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Calibrating a video camera pair with a rigid bar
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Abstract

In this paper a new procedure to determine all the geometrical parameters of a stereo-system is presented. It is based on
surveying a rigid bar carrying two markers on its extremities moved inside the working volume and it does not require
grids or complex calibration structures. The external parameters are estimated through the epipolar geometry up to
a scale factor which is determined from the true length of the bar. The focal lengths are determined using the properties
of the absolute conic in the projective space. The principal points are computed through a non-linear minimisation
carried out through an evolutionary optimisation. The accuracy of the method is assessed on real data and it compares
favourably with that obtained through classical approaches based on control points of known 3D coordinates.
( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical calibration techniques are based on survey-
ing a 3D distribution of control points of known position
[1}3]. To achieve a high accuracy, the control points
should be positioned with extreme precision and distrib-
uted over the entire working volume [4]; therefore large,
di$cult to move and expensive calibration structures are
usually required.

A di!erent approach is represented by self-calibration
procedures which do not require to know in advance the
3D position of the control points. Classical photogram-
metry o!ers the most general solution through the
method of bundles adjustment [5,6]. This allows to de-
termine the 3D coordinates of the control points and the
internal and external parameters of the set-up at the same
time through a non-linear minimisation of the distance
between the reprojected and the measured 2D position
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of the control points. In this method, the dimension of the
design matrix and the number of unknowns increases
linearly with the number of the control points leading to
a huge computational load. Moreover, singularities in
the design matrix can easily occur, and these may hamper
the accuracy in the parameters. To avoid this, the dis-
tribution of the 3D control points should be carefully
examined before starting the estimate. Finally, bundle
adjustment requires a good initialisation of both the
parameters and the 3D coordinates of the control points.

A di!erent approach to self-calibration has been de-
veloped under the framework of the so called `structure
from motiona (SfM) problem [3,7}10]. In this frame-
work, the scene is surveyed by a moving camera; its
motion as well as the 3D position of a set of points in the
scene are determined from the image sequence. The inter-
nal parameters are supposed to be known. A linear
solution to SfM problems was proposed by Longuet-
Higgings [11]: it is based on the epipolar constraint
which expresses the condition that the two straight lines,
through the 2D measured positions of a point and the
perspective centres, lie on the same plane: the epipolar
plane (cf. Fig. 1). This solution allows to keep the design
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Fig. 1. The geometrical arrangement of a stereo-pair. The point P is projected in p1 and p2 on the image plane of the two cameras. The
optical axis intersects the image plane at a point cj(xoj

, y
oj
) called principal point. The distance between the perspective centre and the

image plane, f
j
, is the focal length of the camera. The epipolar plane, %, contains the points P, p1, p2, and the line

C
1
C

2
(the relative position T), which joins the perspective centres of the two cameras. The points of intersection between

C
1
C

2
and the image planes are the epipoles, e1 and e2. The intersection between % and the two image planes originates two lines, lp

1
and

lp
2
, called epipolar lines. They are corresponding epipolar lines in the homography generated by P, C

1
and C

2
.

matrix small (9]9). SfM solutions have been recently
extended by Hartley [12,13] and Faugeras and co-
workers [14}16] to estimate also the internal parameters,
provided that the sequence consists of a su$cient num-
ber of images.

The SfM framework has been linked to stereo-calib-
ration by Borghese and Perona [17] who made the
observation that the two cameras of a stereo-pair can be
associated to a sequence of two images, taken by the
moving camera from two di!erent positions. Under this
hypothesis, only the focal lengths can be determined by
SfM solutions [3,12] and the position of the two princi-
pal points has to be determined with a di!erent proced-
ure. As a "rst approximation, they can be assumed to be
coincident with the image centre, but, due to imperfect
assembling of the optical system, they can be o!set of

several pixels. When high noise levels in the measurement
is present, the contribution of the mislocation of the
principal point to the 3D reconstruction can be neglected
[18] and accuracy su$cient to certain applications like
human computer interface can be attained. However, this
approximation is not adequate when high accuracy is
required. Several techniques have been proposed to de-
termine the true position of the principal point. In Wei
and Ma [19] the cross-ratio invariance over projection is
exploited but to get a reliable estimate of the principal
point, pure radial distortions on the lens is required,
which is not often the case. Di!erent solutions are based
on ad hoc devices like a rigid cross "lmed on the "eld
[8] or laser based systems [20,21]. The use of additional
devices make this kind of calibration procedure less
friendly and less easy to be performed.
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In this paper a novel method to estimate all the calib-
ration parameters of a stereo-pair is given. It does not
require any initialisation (di!erently from bundle adjust-
ment) and it allows to determine the internal and external
parameters including the two principal points (di!erently
from SfM approaches), using control points whose 3D
position has not to be measured. The results of real
calibrations carried out on the "eld are reported and
discussed.

