Multiple-Kernel Local-Patch Descriptor

A. Mukundan G. Tolias O. Chum

Visual Recognition Group (VRG),
Czech Technical University in Prague

BMVC 2017
Local-patch descriptors

- Detect repeatable keypoints
- Normalize to square patches
- Extract local-patch descriptor

Tasks:
- Structure-from-Motion,
- Multi-View Stereo,
- Image-based localization,
- Image retrieval
Related work

Hand-crafted descriptors
• SIFT, SURF, Daisy, BRIEF, ORB, BRISK, ...
• Intuitive
• Tweakable
• No learning
• Low performance

Learned descriptors
• Dominated by CNN-based: DDesc, TFeat, DeepCompare, ...
• Lots of training data
• Long training time
• Behavior difficult to interpret
• High performance
Overview

• Hand-crafted design \rightarrow kernel descriptor
• Inject supervision \rightarrow data whitening from matching pairs of patches

• Intuitive design
• Understanding of learned patch similarity
• Performance boosted by supervision
A familiar descriptor: SIFT

Local patch divided into 4 x 4 spatial bins

[D. Lowe, IJCV '04]
SIFT (continued)

In each spatial bin:
- Orientation and magnitude of gradient per pixel
- Quantize orientation angles into N_θ bins
SIFT (continued)

In each spatial bin:
- Orientation and magnitude of gradient per pixel
- Quantize orientation angles into N_θ bins
SIFT (continued)

Descriptor: concatenation of histograms
SIFT (continued)

Descriptor: concatenation of histograms

\[4 \times 4 \times 8 = 128 \text{ dimensional descriptor} \]
SIFT – contribution of a single pixel
Patch similarity using SIFT

\[
\begin{align*}
\times & \quad = \\
& \quad \left(\begin{array}{c}
+ \\
+ \\
+ \\
\vdots
\end{array} \right) \times \\
& \quad \left(\begin{array}{c}
+ \\
+ \\
+ \\
\vdots
\end{array} \right)
\end{align*}
\]
Patch similarity using SIFT

\[X \times = (+ + + \ldots) \times (+ + + \ldots) \]
Patch similarity using SIFT
Patch similarity using SIFT

\[
\langle \psi(\mathcal{P}), \psi(\mathcal{Q}) \rangle = \langle \sum \psi(p), \sum \psi(q) \rangle = \sum_{p \in \mathcal{P}} \sum_{q \in \mathcal{Q}} \psi(p)^\top \psi(q) = \sum_{p \in \mathcal{P}} \sum_{q \in \mathcal{Q}} k(p, q)
\]

SIFT similarity between two patches \(\mathcal{P} \) and \(\mathcal{Q} \)
Patch similarity using SIFT

Compares all pixel pairs based on attributes x, y, θ
Patch similarity using SIFT

Compares all pixel pairs based on attributes x, y, θ

$$\kappa(\Delta_x) \cdot \kappa(\Delta_y) \cdot \kappa(\Delta_\theta)$$

$$\kappa(\Delta_x) = \begin{cases}
1 & , \text{same bin} \\
0 & , \text{otherwise}
\end{cases}$$
Extension to continuous similarity

- Map 1D attribute to vector embedding
- Scalar product approximates von Mises kernel
- Dimensionality of embedding controls the approximation

[Bursuc et al. ICMR ’15]
Pixel embedding

$$\psi(x, y, \theta)$$

SIFT
Pixel embedding

\[\psi(x, y, \theta) \]

Kernel descriptor
Visualizing patch similarity

- Pixel to pixel similarity
 \[k(p, q) = \langle \psi(p), \psi(q) \rangle \approx k_x \cdot k_y \cdot k_\theta \]

- **Patchmap**: visualize contribution over the whole patch
Visualizing patch similarity

• Pixel to pixel similarity
 \[k(p, q) = \langle \psi(p), \psi(q) \rangle \approx k_x \cdot k_y \cdot k_\theta \]

• **Patchmap**: visualize contribution over the whole patch
Visualizing patch similarity

- **Pixel to pixel similarity**
 \[k(p, q) = \langle \psi(p), \psi(q) \rangle \approx k_x \cdot k_y \cdot k_\theta \]

- **Patchmap**: visualize contribution over the whole patch

10 iso-contours shown
- **Maximum similarity in red**
- **Minimum similarity in blue**
Visualizing patch similarity

- Pixel to pixel similarity
 \[k(p, q) = \langle \psi(p), \psi(q) \rangle \]
 \[\approx k_x \cdot k_y \cdot k_\theta \]

- **Patchmap**: visualize contribution over the whole patch

10 iso-contours shown
Maximum similarity in red
Minimum similarity in blue
Shift invariant similarity

Stationary kernel: depends on the difference, not the absolute value

Pixel \(p \)

Patch \(Q \)
Shift invariant similarity

Stationary kernel: depends on the difference, not the absolute value
Patchmap for SIFT

Pixel p

Patch Q
Patchmap for SIFT
Patchmap for SIFT

Pixel \(p \)

