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Abstract—We propose a probabilistic graphical framework for multi-instance learning (MIL) based onMarkov networks. This framework

can deal with different levels of labeling ambiguity (i.e., the portion of positive instances in a bag) in weakly supervised data by

parameterizing cardinality potential functions. Consequently, it can be used to encode different cardinality-basedmulti-instance

assumptions, ranging from the standardMIL assumption tomore general assumptions. In addition, this framework can be efficiently used

for both binary andmulticlass classification. To this end, an efficient inference algorithmand a discriminative latentmax-margin learning

algorithm are introduced to train and test the proposedmulti-instanceMarkov networkmodels.We evaluate the performance of the

proposed framework on binary andmulti-classMIL benchmark datasets aswell as two challenging computer vision tasks: cyclist helmet

recognition and human group activity recognition. Experimental results verify that encoding the degree of ambiguity in data can improve

classification performance.

Index Terms—Multiple instance learning, Markov network, conditional random field, cardinality models

Ç

1 INTRODUCTION

MULTI-INSTANCE learning (MIL) aims to recognize pat-
terns from weakly supervised data. Contrary to stan-

dard supervised learning, where each training instance is
labeled, in the MIL paradigm a bag of instances share a label.
For example in the binaryMIL, each bag of instances is labeled
as positive or negative. The training data is given as labeled
bags, and the goal is to predict the label of test bags. In the
standard binarymulti-instance (MI) assumption, a bag is posi-
tive if it contains at least one positive instance, while in a nega-
tive bag all the instances are negative. This ambiguity in the
instance labels is passed on to the learning algorithm, which
should incorporate the information to classify unseen bags. In
this work we develop a novel framework for MIL, which can
model more general multi-instance assumptions and deal
with different levels of labeling ambiguity in the bags.

The standardMI assumption (i.e., at least one instance in a
positive bag is positive) is a too weak assumption in many
MIL applications. For example, in the cyclist helmet recogni-
tion problem shown in Fig. 1, the goal is to detect if the cyclist
in the video is wearing helmet, given the automatically esti-
mated track of the cyclist’s head position. This can be mod-
eled as a MIL problem, where the cyclist track is represented
as a bag of image patches extracted around the estimated
cyclist’s head position in each frame. Because of the imper-
fect tracking, not all extracted windows are centered on the
helmet, and consequently not all instances in a positive bag
are positive. However, the positive instances are not sparse

in the positive bags, either. In fact, many instances are true
positives and not just irrelevant elements in a bag. Using this
prior information can help to train stronger classifiers. Fur-
ther, because of noisy, occluded, or low-quality feature rep-
resentations, negative bags can also contain instances that
are effectively indistinguishable from positive instances. In
these cases more robust MI assumptions are needed, and
this paper contributes in this direction.

On the other hand, analysis of the cardinality-based rela-
tions is intuitive and intrinsic to some visual recognition
tasks. For example, in collective activity recognition (e.g., [1])
the primary approach to analyze the activity of a group of
people is to look at the actions of individuals in a scene.
There have been various methods for modeling the structure
of a group activity [2], [3], [4], capturing spatio-temporal
relations between people in a scene. However, these meth-
ods do not directly consider cardinality relations about the
number of people that should be involved in an activity.
These cardinality relations vary per activity. An activity like
falling in a nursing home [2] is different in composition from
an activity such as queuing [3], involving different numbers
of people (one person falls, many people queue). Further,
noise and clutter, in the form of people in a scene performing
irrelevant actions, confounds recognition algorithms.

To address these issues, we develop a general MIL frame-
work to encode various types of cardinality relations and
make a flexible notion of labeled bags. This framework is built
on a latent structured model based on Markov networks to
incorporate count-basedmeasurements over instances, which
can extend from the notion of “at least one positive” to “at
least some positives” to “nearly all positives.” Thus, it can (1)
deal with different levels of ambiguity or clutter in the data
and (2) encode various kinds of cardinality relations/con-
straints on instances, either predefined by the user or learned
directly from the data. Indeed, this framework can be even
adapted to estimate the appropriateMIL notion from training
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data without prior assumption on the proportion of positives
in the bags.

A preliminary version of this work was published previ-
ously in [5]. This paper extends on this work, adding
algorithms for multi-class multi-instance classification, intro-
ducing new applications and additional empirical evalua-
tion. In sum, this paper presents the following contributions.
First, we show that the proposed framework can be used for
multi-class MIL without converting the problem to multiple
binary classification (e.g., employing exhustive one-versus-
all or one-versus-one appraoches), commonly used in MIL
methods. Second, it is shown that the proposed Markov net-
work facilitates modeling of the inter-relations between dif-
ferent components of a bag. It helps to integrate the local
information of the instances (i.e., instance-level information)
with the global information elicited from the whole bag (i.e.,
bag-level information). For example, an image can be repre-
sented by local feature vectors extracted from several regions
of interest in the image as well as a global feature vector
extracted from the whole image. Third, we propose exact
and efficient inference algorithms to evaluate these general
MIL models efficiently without any approximation. For the
learning criterion, we propose a latent max-margin discrimi-
native algorithm to train themodels.

This paper is organized as follows. Section 2 reviews
relatedwork and provides a qualitative comparison between
this work and the previous works. Section 3 describes our
framework of MIL with Markov networks. In particular,
the models for different MI assumptions, including the stan-
dard MI assumption and more general MI assumptions are
described in this section. In Section 4 the inference and learn-
ing algorithms are explained. Section 5 presents the experi-
mental studies on MIL benchmark datasets as well as cyclist
helmet classification and human group activity recognition
problems.We conclude in Section 6.

2 RELATED WORK

MIL methods can be categorized based on different criteria
such as the learning approach (e.g., maximum likelihood,
max-margin, etc.), the multi-instance assumption (e.g., stan-
dard assumption, ratio-based assumption, etc.) [6], or the

space/level that the discriminative information lies in the
method (instance-space versus bag-space) [7]. In this sec-
tion, we review a variety of MIL methods in two sections of
instance-space methods and bag-space methods. However,
we also try to briefly explain the learning approach and the
multi-instance assumption used in each method.

2.1 Instance-Space Methods

Instance-level methods classify bags by aggregation of
instance-level classification scores. To this end, an instance-
level classifier is trained to classify positive and negative
instances in the instance space, and based on these classi-
fiers a bag-level classifier is obtained.

2.1.1 Methods Encoding Standard MI Assumption

Dietterich et al. [8] introduced the early algorithms for multi-
instance learning. The main idea was to construct a hyper-
rectangle maximizing the number of bags with at least one
instance in that rectangle while excluding all instances of
negative bags. So, this algorithm encodes the standard MI
assumption. Based on similar ideas, the diverse density (DD)
framework [9] was proposed for MIL. This approach works
by finding a concept pointwhich is near to at least one instance
of every positive bag, but far from all negative instances (i.e.,
standard MI assumption). Finding this point is formulated
as maximizing the diverse density function, which is in
fact the likelihood function of training bags. EM-DD [10] is
the expectation-maximization (EM) version of DD, which
incorporates the iterative EM approach of estimating posi-
tive instances and updating the concept hypothesis within
the DD framework.