2. Geometrical background

2.1. Geometrical model of the stereo system

The projection of a 3D point, P(X, >, Z), on the image
plane of the video camera j, p

j
(x, y), is described by the

perspective equations, which, in homogeneous notations,
are [3]

p"KMDP with B"KM, (1)

where

K"C
!f 0 x

0
0 !f y

0
0 0 1 D, (2)

f is the focal length of the camera and (x
0
, y

0
) are the

coordinates of the principal point, c(x
0
,y

0
) and f consti-

tute the internal parameters of the camera (cf. Fig. 1):

M"C
1 0 0 0

0 1 0 0

0 0 1 0D, (3)

D"C
R !RT

0 1 D. (4)

R and T are the orientation (3]3 matrix) and the loca-
tion vector of the camera with respect to a certain re-
ference frame: they constitute the external parameters.
Calibration is here de"ned as the determination of the
internal and external parameters for the stereo-pair.

Whenever the two focal lengths and the two principal
points are known, the normalised target coordinates of
a point can be introduced. They are

pL
j
"C

x
j
!x

oj
!f

j
y
j
!y

oj
!f

j

1 D (5)

and they will be used in Section 2.4 to estimate the
external parameters. Whenever only the principal points

are known, the o!set coordinates are de"ned as

pJ
j
"C

x
j
!x

oj

y
j
!y

0j

1 D. (6)

They will be adopted in Section 2.3 to estimate the two
focal lengths.

For the sake of convenience, the absolute reference
frame is taken as solid with one of the two cameras with
the X, > axes parallel to those of its image plane. With
this choice, Eq. (1) for the two cameras becomes

p
1
"K

1
MP, (7a)

p
2
"K

2
MDP. (7b)

These show that the internal and the external parameters
can be factorised into the product of a matrix containing
the internal parameters, K, by a matrix containing the
external ones, D.

2.2. The epipolar geometry

The epipolar geometry is based on the observation
that each 3D point, P, and its projections, p

1
and p

2
, lie

on the same plane %, called epipolar plane (cf. Fig. 1).
This plane intersects the two image planes along two
lines, lp1 and lp2, called epipolar lines. For construction,
a point p1, belonging to lp1, will correspond to lp2; and
a point p2, belonging to lp1, will correspond to lp1. This
condition is expressed analytically as follows:

lp2"Fp1 (8a)

lp1"FTp2 (8b)

where F is the fundamental matrix [3]. As the scalar
product between a point and a line to which it belongs to,
is equal to 0, the following relationship holds:

PT
2 lp2"0 (9)

and from Eq. (8a) and (8b);

pT
2Fp1"0 (10)

which represents the epipolar plane, %, identi"ed by p
1
,

p
2

and C
1
C

2
. The epipoles, e

1
and e

2
, are the points of

intersection of the line through C
1
C

2
and the two image

planes. For these points, the epipolar lines, le1 and le2, are
reduced to the epipoles themselves; it holds:

Fe1"FTe2"0 (11)
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This equation will be used to determine the focal lengths
in Section 2.3. Matrix F can also be obtained through
di!erent considerations. Imposing that the three vectors

C
1
C

2
, PC

1
and PC

2
are coplanar, the following relation-

ship holds:

PC
2
]T'PC

1
"0. (12)

De"ning a skew symmetric matrix S which represents the
elements of T as:

S"(T')NS"C
0 !¹

Z
¹

y

¹
Z

0 !¹
X

!¹
y

¹
X

0 D (13)

and taking into account Eqs. (7a) and (7b), the following
homogeneous equation is obtained [9,11]:

pT
2K~T

2 R S K~1
1 p1"0 (14)

with:

F"K2~T R S K1~1. (15)

This contains all the calibration parameters factorised
into the product of the internal (matrices K1 and K2) by
the external ones (matrices R and S). When the internal
parameters are known, the normalised coordinates Eq.
(2) can be used, and Eq. (14) assumes the following shape:

pL T
2
EpL

1
"0 with E"RS (16)

E is named the essential matrix and it contains only the
external parameters which can be estimated according to
the procedure described in Section 2.4. Algebraic consid-
erations which limit the number of independent para-
meters which can be estimated from Eq. (14) to seven are
reported in Appendix A. Of these seven parameters, "ve
parameters will be the relative orientation and location
up to a scale factor, and the other two will be used to
compute the focal lengths [22]. No other parameter can
be directly estimated by this approach.