Patch \(Q \)
Patchmap for SIFT

Pixel p

Patch Q
Patchmap for SIFT

Pixel p

Patch Q
Patchmap for SIFT

Pixel p

Patch Q
Patch parametrizations

\[\theta = \pi/4 \]

cartes

\[\rho \]

polar

\[\phi \]
Patch parametrizations

\[\theta = \pi/4 \]

\[\tilde{\theta} = \theta - \phi = -\pi/2 \]

cartes

polar
Patch parametrizations

cartes

polar
Patch parametrizations

cartes

dominant orientation misalignment

polar
Patch parametrizations

keypoint center misalignment

cartes

dominant orientation misalignment

polar
Multiple parametrizations

Polar
- Known to perform well [Bursuc ICMR ’15]
- Tolerance to orientation mistakes
- Discontinuity around the center

Cartes
- Stable around the center
- Tolerance to location mistakes

We preserve both behaviors
- Simple descriptor concatenation
Injecting supervision

Linear discriminant projections

• Supervised descriptor whitening
• Very fast to learn!
• Works with few training examples
• Learns optimal mixing coefficient in case of concatenated vectors

[Michalajczyk & Matas. ICCV ’07]
Shift invariant similarity

Stationary kernel: depends on difference of angles, not their absolute value
Shift invariant similarity

Stationary kernel: depends on difference of angles, not their absolute value
Shift invariant similarity

Stationary kernel: depends on difference of angles, not their absolute value
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel \(p \)

Patch \(Q \)
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel \(p \)

Patch \(Q \)
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel \(p \)

Patch \(Q \)
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!

Pixel p

Patch Q
Similarity learned by supervised whitening

Similarity function is not shift invariant anymore!
Similarity learned by supervised whitening

Similarity shape gets aligned with gradient orientation
→ Potentially handling over-counting along edges

Patch \mathcal{P}

Patch \mathcal{Q}

Both: overlaid
Datasets

Phototourism (PT) – ‘07

[Winder & Brown, CVPR ‘07]

HPatches (HP) – ‘17

[Balntas et al, CVPR ‘17]
Results – PhotoToursim

- Verification task: given 2 patches determine if they depict the same 3D point
- Metric: False positive rate at 95% recall (FPR95)
- Detectors: DoG
- **PCW**: our descriptor (polar + cartes + whitening)

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Dimensions</th>
<th>Mean FPR95</th>
<th>CNN</th>
<th>Training time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-S2S</td>
<td>512</td>
<td>9.67</td>
<td>×</td>
<td>hours</td>
</tr>
<tr>
<td>DDESCC</td>
<td>128</td>
<td>9.85</td>
<td>×</td>
<td>hours</td>
</tr>
<tr>
<td>Matchnet</td>
<td>4096</td>
<td>7.75</td>
<td>×</td>
<td>hours</td>
</tr>
<tr>
<td>TF-M</td>
<td>128</td>
<td>6.47</td>
<td>×</td>
<td>hours</td>
</tr>
<tr>
<td>PCW∗</td>
<td>128</td>
<td>5.98</td>
<td></td>
<td>seconds</td>
</tr>
</tbody>
</table>
Results – HPatches

- Tasks: verification, matching, retrieval
- Metric: mAP
- Detectors: DoG, Hessian-Hessian, Harris-Laplace
- **PCW**: our descriptor (polar + cartes + whitening)

<table>
<thead>
<tr>
<th>Verification</th>
<th>Matching</th>
<th>Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF–R</td>
<td>81.92</td>
<td>+TF–R 40.23</td>
</tr>
<tr>
<td>+TF–M</td>
<td>82.69</td>
<td>+TF–M 34.29 +SIFT 40.36</td>
</tr>
<tr>
<td>PCW</td>
<td>82.94</td>
<td>+TF–R 34.37 +RSIFT 43.84</td>
</tr>
<tr>
<td>+DC–S2S</td>
<td>83.03</td>
<td>+DDESC 35.44 +DDESC 44.55</td>
</tr>
<tr>
<td>+TF–R</td>
<td>83.24</td>
<td>+RSIFT 36.77 PCW 48.26</td>
</tr>
<tr>
<td>PCW</td>
<td>88.64</td>
<td>PCW 43.81 PCW 61.21</td>
</tr>
</tbody>
</table>

Others: trained on part of Phototourism, whitening learned on part of HPatches

PCW: Whitening learned on part of Phototourism

PCW: Whitening learned on part of HPatches
Impact of the whitening

<table>
<thead>
<tr>
<th>Method</th>
<th>Verification</th>
<th>Matching</th>
<th>Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>polar [9]</td>
<td>80.77</td>
<td>32.51</td>
<td>48.04</td>
</tr>
<tr>
<td>cartes</td>
<td>70.67</td>
<td>15.79</td>
<td>30.73</td>
</tr>
<tr>
<td>polar + cartes</td>
<td>77.97</td>
<td>29.34</td>
<td>44.23</td>
</tr>
<tr>
<td>polar + cartes + LW</td>
<td>88.64</td>
<td>43.81</td>
<td>61.21</td>
</tr>
</tbody>
</table>

LW: Learned Whitening
Conclusions

- Hand-crafted descriptor
 - Intuitive design
 - Easy understanding

- Supervised whitening
 - Requires few training pairs
 - Extremely fast to learn
 - Significant performance boost
 - Understanding of the learned similarity

- Outperforms CNN-based descriptors