Andrews et al. [11] modified SVMs for MIL by proposing
two max-margin algorithms. The first, mi-SVM, aims to
maximize the instance margin jointly over the hidden
instance labels. The second, MI-SVM, tries to maximize the
bag margin, where the bag margin is defined by the most
positive instance of each bag (a.k.a witness instance). Both
these algorithms are formulated as mixed-integer optimiza-
tion problems, which are solved approximately by iterating
over two steps of inferring the instance labels (in mi-SVM)
or finding the witness instance (in MI-SVM) and then contin-
uous optimization of the SVM weight vectors using the
instances. Following the same approach, Mangasarian
and Wild [12] proposed MICA. MICA is an extension of MI-
SVM, which does not explicitly identify a specific witness
instance in a bag but finds a convex combination of the
instances as a witness. Bunescu and Mooney [13] used the
transductive SVM framework to propose a modified version
of mi-SVMwhich can more directly enforce the standard MI
assumption and performmore effectively for sparse positive
bags. AL-SVM and AW-SVM [14] are the other extensions of
mi-SVM and MI-SVM, which apply deterministic annealing
to the mixed-integer programs of the multi-instance SVM
formulations in order to find more accurate solutions. Later,
this idea was used in MI-Forests [15] to perform the mixed-
integer optimization of a margin-dependent loss function
over randomized trees, using deterministic annealing.

The very successful Latent SVM [16] is also a max-margin
MILmethod. For positive instances, a set of latent variable val-
ues is used. One can consider the set of completed data instan-
ces (latent variable values with observed input feature values)

Fig. 1. Cyclist helmet recognition using the proposed max-margin MIL
method. The goal is to recognize if the cyclist is wearing a helmet or not,
given the input video. Each video is treated as a bag of instances, where
each instance is represented by an automatically detected window
around the cyclist’s head. The proposed cardinality-based models help
to control the positive/negative label proportions in the bags and encode
a wide range of multi-instance assumptions.
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as a bag in MIL, similar to the MI-SVM framework. Latent
SVM has been used in numerous applications, and often
obtain very successful performance. However, it uses the “at
least one positive instance” assumption for positive bags. As
noted above, for some applications this is limiting since many
latent variable settings could in fact be positive and could aid
in training a better classifier. The more general MI assump-
tions and algorithms in this paper aim to remedy this.

2.1.2 Methods Encoding Non-Standard MI

Assumptions

In recent years, more general MIL algorithms have been
developed to address non-standard multi-instance assump-
tions such as ratio-based assumptions [17], [18], where the
proportion of positive instances in a bag determines the bag
label. Gehler and Chapelle [17] proposed ALP-SVM, which
can control the expected ratio of positive instances in the
bags. They argued that different levels of ambiguity in posi-
tive bags can influence the performance of MIL methods.
Hence, they provided the possibility to encode prior knowl-
edge about the data set, i.e., fraction of positive instances
(witnesses) in a positive bag. This algorithm need a preset
parameter which determines the fixed ratio of witnesses.

Li et al. [18] proposed MIL-CPB, an algorithm for
multi-instance learning with constrained positive bags.
This model uses a generalized MI assumption, where the
positive bags contain at least a certain portion of positive
instances (i.e., ratio-constrained assumption). The formu-
lation of MIL-CPB is similar to the mixed-integer formu-
lation of mi-SVM but with more general constraints on
instance labels. It is shown that this NP-hard problem
can be viewed as a multiple kernel learning problem
with an exponential number of base kernels. Solving this
problem is intractable in practice. Li et al. proposed an
iterative cutting-plane algorithm to find a subset of feasi-
ble solutions which can adequately approximate the orig-
inal problem.

Hajimirsadeghi and Mori [19] proposed MIRealBoost, a
boosting framework for MIL which can softly explore differ-
ent levels of ambiguity using linguistic aggregation func-
tions with different degrees of orness. Hence, the notion of
positive bag is extended to a wider and more intuitive range
of assumptions. This algorithm also needs approximate
before-hand knowledge of ambiguity level (e.g., the witness
ratio), or should use cross-validation to estimate it. Yu
et al. [20] proposed /SVM for learning from instance label
proportions. This SVM-based model also tries to control the
ratio of positive instances in a bag. They proposed two algo-
rithms to learn the model: (1) alternating optimization of
the mixed-integer programming problem and (2) convex
relaxation of the objective function.

Despite successful results of the algorithms above,
almost all of them use some kind of heuristics or relaxa-
tion and consequently provide approximate solutions to
the general problem of multi-instance learning based on
label proportions or lack solid mathematical proof of con-
vergence. In addition, they are limited to specific cardi-
nality assumptions (e.g., ratio-constrained assumptions)
and to capture new cardinality relations between the
instance labels the proposed models or learning algo-
rithms should be modified.

2.1.3 Methods Based on Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are powerful tools to
capture inter-relations between random variables and learn
structuredmodels. Thus, they can be assumed a natural fit to
model multi-instance problems. Note that although we have
categorized PGM-basedmethods as instance-spacemethods,
thesemethods fall close to the boundaries of bag-spacemeth-
ods. In fact, in PGMs both instance-level local information
and bag-level global information can bemodeled andmixed.
However, since the base of these models is built on the
instances, and the first-level discrimination lies in the
instance space, we think that PGM-based MIL methods are
mostly (not always) closer to instance-spacemethods.

Warrell and Torr [21] developed an algorithm for MIL
based on structured bag models. This method constructs a
conditional random filed (CRF) with energy functions
defined on the instances, instance labels and the bag label.
In this model, hard and soft constraints are presented on the
instance labels to encode standard MI assumption as well as
more general soft ratio-based assumptions. Given the pro-
posed CRF and the constraints, the instance and bag labels
are inferred approximately by dual decomposition, and the
models are trained by likelihood maximization using deter-
ministic annealing.

Deselaers and Ferrari [22] proposed MI-CRF. In this
method, the bags are modelled as nodes in a CRF, where
each node can take one of the instances of the bag as its
state. So, the bags are jointly trained and classified in this
model. Louradour and Larochelle [23] proposed extensions
of restricted Boltzmann machines (RBMs) for classifying
sets of instances. In the proposed method, RBMs are
extended by duplicating the visible and hidden layers for
each instance. The basic idea is to encode the bag label
besides the input instance vectors in the visible layer and
embedding the constraints in the hidden layer. Adel
et al. [24] proposed a general framework to use generative
graphical models in the MIL paradigm. This framework
studies and analyzes different Bayes net structures for MIL.

2.2 Bag-Space Methods

Bag-space methods treat each bag as a whole entity and
train a classifier directly on the bags by making a global
representation of bags or extracting discriminative bag-level
information from them. In this section, we briefly explain
these methods, classified in three main subcategories:
“embedded-space” methods, “kernel-based” methods, and
“distance-based” methods.

2.2.1 Embedded-Space Methods

The methods described in this section transform MIL prob-
lem to a standard classification problem by mapping the
bags into an embedded single-instance space. Simple
MI [25] is a very simple and fast algorithm of this type. Each
bag is mapped to the average of its instances. The averaging
can be performed by arithmetic mean or geometric mean.
Although this algorithm is very simple, surprisingly, it has
shown successful results in some MIL problems (e.g., when
the positive bags have mostly positive instances–i.e., less
instance label ambiguity). Another family of embedded-
space methods are Histogram-Based Methods [7], which
work similar to bag-of-words (BOW) methods by mapping
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each bag to a histogram vector, using a vocabulary. First, a
vocabulary of concepts (or words) is obtained by hard or
soft clustering of all instances in the training bags. Next,
each bag is mapped to a histogram vector of the concepts.