2.3. The fundamental matrix and the focal lengths

To estimate the internal parameters, the matrices K1

and K2 in Eq. (14) are isolated from R and T through
considerations based on projective geometry. In particu-
lar, the correspondence between the lines tangent to the
absolute conic is exploited [12,16]. The absolute conic,
R
=
, is given by the following equation:

PTP"0 (17)

which has no real points (only imagery points). It has the
remarkable property to be invariant for Euclidean trans-

formations, and, in particular, for rotation and transla-
tion. R

=
is projected onto the image plane of camera

j into the conic, p
j
, (cf. Fig. 2) which is described by

pT
j
K~T

j
K~1

j
p
j
"0 (18)

It can be shown that the problem of determining the
internal parameters of a camera is equivalent to "nding
p
j
[23]. Let us specialise the matrices K1 and K2 for the

case when the principal points are known and only the
focal lengths have to be determined. In this case o!set
coordinates can be adopted (Eqs. (3)), and K

j
assumes the

following shape:

K
j
"C

!f
j

0 0

0 !f
j

0

0 0 1D. (19)

Eq. (18) becomes

pJ T
j

diag(1, 1, f 2
j

)pJ
j
"0. (20)

This matrix represents the imaginary circle, rj, centred in
the origin which, in homogeneous coordinates, is

rj: u8 2
j
#v8 2

j
#w8 2

j
f 2
j
"0 (21)

As the projection of the absolute conic depends only
on the internal parameters (Eq. (18)), the reference system
of each camera can be arbitrarily positioned. In partic-
ular, to get a simpli"ed shape for the matrix F, the
reference system is positioned such that the epipole has
coordinates [1, 0, 1]:

e1"e2"[1, 0, 1]T. (22)

With this reference system, taking into account Eq.
(11), matrix F assumes the following simpli"ed shape:

F"C
a b !a

c d !c

!a !b aD (23)

To compute f
1
and f

2
, the properties of the correspond-

ence between points and epipolar lines described by Eqs.
(8a) and (8b) is exploited. Let us consider the line lp1 and
l@p1 through e1 which are tangent to r

1
(cf. Fig. 2). The two

points of tangency are p1 and p@1. They identify the polar1
of e1 with respect to r

1
which has the following equation:

Lp
1

Lp
1
K
el

u
1
#

Lp
1

Ll
1
K
el

l
1
#

Lp
1

Lw
1
K
el

w
1
"0

N u
1
#w

1
f 2
1
"0 (24)

The intersection of the line in Eq. (24) with the conic in
Eq. (21), originate two imagery points, p1 and p@1, which

1The polar of a point, p, with respect to a conic r, is the line
joining the two points of tangency with r of the lines through p.

84 N. Alberto Borghese, P. Cerveri / Pattern Recognition 33 (2000) 81}95



Fig. 2. The absolute conic, R
=

, and its projection over the two image planes, r
1

and r
2
. The intersection of the two tangent planes with

the absolute conic gives the two points P
=

and P@
=

which project into p1 and p@1 on the "rst image plane and into p2 and p@2 on the second
one. Through these points the two pairs of epipolar lines, lp1 and l@p1, and lp2 and lp2 are identi"ed.

are computed as

G
u
1
#w

1
f 2
1
"0 u

1
"!w

1
f 2
1

u2
1
#l2

1
#w2

1
f 2
1
"0 N l2

1
"!w2

1
f 2
1

(l#f 2
1

),

w
1
"w

1

(25)

Introducing the imaginery unit i, and dividing the three
homogenous equations by w

1
, the coordinates of p1 and

p@1 can be written as

p1"[!f 2
1

if
1
( f 2

1
#1)1@2, 1]T (26a)

p@1"[!f 2
1

,!i f
1
( f 2

1
#1)1@2, 1]T. (26b)

The points p1 and p@1 can be transformed through
F into their corresponding epipolar lines, lp2 and l@p2 (Eqs.
(8a) and (8b)), which will be tangent to p

2
. Using relations

(23) and (26), taking into account that Eqs. (8a) and (8b)

are de"ned up to a scale factor, Eq. (8a) can be written for
the points p1 and p@1 as

Fp1"C
!c*~1#dif

1
aD!bif

1
1 D"I

2
, (27a)

Fp@1"C
!c*~1!dif

1
a*!bif

1
1 D"I@

2
, (27b)

where *"( f 2
1
#1)1@2. In compact notation, Eqs. (27a)

and (27b) can be written as

Fp1"[!1 (k#it) 1]T"l2, (28a)

Fp@1"[!1 (k#it) 1]T"l@2, (28b)
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where

k#it"
!ac*2#bdf 2

1
#if

1
(ad!bc)*

a2*2#b2f 2
1

(29)

As the epipoles were chosen on the u-axis (cf. Eq. (22))
and the conic r

1
is a circle centred in the origin, the polar

line will be parallel to the v-axis, and p1 and p@1 will be
symmetrical with respect to the u-axis. It follows that

(k#it)"!(k!it) N k"0. (30)

Imposing this condition into Eq. (29), f
1

can be deter-
mined as

f
1
"S

!ac

ac#bd
. (31a)

with similar reasoning, the focal length of the second
camera, f

2
, can be computed as

f
2
"S

!ab

ab#cd
. (31b)

This solution is allowed as far as the two optical axes
do not intersect. When they do, the principal points of
the two cameras, c1 amd c2, correspond to each other in
the epipolar transformation (Eq. (10)). In this situation,
the following relationship holds:

c2TFc1"0 N [0, 0, w
2
]T F[0, 0, w

1
]"0

from which it can be seen that the four elements of F in
Eq. (23) are linearly dependent. It follows that f

1
and

f
2

can be determined only up to a scale factor. This
condition suggests a certain care in the setting up of the
cameras although this condition is practically impossible
in real applications.

