D Discrete Fourier Transform

Tomas Svoboda

Abstract:

This is assistant text for Signal and Image Processing subject. It reminds some properties of 2-D Discrete Fourier Transform and discrete convolution. It probably helps to solve problem of motion blur removing.

2D DFT

The discrete Fourier transform pair is

\begin{displaymath}F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1}\sum_{y=0}^{N-1} f(x,y) \exp[-j2\pi(ux/M+vy/N)].
\end{displaymath} (1)

remind that

\begin{displaymath}\exp[-j2\pi(ux/M+vy/N)] = \cos(2\pi(ux/M+vy/N)) - j \sin(2\pi(ux/M+vy/N)).
\end{displaymath} (2)

Discrete Fourier transformation of discrete step function

Suppose discrete function $f$ defined as

 \begin{displaymath}
f[0,1,2,\dots,A] = 1, \ {\rm and} \ f[A+1,\dots,N-1] = 0.
\end{displaymath} (3)

DFT is computed using

 \begin{displaymath}
F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \exp{(-j2\pi ux/N)}.
\end{displaymath} (4)

Note discrete nature of $u = 0 \dots N-1$ and $x = 0 \dots N-1$. Using (3) the equation (4) can be simplified to

\begin{displaymath}F(u) = \frac{1}{N} \sum_{x=0}^{A} \exp{(-j2\pi ux/N)}.
\end{displaymath} (5)

This summation gives the same value for each $u=kN/A$. The Fourier transform of the step function (3) is a periodic function with the period

\begin{displaymath}T=\frac{N}{A}
\end{displaymath} (6)


 
Figure: 1D discrete function.
\includegraphics[width=0.9\textwidth]{fce1d.eps}


 
Figure 2: Shifted amplitude of DFT of the function from the figure above.
\includegraphics[width=0.9\textwidth]{fft1d.eps}




1999-05-13