DD-SVM [26] and MILES [14] are two algorithms, which
combine the diverse density approach with SVM classifica-
tion. Both these algorithms use the concept points intro-
duced in the diverse density framework to convert each bag
to a new single-instance feature vector. Next, a standard
L2-norm SVM classifier is trained in DD-SVM. However, in
MILES, an L1-norm SVM is used. The L1-norm SVM can be
employed for both classification and concept point selection.

2.2.2 Kernel-Based Methods

Kernel-Based Methods work by defining kernels on the
bags. As a result, any standard kernel machine can be used
for classification. Note that kernel-based methods also
works by performing an implicit space transformation and
mapping. Thus, it might be also possible to categorize ker-
nel-based methods as embedded-space methods.

Gartner et al. [27] introduced a class of multi-instance ker-
nels (MI-Kernels), which are variants of set kernels [28]. The
standard MI-kernel is a bag-level kernel which is obtained
by summing up instance-level kernels on all instance pairs of
two bags. The proposed MI-kernel assumes equal weights
on all instances of a bag. However, usually in positive bags
all the instances are not equally important. To alleviate this
problem, later, Kwok and Cheung [29] proposed marginal-
ized MI kernels. These kernels specify the importance of an
instance pair from two bags according to the consistency of
their probabilistic instance labels.

Zhou et al. [30] proposed two graph-based algorithms,
MIGraph and miGraph, for multi-instance learning. Both
algorithms work by mapping a bag into an undirected
graph and then designing a graph kernel. MIGraph con-
structs a weighted �-graph for every bag. In this graph, each
instance is modeled as a node, and every two nodes are con-
nected if the Euclidean distance between the two instances
is less than a preset threshold �. Next, a kernel function is
defined between bags by aggregating the base kernels on
node pairs and edge pairs. MIGraph has high computa-
tional complexity due to the large number of edges usually
existing in the constructed graph. But, miGraph is more
computationally efficient. miGraph implicitly maps a bag to
a graph by only creating the affinity matrix of the graph.
Given this affinity matrix, a bag-level kernel is defined
which is independent of the number of edges.

2.2.3 Distance-Based Methods

A class of MIL algorithms uses distance metrics to classify
bags. The distance can be a bag-to-bag (B2B) distance or a
class-to-bag (C2B) distance. Also, the distance metric can be
fixed or learned from training data. For example, Citation
kNN [32] applies a B2B distance in a generalized and more
robust kNearest Neighbor (kNN) algorithm.

Wang et al. [33] proposed an algorithm to learn a robust
and discriminative C2B distance for MIL. Unlike the multi-
instance distances defined in the similar previous works
(e.g., [34], [35], [36]), the proposed distance is based on not-
squared l2-norm distance. It is well-known that not-squared
l2-norm distance is robust againts outliers [37], which makes

it suitable for MI data, where the outlier instances abound
because of label ambiguity in positive bags. Learning the
distance function is formulated as minimizing the C2B dis-
tance from a class to all its bags, while maximizing the dis-
tance to all bags of other classes.

2.3 Our Work

In this work, we propose a MIL framework based on Mar-
kov networks (which is a PGM). This framework uses cardi-
nality potentials [38], [39] to model general MI assumptions,
and superior to the similar previous works [17], [18], [19],
[20], [21], [40], which follow nonstandard MI assumptions,
it presents the following contributions. First, it can encode
any cardinality-based multi-instance assumption.1 It can
even work without prior assumption on the cardinality of
positive instances inside the bags and be trained to discover
this knowledge directly from data. Second, it can be used
for both binary and multi-class classification. Third, the
inference and learning of the proposed models is exact and
no approximation or heuristics are required. Finally, the
proposed model allows flexible integration of bag-level and
instance-level information in a bag, leveraging benefits
from both global and local representations of the bag in
both bag and instance spaces.

To conclude this section, Table 1 provides a summary of
the algorithms reviewed above. In this table, the MI
assumption followed in each method is also given. The
ratio-based assumption refers to any assumption which is
based on the instance label proportions in a bag. Ratio-con-
strained assumption is a special ratio-based assumption,
which is an immediate extension of the standard MI
assumption and assumes a bag is positive if at least a certain
ratio of the instances are positive. Metadata assumption is
used by convention to refer to the assumption used in
embedded-space and kernel-based methods [6]. This
assumption originates from the fact that in these methods
classification is performed in a metadata embedding space.

3 MIL USING MARKOV NETWORKS

In MIL, training examples are presented in bags where the
instances in a bag share a label. In this work, we use Markov
networks to model MIL problems and develop a general-
ized notion of labeled bags. The proposed Markov networks
are used to define a scoring function for bag classification.

3.1 The Proposed Markov Network for MIL

In this section, we first introduce the model for binary
multi-instance classification and next extend it for multi-
class classification.

3.1.1 Binary Classification

Let B ¼ fI1; . . . ; Img denote a bag with m instances and a
binary bag label Y 2 f�1; 1g. Each instance I i is represented

by a fixed-length feature vector xi ¼ ½xi1; . . . ; xiD� 2 RD. Like-
wise, each bagmight be globally described by another feature
vectorX. For example, if the bag is an image,X can be a global
bag-of-words feature vector extracted from the whole image.

1. Although we focus on ratio-based cardinality assumptions in this
work, the proposed model is not limited to these assumptions and can
encode any cardinality-based assumptions on the instance labels.
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TABLE 1
A List of Some Well-Known MIL Methods

Method Summary of the algorithm Base discrimination
space/level

Multi-instance assumption

Axis-Parallel
Rectangles [8]

Finding a hyper-rectangle that maximizes the number of positive
bags which have at least one instance in this region, but excludes
instances of negative bags as much as possible.

Instance space Standard assumption

Diverse
Density [9]

Estimating the probability of instances based on distance from an
instance prototype, which is close to at least one instance of every
positive training bag but far from instnaces of all negative training
bags.

Instance space Standard assumption

EM-DD [10] Using expectation-maximization to maximize the diverse density
function.

Instance space Standard assumption

mi-SVM [11] Maximizing the instance margin jointly over the latent instance labels,
using an iterative algorithm.

Instance space Standard assumption

MI-SVM [11] Maximizing the bag margin in an iterative procedure, where at each
iteration every positive bag is represented
by the most postive instance of the bag.

Instance space Standard assumption

sMIL, stMIL [13] sMIL modifies miSVM constraints to be more effective for sparse
positive bags. stMIL is the transductive SVM version of sMIL.

Instance space Standard assumption

AL-SVM, AW-SVM,
ALP-SVM [17]

Optimizing mi-SVM andMI-SVM objective functions with
deterministic annealing.

Instance space Standard assumption for
AL-SVM& AW-SVM.

Ratio-based for ALP-SVM.
MI-Forests [15] Optimizing a confidence maximizing loss function over randomized

trees, using an iterative DA-based method.
Instance space Standard assumption

MILBoost [31] Maximizing the log likelihood of training bags using AnyBoost
framework.

Instance space Standard assumption

MIL-CPB [18] Optimizing SVM-like objective functions with ratio-based MIL
constraints for the positive bags, using an iterative cutting plane
algorithm.

Instance space Ratio-constrained
assumption

MIRealBoost [19] Maximizing the expected log likelihood of training bags, using
standard RealBoost algorithm and linguistic aggregation functions.