2.4. The essential matrix and the external parameters

Once the matrices K
1

and K
2

have been determined,
the fundamental matrix F can be transformed into the
essential matrix E which contains only the external para-
meters. An elegant algebraic solution to determine R and
T is based on the singular value decomposition (svd) of
the matrix E [12,24]. Being the right kernel of E equal to
T' (Eqs. (13) and (16)), the product ET is equal to zero.
It follows that the vector T is parallel to the eigenvector
associated to the smallest eigenvalue, w

3
, of E. Expressing

the essential matrix in terms of its svd:

E"[U W VT], (33)

the relative position T can be determined up to the sign
and to a scale factor, as one of the two versors:

T
1
"V3, (34a)

T
2
"!V3, (34b)

Both (34a) and (34b) satisfy Eq. (16). R can assume one of
the two following forms:

R
1
"U Z VT, (35a)

R
2
"U ZT VT, (35b)

with

Z"C
0 1 0

!1 0 0

0 0 1D (36)

both of which satisfy Eq. (16): Eq. (35a) allow to deter-
mine R up to rotations of 1803 around the rotation axis.
From these four possible solutions the correct matrices,
R and T, are obtained by constraining the reconstructed
position of the 3D control points to be in front of the two
cameras [11,24].

It should be remarked that T is obtained up to a multi-
plicative factor. This re#ects the fact that the 3D world
can be reconstructed through the epipolar constraint
only up to a scale factor [2,8,11]: a large scene seen from
a large distance by a stereo-system with a large inter-
camera distance and a smaller scene seen from a smaller
distance by a stereo-system with a smaller inter-camera
distance, have the same image on the target of the two
cameras.

2.5. Determination of the 3D scale factor

In the solution through the essential matrix, DDTDD"1
has been assumed (Eq. (34a)). The inter-camera dis-
tance is therefore taken as the norm of the 3D space. The
3D points position will be scaled accordingly to this
choice:

k"DDT5DD, Tt
"kT, P5"kP, (37)

where P5 and T5 are the true 3D position of a point and
the true inter-camera distance. P is the 3D position
reconstructed with DDTDD "1. To determine the value of k,
a possibility is to survey a segment whose length is
precisely known. Whenever control points are used, a
pair of points, whose distance is precisely known, can be
used instead of the segment. Let us call these two points
P
1

and P
2
, it follows that

(P5
1
!P5

2
)"k (P

1
!P

2
) N d5"kd N k"d5/d. (38)

However, in the real situation, due to noise on the
target coordinates, the 3D reconstruction of P

1
and
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P
2

will generally be not exact. As a consequence, the
distance, d, will not be precisely reconstructed and the
value of k will be erroneous. To avoid this, multiple
measurements are required and the scale factor can be
determined as the mean value of a set of M distances
between M di!erent pairs of control points:

k"EA
d@
dB"

1

M

M
+
j/1

dt
j

d
j

. (39)

In particular, when the control points are the extremes
of a single rigid bar, Eq. (39) becomes

k"
dt

M

M
+
j/1

1

d
j

. (40)

3. Determination of the two principal points

Up to now, the position of the two principal points was
supposed to be known. When this is not the case, we
show here that it can be determined adjusting the posi-
tion of the principal points to minimise a "gure of merit
derived from geometrical considerations on the 3D re-
construction of the control points (indirect estimation).

3.1. Indirect estimation

When the two principal points are displaced with re-
spect to their true value, the o!set coordinates (Eq. (3))
will also be displaced and the estimate of the focal lengths
and of the external parameters will be inaccurate. This
re#ects in an error in the reconstruction of the bar length
which will be minimum when the parameters have been
correctly estimated. The mean absolute error on the bar
length, de"ned as

e
d
"

1

M

M
+
j/1

Dd
j
!dtD (41)

will be considered here. Another geometrical quantity
a!ected by the displacement of the principal points is the
distance between the two straight lines through the per-
spective centres and the 2D measured points (p1C1 and

p2C2 in Fig. 1). In the ideal case, these lines do intersect,
but, in practice, due to measurement errors on p1 and p2,
they will be generally skewed. As a consequence, Eq. (10)
will not be exactly satis"ed and it should be rewritten as

pT
1F p2"e

e
, (42)

where e
e

is the coplanarity error. This error has been
widely used to solve the correspondence problem [25,26]
and it has been recently proposed in the calibration
framework [27].