Instance space Soft linguistic cardinality
assumptions (e.g. some, many)

/SVM [20] Solving a max-margin mixed-integer optimization problem, given
predetermined instance label proportions, following alternating
optimization or convex relaxation.

Instance space Ratio-based assumption

MI-CRF [22] Using a CRF where each node represents a bag which can take one
of its instance as the value. In this model, all the bags are jointly
classified based on unary instance classifiers and pairwise
dissimilarity measurements

Instance space Standard assumption

Structured Bag
Models [21]

Using CRFs to model the bag structures and at the same time
incorporating different MIL constraints. Learning is performed by
minimizing an objective function with deterministic annealing
approach

Instance space Standard and Ratio-based
assumptions

Generative Models
for MIL [24]

Using Bayesian networks with different structures to learn
generative models for MIL

Instance space Standard assumption

Simple MI [25] Mapping each bag to average of its instances and training a standard
single-instance classifier.

Bag space Metadata assumption

Histogram-Based
Methods [7]

Finding a vocabulary of concepts by clustering the instances. Then,
mapping each bag to a histogram vector of the concepts and finally
train a single-instance classifier.

Bag space Metadata assumption

DD-SVM [26] &
MILES [14]

Mapping each bag to a vector built by the distances between the bag
and instance prototypes of the DD algorithm. Next, classifying the
vectors by the regular SVM (in DD-SV) or 1-norm SVM (in MILES).

Bag space Metadata assumption

MI kernels [27] Defining a number of MI kernels on bags and plug them into
kernel methods.

Bag space Metadata assumption

miGraph &
MIGraph [30]

Mapping a bag into an undirected graph and designing a graph kernel.
Next, classifying the bags by a kernel machine.

Bag space Metadata assumption

Citation kNN [32] Using a bag-to-bag distance in a modified nearest neighbor appraoch,
where each bag is classified by majority voting among both citers and
references.

Bag space Nearest neighbor
assumption

(with B2B distance)
M-C2B [33] Learning a robust and discriminative class-to-bag (C2B) distance for

MIL by solving an l2;1-normminmax problem.
Bag space Nearest neighbor

assumption
(with C2B distance)

Ours:
Multi-Instance
Markov
Networks

Modeling bags using Markov networks with parameterized cardinality
potentials so that different cardinality-based MI assumptions can be
plugged into the models or even learned from data. Learning is
formulated in a max-margin discriminative framework and solved
with a non-convex cutting plane method.

Instance space
+ bag space

Any cardinality-based
assumption + metadata
assumption of bag-level

features.
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Another approach to constructX is using the prediction scores
of other MIL methods2 as a bag-level feature descriptor. Each
instance I i has also a hidden label yi, and the collective binary
instance labels of a bag are denoted by y ¼ fy1; . . . ; ymg.
Given this notation, we propose aMarkov network to define a
scoring function over tuples ðX; x ¼ fxigmi¼1; Y;y ¼ fyigmi¼1Þ.
This function is used to predict the label of a test bag by infer-
ring the bag and instance labels which maximize the scoring
function, given the input feature vectors.

A graphical representation of the proposed Markov net-
work is shown in Fig. 2. Each instance and its label are mod-
eled by two nodes in a clique. The potential function of this
clique specifies a classifier for an individual instance. A sec-
ond clique contains all instance labels and the bag label.
This clique is used to define what makes a bag positive or
negative. Varying this clique potential will lead to different
MI assumptions, and is the focus of our work. Finally, there
is an optional clique potential between the global represen-
tation of the whole bag and the bag label.

We define the scoring function on these cliques as:

fwðX; x; Y; yÞ ¼
X
i

fI
wðxi; yiÞ þ fC

wðy; Y Þ þ fB
wðX; Y Þ; (1)

where fI
wðxi; yiÞ represents the potential between each

instance and its label, fC
wðy; Y Þ is the clique potential over

all the instance labels and the bag label, and finally fB
wðX; Y Þ

expresses the potential between the bag-level feature vector
and the bag label. Note that the potential functions are
parametrized by the learning weights w. We explain the
details of these potential functions as follows.

Instance-Label Potential fI
wðxi; yiÞ. This potential function

models the compatibility between the ith instance feature
vector xi and its label yi. It is parametrized as:

fI
wðxi; yiÞ ¼ w>

I xi 11ðyi ¼ 1Þ
¼ w>

I CIðxi; yiÞ:
(2)

Labels Clique Potential fC
wðy; Y Þ. This potential function

models the relations between the instance labels and the
bag label. Since the MIL problems are defined based on the
number of positive and negative instances, we need to for-
mulate this as a cardinality clique potential. Cardinality
potentials are only a function of label counts—in this case,
the counts of the positive and negative instances in the bag.

By modifying the form of the cardinality potential, we
can encode different MI assumptions, which will be shown
in the Section 3.2. Note that while for arbitrary clique poten-
tials inference could be NP-complete, for cardinality poten-
tials with binary variables exact and efficient inference
algorithms exist. This leads to efficient algorithms for learn-
ing and prediction, which will be described in Section 4.

In order to define the cardinality potentials, we will use
the notation mþ and m� for the counts of instance labels in
y which are positive and negative, respectively. The com-
plete clique potential depends on these counts, and the bag
label Y . Thus, we describe this clique potential by parame-
terizing two different cardinality potential functions, one
for positive bags (Cþ

w) and one for negative bags (C�
w).

fC
wðy; Y Þ ¼ Cw mþ;m�; Yð Þ

¼ Cþ
w mþ;m�ð Þ1ðY ¼ 1Þ

þ C�
w mþ;m�ð Þ1ðY ¼ �1Þ:

(3)

Bag-Label Potential fB
wðX; Y Þ. This potential function gives

a global model of a bag, which describes how the bag as a
whole entity is classified. It is parametrized as:

fB
wðX; Y Þ ¼ w>

B X1ðY ¼ 1Þ
¼ w>

B CBðX; Y Þ: (4)

3.1.2 Multiclass Classification

We can extend the binary model in Fig. 2 for multiclass classi-
fication. The proposedmulticlassmodel is illustrated in Fig. 3.
It can be observed that this network is formed by concatena-
tion of the binary graphical model of each class. Themain rea-
son for this replication is that the inference of cardinality
clique potentials is exact and efficient only for binary labels.
To this end, first we represent the multiclass bag label Y 2
f1; 2; . . . ; Lg by a binary vector ðY1; Y2; . . . ; YLÞ, where Yl ¼ 1
if Y ¼ l and Yl ¼ �1 if Y 6¼ l. In addition, for each class l, we
have binary instance labels yl ¼ fyl1; . . . ; ylmg (yli 2 fþ1;�1g,
i ¼ 1; . . . ;m), indicatingwhich instances are from (or relevant
to) the lth class and which instances are not. We also denote
the collection of all instance labels of all classes by y. Putting
all this together, the scoring function of the tuple ðX; x; Y; yÞ
for the proposedmulticlass graphicalmodel is defined by:

fwðX; x; Y;yÞ

¼
XL
l¼1

X
i

fI
wlðxi; yliÞ þ fC

wlðyl; YlÞ þ fB
wlðX; YlÞ

 !
;

(5)

Fig. 2. Graphical illustration of the proposedmodel for binarymulti-instance
learning. Instance potential functions fI

wðxi; yiÞ relate instances xi to labels
yi. A second clique potential fC

wðy; Y Þ relates all instance labels yi to the

bag label Y . There is also an optional potential function fB
wðX; Y Þ, which

relates the global representation of the bag to the bag label.

Fig. 3. Graphical illustration of the proposed model for multiclass multi-
instance learning.

2. In our experiments, we use MI-Kernel [27].
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where, similar to the binary model, the instance-label poten-
tials fI

wlðxi; yliÞ, the labels clique potential fC
wlðyl; YlÞ, and the

bag-label potential fB
wlðX; YlÞ are defined as follows.

fI
wlðxi; yliÞ ¼ w>

Il xi 1ðyli ¼ 1Þ
¼ w>

Il CIðxi; yliÞ:
(6)

fC
wlðyl; YlÞ ¼ Cwl m

þ
l ; m

�
l ; Yl

� �
¼ Cþ

wl m
þ
l ; m

�
l

� �
1ðYl ¼ 1Þ

þ C�
wl m

þ
l ; m

�
l

� �
1ðYl ¼ �1Þ:

(7)

fB
wðX; YlÞ ¼ w>

Bl X1ðYl ¼ 1Þ
¼ w>

Bl CBðX; YlÞ:
(8)

The following section defines functions Cþ
wl and C�

wl that
lead to a variety of MIL models.

3.2 The Proposed Models of Multi-Instance
Classification

In this section, we use our proposed Markov network to
model MIL with different MI assumptions.

3.2.1 Multiple Instance Markov Network (MIMN)

This network models the multi-class multi-instance classifi-
cation with the standard MI assumption, i.e., a bag of class
label l has at least one instance from the lth class. Thus, in
this model, the labels clique potential for each possible class
label l 2 f1; . . . ; Lg is given by

Cþ
wlð0;mÞ ¼ �1 (9)

Cþ
wlðmþ

l ; m�mþ
l Þ ¼ wþ

Cl mþ
l ¼ 1; . . . ;m (10)

C�
wlð0;mÞ ¼ w�

Cl (11)

C�
wlðmþ

l ; m�mþ
l Þ ¼ �1 mþ

l ¼ 1; . . . ;m: (12)

This clique potential states that in a bag of class label l it is
impossible to have no instance from the lth class (9), and
there is the same potential of having one or more than one
instance from the target class (10). However, if the bag label
is not equal to l, none of the instances should be from this

class (11) and (12). One could set wþ
Cl and w�

Cl to a constant

value (e.g., 0),3 but we generally treat them as the model
parameters and show how to learn them in Section 4.2.

3.2.2 Ratio-Constrained Multiple Instance Markov

Network (RMIMN)

Ratio-constrained MIL extends the notion of labeled bags
in MIL based on instance labels proportions. In RMIMN,
each bag of class label l contains at least a certain portion
of instances from class l. For example, at least 30 percent
of the instances should be from the lth class in a bag
with label l. To encode this MI assumption with our pro-
posed Markov network, we only need to refine the func-

tions Cþ
wl and C�

wl:

Cþ
wlðmþ

l ; m�mþ
l Þ ¼ �1 0 � mþ

l

m
< r

Cþ
wlðmþ

l ; m�mþ
l Þ ¼ wþ

cl r � mþ
l

m
� 1

C�
wlðmþ

l ; m�mþ
l Þ ¼ w�

cl 0 � mþ
l

m
< r

C�
wlðmþ

l ; m�mþ
l Þ ¼ �1 r � mþ

l

m
� 1;

(13)

where r indicates the threshold proportion of relevant
instances in a bag. The interesting case is r ¼ 0:5, where we
can learn models with majority voting assumption.

3.2.3 Generalized Multiple Instance Markov Network

(GMIMN)

GMIMN allows a very flexible notion of labeled bags. We
allow the proportion of relevant and irrelevant instances in
bags to be a learned parameter, discovered from the data.
The MIL model will learn which fractions of instances tend
to be of the target class in a bag of that class. This network
provides a very general model for multiple instance learn-
ing and is parametrized by:

Cþ
wlð0;mÞ ¼ �1

Cþ
wlðmþ

l ; m�mþ
l Þ ¼

XK
k¼1

wþ
kl1

k� 1

K
<

mþ
l

m
� k

K

� �

mþ
l ¼ 1; . . . ;m

C�
wlðmþ

l ; m�mþ
l Þ ¼

XK
k¼1

w�
kl1

k� 1

K
� mþ

l

m
<

k

K

� �

mþ
l ¼ 0; . . . ;m� 1

C�
wlðm; 0Þ ¼ �1;

(14)

where K determines the number of weighted segments of a
bag. This model divides the bag size into K equal parts, and
the weight of each segment wkl determines how important it
is that the number of relevant instances (i.e., the instances
from class l) be placed inside that interval. In other words,
these learning weights specify the importance or impact of
different witness ratios for labeling a bag. Large values of K
provide more detailed models of bag definition by learning
cardinality-based measures with finer resolution, while low
values ofK define a coarser model of bag. So, by controlling
the granularity, this parameter is set in a trade-off between
training accuracy and generalization ability.4

The constraints Cþ
wlð0;mÞ ¼ �1 and C�

wlðm; 0Þ ¼ �1 are
the only required prior information in this model, which
break the symmetry between positive and negative bags
and enforce at least one instance of a positive bag is positive
and one instance of a negative bag is negative. Note that
since this model is very general and unconstrained, it is vul-
nerable to overfitting (especially for multi-class classifica-
tion) and requires careful training practices5 to achieve
successful results.

3. Our experimental explorations show that setting these parameters
to zero usually leads to satisfactory results

4. In the experiments of this paper, we cross-validate on the values
K ¼ 3,K ¼ 5, andK ¼ 10 to roughly estimate this parameter.

5. Examples of good practices are smart initialization of the
learning weights (e.g., using the weights learned by MIMN model)
and early stopping on the training iterations by monitoring the vali-
dation error.
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3.2.4 Linearity of the Models

In Section 3.1, we showed that the instance-label potentials
and the bag-label potential are linear functions of the learn-
ing weightsw (See Equations (6) and (8)). Here, we demon-
strate the linearity of the cardinality-based labels clique
potential with respect to w. Consequently, the whole model
score would be a linear function of the learning parameters.

Given Cþ
wl and C�

wl defined for any of the MIMN,
RMIMN, or GMIMN models, the labels clique potential for
each class label (e.g., the lth class) can be written as:

fC
wlðyl; YlÞ ¼ w>

ClCCðyl; YlÞ þ gCðyl; YlÞ; (15)

where wCl represents the concatenation of the learning

parameters in Cþ
wl and C�

wl, while CCðyl; YlÞ and gCðyl; YlÞ
are functions independent of wl, which are specified by
aggregation of the indicator functions.

Now, by integrating all the potential functions of the
multi-class Markov network, the scoring function intro-
duced in (5) is reduced to the following linear expression:

fwðX; x; Y; yÞ ¼ w>CðX; x; Y;yÞ þ
X
l

gCðyl; YlÞ; (16)

where

CðX; x; Y; yÞ ¼
"X

i

CIðxi; y1iÞ>; . . . ;
X
i

CIðxi; yLiÞ>;

CCðy1; Y1Þ>; . . . ;CCðyL; YLÞ>;

CBðX; Y1Þ>; . . . ;CBðX; YLÞ>
#>

:

(17)

This linearity property facilitates parameter learningwith gra-
dient-basedmethods,whichwill be explained in Section 4.2.