These considerations have led us to formulate the
estimate of the internal parameters as a non-linear

minimisation problem of the following cost function:

min
(c1,c2)

Aa
1

N/2

N@2
+
j/1

Dd
j
!dtD#b

1

N

N
+
i/1

Dpi1Fpi2DB, (43)

where N is the number of control points. The second term
does not allow to determine the right norm of the 3D
space (Eq. (10)) and it can be used only as a re"nement of
the solution which, in its bulk part, is obtained through
the "rst term. Therefore b@a should hold. In the follow-
ing a"1 and b"0.1 have been adopted.

3.2. Evolutionary optimisation and the principal points

The above formulation leads to a highly non-linear
implicit function of c

1
and c

2
. These in fact in#uence the

value of the other calibration parameters which, in turn,
in#uence the value of the 3D points position and there-
fore of the cost function. The global minimum of Eq. (42)
is therefore hard to be found with classical gradient-
based methods. In this paper a solution o!ered by evolu-
tionary optimisation, which has proved particularly suc-
cessful in the solution of di$cult optimisation problems,
is exploited [28]. In this domain, the search for the
optimal solution is guided by the evaluation of the cost
function alone. The single solution is represented as an
individual, the ensemble of possible solutions as a popu-
lation, and the cost associated to each solution as the
degree of "tness of the population element associated to
the solution.

Before starting the search for the optimal pair of prin-
cipal points, a search region is de"ned. Taking into ac-
count that the maximum o!set of the principal points
with respect to the image centre is $T

.!9
, a hyperbox

search region, H, is created in the four-dimensional space
of the two principal points ([c

1
Dc
2
]):

H"C
c31

c32D$¹
.!9

. (44)

The optimisation strategy is initialised generating
inside H, a random set of NP pairs of principal points, FA
" [c

1i
Dc
2i
]3H, called `fathersa of the `populationa. For

these points, the external parameters, the focal lengths
and the 3D scale factor is determined following the pro-
cedures reported in Sections 2.3}2.5; and the `"tnessa is
determined through Eq. (43) for each father. Notice that
for some of the fathers, an imaginary value of the focal
lengths may come out from Eqs. (31a) and (31b). This
happens when the principal points are far-o! the true
position. In this case a high cost is associated to the
related fathers. After the "tness has been computed for all
the fathers a second set, S, of NP pairs of principal points,
called `sonsa, is obtained by `mutatinga the set FA. The
"tness of the sons is evaluated through Eq. (43) as for the
fathers. In the mutation process, each father is displaced
by a random quantity, z

i
(0, p), where z

i
is a Gaussian
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variable in the four-dimensional space with zero mean
and standard deviation p, obtaining

[c
1i
Dc
2i
]k`1"[c

1i
Dc
2i
]k#hk z

i
(0, p) (45)

where k indicates the kth generation. p and hk concur in
the determination of the amplitude of the displacement
for each father.

The "tness of each son is compared with that of the
father from which it was generated and the one of the two
elements which exhibits the best "tness will serve as
father for the next `generationa. In more evolutionistic
terms: the father and his son are placed in competition for
survival and the selection eliminates the weaker for the
next generation [29], that is the one which gives the
poorer solution. The process of generating new sons and
selecting those which have the best "tness is iterated until
the "tness does not increase anymore.

To increase the resolution in the determination of the
principal points, a deterministic annealing scheduling
[30] of the search region amplitude has been introduced
by setting hk as

hk"
h*/*5*!-

Jln(k#1)
. (46)

With this setting, the amplitude of the search region
(Eq. (44)) decreases with the generations, allowing a
thicker sampling of the best region. The role of p is to
restrict the search region if a meaningful number of sons
have given a better "tness, or to enlarge it, if the fathers
were "tter. For this purpose, the value of p is set accord-
ing to the ratio, r, between the number of winning sons
and winning [29] as follows:

r(1/5, pk`1"pk/c

r"1/5, pk`1"pk

r'1/5, pk`1"pkc

(47)

with c"0.851@D where D is the dimension of the solution
space, in our case D"4.

To speed up the convergence and to avoid bias in the
results due to the particular set of calibration points
adopted, not all the control points are used at the same
time. At each generation, a di!erent sub-set of points is
extracted and used for calibration and a di!erent sub-set
is extracted and used for evaluating the "tness. This
procedure is commonly used in statistics and it goes
under the name of bootstrap [31].

4. Summary of the calibration procedure

The entire calibration procedure can be summarised as
follows (Fig. 3):

1. A set of NC points, MPNC
#

N, extremes of a rigid bar is
surveyed by a pair of cameras and their position on
the image planes are measured as MpNC

1#
N and MpNC

2#
N.

These constitute the set of the control points.
2. A population of NP pairs of principal points FA

" c
1
Dc
2
is randomly generated inside the search area

H. These constitute the fathers of the population.
3. The reference "tness is set to 0.
4. A subset of M ((NC/2) pairs of control points: MP

#
N,

Mp1cN and Mp2cN, is extracted from the set MPNC
#

N. This
will be used to estimate the focal lengths, the external
parameters and the object scale factor.

5. A second subset of ¹ ((NC/2) pairs of points:
MPT

#
, p1T

N and Mp
2T

N is extracted from the set MPNC
#

N.
This will be used to determine the "tness and it will
serve as the test set.

6. A set of NP fundamental matrices, MFN, are com-
puted from Mp1cN and Mp2cN, one for each element of
FA.

7. A set of NP pairs of focal lengths, M f
1
N and Mf

2
N, are

determined as reported in Section 2.3. When an
imaginary value results for the focal length, a low
value of "tness is associated to the related pair of
fathers.

8. The coordinates of Mp1#
N and Mp2#

N are normalised
through Mf

1
N, Mf

2
N (Eq. (5)). A set of NP essential

matrices, MEN, is computed.
9. A set of NP relative orientations, MRN, and normalised

relative positions, MTN (with DDTDD"1), are computed
from the matrices MEN according to Section 2.4.

10. A set of NP 3D scale factors, MkN, is determined.
11. The 3D position of the test points is reconstructed

through the estimated parameters MRN, MTN, MkN,
Mf

1
, f

2
N and FA, originating NP sets of 3D points

constituted of NT points each.
12. The cost function in Eq. (43) ("tness) is computed for

each set of 3D test points.
13. A new population of NP pairs of principal points, the

sons, SA, is generated inside the search area H by
random mutation of the fathers set.

14. The internal and external parameters, and the "tness
value associated with the sons is determined accord-
ing to the steps 6}12.

15. If the cost function is lower than the actual reference
"tness, the reference "tness is updated and the corre-
sponding parameters are saved (cf. Fig. 3, block dia-
gram on the left).

16. The one between each father and its son which has
the best "tness wins and it will serve as father in the
next generation. With these new fathers, steps 4}12
are repeated.

The search for the principal points (and for the
other parameters) ends when the cost function drops
under a prede"ned threshold or it does not decrease
anymore.
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Fig. 3. The #ow chart of the calibration procedure is reported on the left. On the right the #ow chart of the block calibration and "tness
evaluation is exploded in its main components.

5. Experimental results

The accuracy obtained with this calibration method
has been evaluated on real data and compared with

that obtained through calibration methods based on
control points of known 3D coordinates, based on the
iterative solution of the perspective equations (ILSSC)
[4,10,32].

N. Alberto Borghese, P. Cerveri / Pattern Recognition 33 (2000) 81}95 89



Table 1
The accuracy obtained with ILSSC and bar calibration when the cameras were equipped with zoom lens (focal length+30 mm). The
data from two di!erent calibrations by using the bar are indicated as Bar, 1st and 2nd calibration

Bar length: 99.1 mm
Grid contains 30 markers (5]6), surveyed in three parallel positions 200 mm apart
Distance between two consecutive markers on the grid: 50 mm
Calibrated volume 0.25]0.20]0.40 m3

Working volume 0.6]0.9]0.9 m3

Evolutionary optimisation: 100 elements and 40 generations

ILSSC Bar, 1st calibration Bar, 2nd calibration

Bar, mean error 0.00$0.50 0.00$0.25 0.00$0.21
Grid, x error 0.04$0.84 0.00$0.81 0.02$0.81
Grid, y error 0.02$0.07 0.05$0.02 0.04$0.02
Grid, z error 0.07$0.61 0.15$0.58 0.00$0.58

To calibrate, a rigid bar is moved inside the working
volume while it is surveyed by a pair of video cameras.
A small passive marker is placed on each of its extremi-
ties. The markers coordinates on the image plane of the
two cameras are measured automatically by the Elite
system [33]. This recognises the markers owing to a tem-
plate matching algorithm implemented on a custom
VLSI chip [34]. The correspondence between the points
on the two cameras has been carried out automatically
through the Smart3D tracking system [35]. With this
procedure, a very large amount of calibration points,
spread inside the working volume, can be collected in
a very small time.

To increase the accuracy, the main distortions com-
ponent, which is due to the di!erent scales on the two
target axes [2], has been corrected multiplying the hori-
zontal target coordinate by a shrinkage factor obtained
through a 2D in-house calibration. This factor, which for
the Elite system is 1.4779, is a characteristic of the
cameras as it depends only on the electronics and on the
target dimensions, and it does not depend on the lenses.
Therefore the same shrinkage factor applies to di!erent
optics, di!erent apertures and di!erent focusing of
the cameras. The same in-house calibration allows to
determine the search region H (Eq. (44)), as a hyperbox
centred at the point C3 [(128, 128)D(128,128)] with side
¹"$45 pixels.