4 INFERENCE AND LEARNING

The MIL models above define scoring functions fw which
consider counts of instance labels in a bag (see Eq. (5)).
Using this, we can define a scoring function for assigning
the bag label Y to a bag with bag feature X and instance fea-
tures x by maximum a posteriori (MAP) inference of the
Markov network over the hidden instance labels:

FwðX; x; Y Þ ¼ max
y

fwðX; x; Y; yÞ: (18)

Below, we describe how to efficiently solve this infer-
ence problem for the cardinality-based cliques we
defined above. Using this inference technique, learning
can be performed using a max-margin criterion, as in the
Latent SVM approach [16].

Classification of a new test bag can be done in a similar
manner. We can predict the bag label by simply running
inference, enumerating all possible Y and taking the maxi-
mum scoring bag label:

Y ? ¼ arg max
Y

FwðX; x; Y Þ: (19)

4.1 Inference

The inference problem is to find the best set of instance
labels of all class labels y? ¼ fy?1; y?2; . . . ; y?Lg given the
input feature vectors for the data fX; xg and the bag label

Y . Using (5) and (7), the inference problem in (18) can be
written as

y? ¼ max
y

XL
l¼1

X
i

fI
wlðxi; yliÞ þ Cwlðmþ

l ; m
�
l ; YlÞ

 !
: (20)

However, the instance labels of each class are condition-
ally independent from instance labels of other classes, given
the input feature vectors and the bag label fixed. Thus, the
original inference problem of all instance labels is decom-
posed and reduced to inference of the instance labels of
each class, separately:

y?l ¼ max
yl

X
i

fI
wlðxi; yliÞ þ Cwlðmþ

l ; m
�
l ; YlÞ: (21)

This problem is the standard problem of inferring a prob-
abilistic graphical model with cardinality clique poten-
tials [38]. This class of PGMs is specified by two parts: the
sum of individual node potentials and a clique potential
over all the nodes which only depends on the counts of the
nodes which get specific labels. In our models, we only work
with binary node labels (i.e., yli 2 fþ1;�1g), for which there
exists an exact inference algorithm with Oðm logmÞ time
complexity.6 The inference algorithm is as follows. First, sort

the instances in decreasing order of fI
wlðxi;þ1Þ � fI

wlðxi;�1Þ.
Then, for k ¼ 0; . . . ;m, compute slk, the sum of the top-k

instance potentials fI
wlðxi;þ1Þ � fI

wlðxi;�1Þ plus the clique
potential Cwlðk;m� k; YlÞ. Finally, find k?l which gets the

largest slk, and inference is accomplished by assigning the
top k?l instances to positive labels and the rest to negative
labels. Repeating this algorithm for each class label, the full
inference of (20) takesOðLm logmÞ time.

4.2 Learning

Let the training set be given by f X1; x1; Y 1
� �

; . . . ; XN;
�

xN; Y NÞg, and the goal is to train the Markov models by
learning the parameters w. Inspired by the relation to latent
SVM, we formulate the learning problem as minimizing the
regularized hinge loss function:

min
w

XN
n¼1

Ln �Rnð Þ þ �

2
kwk2

where Ln ¼ max
Y

max
y

DðY; Y nÞ þ fwðXn; xn; Y;yÞð Þ;
Rn ¼ max

y
fwðXn; xn; Y n; yÞ;

DðY; Y nÞ ¼ 1 if Y 6¼ Y n

0 if Y ¼ Y n:

�
(22)

One approach to solve this problem approximately is the
iterative algorithm of alternating between inference of the
latent variables and optimization of the model parameters.
So, the first step estimates the instance labels and the second
step learns a standard SVM classifier given the estimated
instance labels. It can be shown using this approach for the
binary MIMNmodel leads to the mi-SVM algorithm [11].

6. For non-binary node labels, there exist only approximate infer-
ence algorithms. See [38] for more details.
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However, we use the non-convex regularized bundle
method (NRBM) [41] to directly solve the optimization
problem in (22). It has been shown that NRBM has a fast
convergence rate compared to the state-of-the-art noncon-
vex optimiztion methods [42]. This method iteratively
makes an increasingly accurate piecewise quadratic approx-
imation of the objective function. At each iteration, a new
linear cutting plane is obtained via the subgradient of the
objective function and added to the piecewise quadratic
approximation. To use this algorithm, the principal issue is
to compute the subgradients @wLnðwÞ and @wRnðwÞ. For
this purpose, we need to know the subgradient of the net-
work scoring function, i.e., @wfwðX; x; Y;yÞ.

Following the linear expression derived in (16), it is sim-
ple to show that

@wfwðX; x; Y; yÞ ¼ CðX; x; Y; yÞ: (23)

Using Equations (22) and (23), it can be shown that
@wLnðwÞ ¼ CðXn; xn; Y ?; y?Þ, where ðy?; Y ?Þ is the solution
to the inference problem:

max
Y

max
y

DðY; Y nÞ þ fwðXn; xn; Y; yÞð Þ: (24)

This inference problem can be solved using the algorithm
in Section 4.1. In summary, we enumerate all possible Y ,
and for each fixed Y we find y by doing inference on the
resulting graphical model (which has cardinality clique
potentials). Then, the Y with the highest value gives the pre-
dicted bag label Y ?.

In the same way, it can be shown that @wRnðwÞ ¼
CðXn; xn; Y n; y?Þ, where y? is the solution to the inference
problem:

maxyfwðXn; xn; Y n; yÞ: (25)

5 EXPERIMENTS

In this section, we show the performance of the proposed
framework in different classification tasks. First, the MIMN
model is evaluated on binary and multiclass MIL bench-
mark datasets. Next, the extended models are applied to the
two challenging computer vision tasks of cyclist helmet rec-
ognition and human activity recognition to show that the
flexibility in the portion of positives in a bag can lead to
improved classification accuracy.

5.1 Benchmark Datasets

In this section, we evaluate our proposed MIMN model on
MIL benchmark datasets to demonstrate it can achieve the
state-of-the-art performance on standard datasets.

5.1.1 Binary Benchmarks

We evaluate the MIMN model on five popular binary MIL
datasets.7 These benchmark datasets are the Elephant, Fox,
Tiger image data sets [11] and Musk1 and Musk2 drug activ-
ity prediction data sets [8]. In the image data sets, each bag
represents an image, and the instances inside the bag repre-
sent 230-D feature vectors of different segmented blobs of
the image. These datasets contain 100 positive and 100 nega-
tive bags. In the Musk datasets, each bag describes a mole-
cule, and the instances inside the bag represent 166-D
feature vectors of the low-energy configurations of the mol-
ecule. Musk1 has 47 positive bags and 45 negative bags
with about 5 instances per bag. Musk2 has 39 positive bags
and 63 negative bags with variable number of instances in a
bag, ranging from 1 to 1,044 (average 64 instances per bag).

In all experiments of this section, the instance features have
been extended by approximate explicit intersection kernelmap-
ping [43], and the bag features have been constructed by the
prediction scores of the MI-Kernel method [27] with RBF
kernel. In addition, the features have been preprocessed by
scaling the original features to the range ½0; 1�. At each experi-
mental trial, we run the non-convex cutting plane algorithm
with all the learning weights initialized to 0 (except bag fea-
tures8) and at most 100 iterations. The regularization parame-
ter � was roughly optimized on the 10-fold cross-validation
accuracy by grid search in a set of predetermined values (1,
10, and 100). The averaged classification accuracies for the
MIMNmodel on different datasets are shown in Fig. 4. It can
be observed that combining the MIMN model with the bag
features helps to improve the results.