Two experiments have been carried out whose quantit-
ative results are reported in Table 1 and Table 2. In the
"rst experiment, a zoom lens has been mounted on the
cameras (focal length approximately 30 mm) and a bar
carrying two markers 99.1 mm apart was used. In the
second one a pair of wide-angle lenses with focal length
8.5 mm and a bar carrying two markers 199.8 mm apart
were adopted. The two cameras were positioned approx-
imately at the same height with a relative orientation of
603s.

Two sets of control points were acquired for each
experiment. The "rst set, S

1
, was obtained surveying the

bar in motion inside the calibration volume for 40 s
collecting a total of 4000 matched pairs of 2D points
for each camera. After discarding those frames where
the two markers were not visible on both cameras, a
total of NC"2749 and NC"2530 calibration points,
respectively, were left for calibration. From this set
of data points, a sub-set of M"150 pairs of calibration
points and a sub-set of NT"100 pairs of test points
were randomly extracted at each optimisation step of
the calibration procedure. The second set of control
points, S

2
, consists of the markers positioned on a

planar grid surveyed in three known parallel positions
inside the working volume. For the "rst experiment,
each grid carried 30 markers (5]6) with an inter-
marker distance of 50 mm and an inter-plane distance
of 200 mm; in the second experiment, each grid carried
56 markers (7]8) with an inter-marker distance of
150 mm and an inter-planar distance of 400 mm. The
cameras set-up was the same used for the acquisition of
the bar.

The accuracy was quantitatively assessed as follows:

(a) The 3D coordinates of the markers on the bar ex-
tremities (set S

1
of control points) are reconstructed

with the parameters determined through ILSSC and
through bar calibration. From the 3D coordinates of
the markers, their 3D distance is determined frame
by frame obtaining the set of distances D

1
and

D
2

respectively. The di!erence between the true bar
length and D

1
or D

2
is computed.

(b) The 3D coordinates of the points on the grids (set
S
2

of control points) are reconstructed with the para-
meters determined through ILSSC and through bar
calibration. These coordinates cannot be directly
compared because the reference systems are di!erent:
for ILSSC it is solid with the calibration grids while
for bar calibration it is solid with one of the two
cameras. Relative measurements have therefore been
adopted: the error on the X and > directions is
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Table 2
The accuracy obtained with ILSSC and bar calibration when the cameras were equipped with wide-angle lens (focal length"8.5 mm).
The data from two di!erent calibrations by using the bar are indicated as Bar, 1st and 2nd calibration

Bar length: 199.8 mm
Grid contains 56 markers (7]8), surveyed in three parallel positions 400 mm apart
Distance between two consecutive markers on the grid: 150 mm
Calibrated volume 0.9]0.9]0.8 m3

Working volume 1.3]1.2]1.5 m3

Evolutionary optimization: 100 elements and 40 generations

ILSSC Bar, 1st calibration Bar, 2nd calibration

Bar, mean error 0.00$1.12 0.00$1.12 0.01$1.16
Grid, x error 0.26$0.93 0.47$1.08 0.56$0.93
Grid, y error 0.18$0.07 0.15$0.02 0.08$0.04
Grid, z error 0.59$2.94 0.60$2.99 0.52$2.99

Fig. 4. The reconstructed distances between the two markers on the bar extremes frame by frame. They have been computed from the
parameters obtained with bar calibration (a) and with ILSSC (b). The data are referred to the second experiment (wide-angle lens with
focal length"8.5 mm).
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Fig. 5. The trajectory of the principal points is reported in (a) for TV1 and in (b) for TV2. The initial position of each pair of principal
points is plotted as empty circles and the "nal one by "lled circles. The 2D coordinates are expressed in target units (t.u.). In (c), the
"tness, the mean error on the bar length and the mean intersection error are reported for each step of the calibration in experiment 1.

computed as the mean and standard deviation of the
error on the distance between each pair of two con-
secutive markers on the horizontal and vertical
marker lines on the calibration grid. The error in the
Z direction is computed as the mean and standard
deviation of the error in the distance between each pair
of markers in the same position on two consecutive
parallel grids.

As can be seen in Tables 1 and 2, and in Fig. 4, bar
calibration gives an accuracy which is equal or even
slightly better with respect to ILSSC both on the bar
length and on the relative distances on the grids. An
example of the sequence of the principal points examined
by the evolutionary optimisation is reported in Fig. 5a
and b. Although the search is carried out in the whole
search region, H (Eq. (44)), the ensemble of the principal
points is driven into a small target region which includes

the true position of the two principal points. This assures
a high resolution in the estimate. Moreover, as the region
H is explored in parallel, using NP elements at each step,
the error decreases very fast. The resulting calibration
parameters are adequate already at the "rst step when
high accuracy is not required. As can be seen in Fig. 5c,
for the best pair of principal points the mean error is only
6.5 times the "nal error on the grid and 1.7 times on the
bar length. The total time required by the forty optimisa-
tion steps of the algorithm is 74 s on a Pentium MMX,
200 MHz.

6. Discussion and conclusion

The only metric information required by bar calib-
ration is the true 3D distance between the bar extremes,
and this is in fact a critical parameter. When the distance
is not given correctly, a degradation in the accuracy is
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introduced. However, as this measurement is taken only
once, it is reasonable to assume that it can be performed
with an adequate accuracy.

Another critical parameter is the angle between the
optical axes of the two cameras. When it departs from
903s, the accuracy decreases with power law up to 6 times
for angles of 203 or 1603s (e.g. Fig. 3 of Ref. [32])
[16,32,36]. This can be a problem for bar calibration
where the 3D reconstruction is an essential part of the
calibration procedure while it was not for ILSSC where
each camera is calibrated separately. Therefore when the
relative angles are very small or very large, many control
points are required to achieve a good estimate.

When the stereo-pair has been properly set up and the
length of the bar is measured with adequate precision, the
accuracy of bar calibration is comparable and even su-
perior to that obtained with points of known 3D coordi-
nates. This allows to substitute a simple rigid bar to the
cumbersome calibration structures required by classical
calibration methods and it suggests to introduce bar
calibration as a standard tool for those stereo systems
which have to be calibrated before use.

Appendix A. What is represented in the fundamental
matrix?

We summarise here the considerations of projective
geometry which limit to seven the number of indepen-
dent parameters which can be determined using the
epipolar constraint. From Eq. (10) it can be seen that
fundamental matrix F is not of full rank. Let
e1"[u

e1
, v

e1
, w

e1
] and e2"[u

e2
, v

e2
, w

e2
] be the two epi-

poles. Let us now consider a point p1 onto the image
plane of the "rst camera. The epipolar line lp1 to which
p1 belongs (cf. Fig. 1) has the homogeneous representa-
tion [l

u1
, l

v1
, l

w1
]T"(e1'p1) [3]. The transformations

p1Plp1 and p2Plp2 are therefore linear and they can be

expressed as

lpj"[l
uj
, l

vj
, l

wj
]T"Q

j
p
j

(A.1)

where Q
j
is a 3]3 matrix of rank two, function of the

epipole coordinates [u
ej
, v

ej
, w

ej
], two of which are inde-

pendent:

Q
j
"e

j
'"C

0 !w
ej

v
ej

w
ej

0 !u
ej

!v
ej

u
ej

0 D. (A.2)

We now search for the transformation between two
corresponding epipolar lines on the two image planes.
This is de"ned by a 3]3 matrix, G, de"ned up to scale
factor, such that

lp2"Glp1 (A.3)

Noticing that eT
2
lp2"0, it follows that

eT
2
GQ

1
p
1
"0 (A.4)

Since Q
1
p
1
O0 (Eq. (A.1)), it follows that the right

kernel of G must be equal to QT
2
up to a scale factor [37]:

G"QT
2
J (A.5)

and the following relationships between p1 and p2 and
lp1 and lp2 hold:

p2TQ2TJQ
1
p1"0 N F"QT

2
JQ

1
(A.6a)

lp2TJ lp1"0. (A.6b)

J represents a projective mapping between two corre-
sponding epipolar lines [3]. As this transformation has
the property to preserve the cross ratio, it will be unique-
ly identi"ed by four parameters (a, b, c, d), three of which
are independent. Every pair of epipolar lines can be
identi"ed as

t
1
"!

at
2
#c

bt
2
#d

(A.7)

wheret
1
" l

u1
/l
v1

and t
2
" l

u2
/l
v2

are the projective coor-
dinates of the two corresponding epipolar lines (l

w1
and

l
w2

have been assumed equal to one). It follows that the
matrix J assumes the following expression:

J"C
a b 0

c d 0

0 0 0D (A.8)

and, from Eq. (A.6a), the fundamental matrix can be
written as

F"C
d !c !(du

e1
!cv

e1
)

!b a !(av
e1
!bu

e1
)

!(du
e2
!bv

e2
) !(av

e2
!cu

e2
) v

e1
(av

e2
!cu

e2
)#u

e1
(du

e2
!bv

e2
)D (A.9)

Thus the epipolar transformation can be de"ned by the
four independent coordinates of the two epipoles and the
three parameters which de"ne the bilinear transforma-
tion between corresponding epipolar lines for a total of
seven independent parameters.

As the right-hand side of F is the matrix Q
1
"(e

1
'),

the product Fe
1

is equal to zero (the same is true for
e
2
). This represents the fact that the epipoles do

not have a corresponding epipolar line on the other
camera.
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