We also illustrate the performance of RMIMNmodel with
different values of r in Fig. 5. This figure shows that RMIMN
is somehow robust to the value of r on these datases. The rea-
son might be because there is no inherent ratio-constrained
assumption in these benchmark datasets. We show the merit
of RMIMN in Sections 5.2 and 5.3 when the experiment are
performed on real computer vision tasks with intuitive ratio-
constrained assumptions. Next, we demonstrate GMIMN
results with different values ofK in Fig. 6. It is shown that this
value influences the performance of the GMIMN model,
and it is beneficial to set the proper value by doing cross-
validation. However, note that when the bag features are
integrated, themodel becomesmore robust toK.

Fig. 4. Evaluating the classification performance of the proposed models
on binary benchmark datasets.

Fig. 5. Classification accuracy on binary benchmark datasets using
RMIMN with different value of r.

7. The original data sets are available online at http://www.cs.
columbia.edu/�andrews/mil/datasets.html.

8. Since the bag features are the MI-Kernel prediction scores, we ini-
tialize the corresponding weights to small positive values, e.g., 0.1, so
that the first iteration of the algorithm will be the same as MI-Kernel.
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Finally, we compare the MIMN models with the state-of-
the-art MIL methods in Table 2. The performance of the
methods varies depending on the data set. However, our
proposed models are always among the best methods.
More specifically, MIMN and GMIMN achieve the best
accuracy on the Elephant, Fox, Tiger, and Musk2 data sets,
compared to the other methods.

5.1.2 Multiclass Benchmarks

In this section, we evaluate the multiclass extension of the
MIMN model for image categorization on the COREL data-
set. We work on the 1,000-image and 2,000-image data-
sets9 [14], which contain ten and twenty categories with 100
images per category. Each image is represented as a bag of
instances, where the instances are the ROIs (Region of Inter-
ests) described by nine features (representing color, shape,
and energy).

The experiments are performed with the same setup as in
Section 5.1.1, i.e., extending and scaling the instance features
and making MI-Kernel bag features. Also, the same experi-
mental routine as described in [14] was used: the images of
each category are split into half for training and test, and the
experiment on each dataset is repeated five times. The results
are provided in Table 3 and compared with other MIL meth-
ods. Note that the accuracy of MI-Kernel is based on our

implementation, and for the other methods the numbers are
reported from [46]. As seen in the table, MIMN models are
competitivewith the state-of-the-art methods.10

To show the contribution of our proposed multiclass for-
mulation, Fig. 7 compares multiclass MIMN with binary
MIMN wrapped by exhaustive one-vs-all technique. Our
empirical evaluations show that the muliclass model obtain
higher classification accuracy.11

5.2 Cyclist Helmet Recognition

In this section, we use our proposed models to address a
binary video classification task. This problem is illustrated in
Fig. 8. Given an automatically-obtained cyclist trajectory, we
must determine whether the cyclist is wearing a helmet or
not. One can treat this as a MIL problem—each frame is an
instance, and the trajectory forms a bag. The bag (trajectory)
should be classified as containing a helmet-wearing cyclist or
not. However, the standard MI assumption or traditional
supervised learning approaches (e.g., classify each instance
andmajority vote) cannot easily handle this problem. Because
of imperfection in tracking, it is unlikely that all the instances
in a positive bag are truly positive–some will not be well cen-
tered on the cyclist’s head due to jitter, regardless of the
tracker used. Traditional supervised learning would have
many corrupted positive instances of helmet-wearing cyclists.
StandardMI assumptionwould notmake full use of the train-
ing data, since each track would very likely have more than
one positive instance.

Fig. 6. Classification accuracy on binary benchmark datasets using
RMIMN with different value of r.

TABLE 2
Comparison between State-of-the-Art MIL Methods

on the Binary MIL Benchmark Dataset.

Method Elephant Fox Tiger Musk1 Musk2

MIMN 89 64 86 87 92
RMIMN (r ¼ 0:5) 87 59 85 88 92
GMIMN (K ¼ 5) 90 63 89 89 92

mi-SVM [11] 82 58 79 87 84
MI-SVM [11] 81 59 84 78 84
MI-Kernel [27] 84 60 84 88 89
g-rule SVM [44] 84 63 81 88 85
SetMaxRBMXOR [23] 88 60 83 84 84
MIRealBoost [19] 83 63 73 91 77
MIForest [15] 84 64 82 85 82
SVR-SVM [45] 85 63 80 88 85
MIGraph [30] 85 61 82 90 90
miGraph [30] 87 62 86 90 90
MILES [14] 81 62 80 88 83
AW-SVM [17] 82 64 83 86 84
AL-SVM [17] 79 63 78 86 83
EM-DD [10] 78 56 72 85 85

The best and second best results are highlighted in bold and italic face
respectively.

TABLE 3
Comparison between State-of-the-Art MIL Methods

on the COREL Image Datasets

Method 1000-Image 2000-Image

MIMN 85.6 � 0.5 71.6 � 1.0
RMIMN (r ¼ 0:5) 85.2 � 0.6 72.1 � 0.6
GMIMN (K ¼ 10) 84.9 � 0.4 70.9 � 0.7

MI-Kernel [27] 84.1 � 0.6 69.1 � 0.7
MKSVM-MIL [46] 85.2 � 1.1 71.3 � 1.2
MILES [14] 81.5 � 3.0 68.7 � 1.4
DD-SVM [26] 74.7 � 1.6 67.5 � 0.8
MissSVM [47] 78.0 � 2.2 65.2 � 3.1
MI-SVM [11] 74.7 � 1.6 54.6 � 1.5

The numbers show the average accuracy over 5 trials and the corresponding
95% intervals.

Fig. 7. Comparison between classification accuracy of the proposed
multiclass MIMN and binary MIMN with one-vs-all technique.

9. The original data sets are available online at http://www.
miproblems.org/datasets/corel.

10. In all our experimental studies we found that GMIMN is not
very successful for multiclass classification. The reason tend to be the
loose and weak assumption in GMIMN as well as the large number of
free parameters in the multiclass version, which makes the model over-
fit to the training data.

11. Also, considering the same number of iterations, multiclass
MIMN is faster in practice.
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5.2.1 Experimental Setup

Weworkwith cyclist trajectories automatically extracted from
video data. The data are collected for a busy 4-legged intersec-
tion with vehicles, pedestrians, and cyclists, over a two-day
period. Kanade-Lucas-Tomasi feature tracking and trajectory
clustering are used to extract moving objects. These clusters
are then automatically classified (vehicle, pedestrian, cyclist)
by analyzing speed profiles (e.g., the pedalling cadence).

We chose a dataset of 24 cyclist tracks for our experi-
ments—12 wearing helmets and 12 not. The head location is
estimated using background subtraction upon the tracks.
We describe each frame of a track using texton histo-
grams [48] in a region of size 20� 20 around the head posi-
tion (chosen after empirically examining other features). We
report the results of helmet classification using leave-one-
out cross-validation on this dataset.

We use the proposed models in Section 3 to classify the
cyclist tracks. We also compare this approach with non-MIL
methods. In the non-MIL approach, all frames from positive
and negative training videos are put together and labelled
according to their video labels. Next, a standard SVM classi-
fier [49] is trained and used to predict each frame label of
the test videos. Finally, the bag label is predicted by one of
the following criteria:

� SVM-AtLeastOne: The bag label is positive if at least
one of the instance labels is positive.

� SVM-Majority: The bag label is specified by the
majority voting of the instance labels.

5.2.2 Experimental Results

For our proposed algorithms, we run the non-convex cutting
plane algorithm with all the learning weights initialized to 0
and atmost 100 iterations. For all the algorithms the regulari-
zation parameter was estimated by grid search on the cross-
validation accuracy. The average classification accuracy of
each method is shown in Table 4. We include mi-SVM as an
additional baseline. The results of the RMIMN model with
different r values are demonstrated in Fig. 9.

It can be observed that the classification accuracy of SVM-
AtLeastOne, MIMN, and mi-SVM are quite low. This shows
that the traditional classification approach (used in SVM-
AtLeastOne) and the standard MI assumption (used in
MIMN and mi-SVM) are very ineffective in this problem.
The standard MI assumption fails because it is very likely

that at least one of the instances in a negative bag is classified
as positive, and consequently most of the negative bags are
assigned positive labels. This problem is due to the imperfec-
tion in the classifier and low-quality visual representation of
the cyclist’s head in the video. However, it is clearly evident
that SVM-Majority, RMIMN (with most r values), and
GMIMN are more robust to these defects. The results show
that RMIMN (with r ¼ 0:5) outperforms all the other meth-
ods. Also, it is shown that GMIMN has competitive perfor-
mance. It learns the multi-instance relation properly without
any prior knowledge of the ambiguity level (e.g., parameter
r) and classifies the videos successfully.

5.3 Group Activity Recognition

In this section, we show the application of the proposed car-
dinality-based multi-instance models for group activity rec-
ognition. We run experiments on two datasets: nursing
home dataset [2] and collective activity dataset [1].

5.3.1 Nursing Home Dataset

In this section, our method is evaluated for activity recogni-
tion in a nursing home. The dataset we use [2] provides
scenes in which the individuals might be performing differ-
ent actions such as walking, standing, sitting, bending, or
falling. However, the goal is to detect the “fall” event, i.e., if
any person is falling or not in a scene. Thus, we use the pro-
posed binary MIMN model to encode that at least one of the
individuals is falling in a positive scene. Fig. 10 illustrates the
problem of fall scene detection in the nursing home dataset.

The dataset has 22 video clips (12 clips for training and 8
clips for test) with 2,990 annotated frames, where about one

TABLE 4
Results of the Experiments on Cyclist

Helmet Classification Problem

Method Accuracy %

SVM-AtLeastOne 58.33
SVM-Majority 79.17

mi-SVM 62.50
MIMN 58.33
RMIMN (r ¼ 0:5) 91.67
GMIMN (K ¼ 5) 87.50

Fig. 9. Cyclist helmet recognition accuracy with RMIMN model and dif-
ferent values of the parameter r.

Fig. 8. Cyclist helmet classification—is she wearing helmet? how many
positives are in this bag? An automatic cyclist detector/tracker is run, with
head position estimate in green rectangle. Data instances are features
defined on the head position estimates, bags aggregate these over a track.
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third of them are assigned the “fall” activity label. We use
the same features and experimental settings as used in [2].
The results in terms of classification accuracy are shown in
Table 5 . We compare our method with global bag-of-words
method and the spatial structured models in [2]. Note that
because of the significant class size imbalance, mean per-
class accuracy is a more valid performance criterion. It can
be observed that our proposed MIMN model outperforms
the others. It is an intuitive outcome because of the problem
definition (at least one person is falling in a fall scene). The
results of the RMIMN model with different values of r,
shown in Fig. 11, also follow this intuition.

5.3.2 Collective Activity Dataset

In this section, we study the application of the proposed
models in the multiclasss classification task of collective
activity recognition. The collective activity dataset [1] com-
prises 44 videos (about 2,500 video frames) of crossing, wait-
ing, queuing, walking, and talking. The goal is to classify the
collective activity in each video frame, where the collective
activity commonly tends to be the action that the majority
of people in the scene are doing. For this purpose, each
frame scene is modeled as a bag of people described by
the action context feature descriptors12 proposed in [2].
The MIL representation of this problem is shown in Fig. 12 .
In our experiments, the same experimental setup is fol-
lowed as explained in [2], i.e., the same 1/3 of the video
clips were selected for test and the rest for training. We use
our proposed RMIMN model with r ¼ 0:5 to encode
majority multi-instance assumption on the action labels. The
results are shown in Table 6 and compared with the

Fig. 10. An example of “Fall” scene from the nursing home dataset. We
model this problem as a multi-instance learning problem, where each
individual is represented as an instance.

TABLE 5
Comparison of Different Methods on the Nursing Home

Dataset in Terms of Classification Accuracy (CA)
and Mean Per-Class Accuracy (MPCA)

Method CA MPCA

Global bag-of-words with SVM [2] 52.6 53.9
Latent SVM with unconnected graph [2] 58.6 56.0
Latent SVM with tree-structured graph [2] 64.1 60.6
Latent SVM with complete graph [2] 70.0 63.1
Latent SVM with optimized graph structure [2] 71.2 65.0
MIMN (ours) 76.1 66.2
RMIMN (r ¼ 0:5) 75.3 60.6
GMIMN (K ¼ 10) 77.1 65.5

We used the same features and experimental settings as in [2].

Fig. 11. Recognition accuracy on nursing home dataset with RMIMN
model and different values of the parameter r.

Fig. 12. Two examples from the collective human activity recognition
dataset. (a) Shows a scene where the collective activity is waiting while
(b) shows a similar scene but the collective activity is crossing. The intui-
tion is that the collective activity tends to be the action that majority of
people are doing. We model this problem as a MIL problem, where the
goal is to recognize the collective activity in the scene by inferring the
hidden action each person is doing. We use our proposed RMIMNmodel
to encode the majority multi-instance assumption.

Fig. 13. Performance of RMIMN with different value of r on collective
activity dataset.

TABLE 6
Comparison of Different Methods on Collective Activity Dataset
in Terms of Multi-Class Classification Accuracy (MCA) and

Mean Per-Class Accuracy (MPCA)

Method MCA MPCA

Global bag-of-words with SVM [2] 70.9 68.6
Latent SVM with optimized graph [2] 79.7 78.4
MIMN 76.2 73.5
RMIMN (r ¼ 0:5) 82.2 82.0
GMIMN (K ¼ 3) 72.3 70.0

We used the same settings as in [2].

12. Note that this feature descriptor is built on a spatio-temporal
context region around any individual. So it encodes the spatio-temporal
information in the action and its context. By using our multi-instance
model, the spatio-temporal and cardinality information are combined.
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following methods: (1) SVM with global bag-of-words
model and (2) spatial latent structured models in [2].

Our proposed RMIMN Model can achieve the best
results, even compared to the structure-optimized spatial
model in [2], by incorporating the cardinality relations into
the problem. More specifically, Fig. 13 illustrates the results
of the RMIMN model for both bag-level classification and
instance-level prediction with different values of r. It can be
observed that as expected, the highest bag classification
accuracy is obtained with r ¼ 0:5 (Fig. 13a).

Instance-level prediction results (in terms of precision
and recall averaged over all action classes) are shown in
Fig. 13b. This analysis lends further insight, though note
that instance-level predictions are dependent on bag-level
classification. At high bag-level accuracy (r ¼ 0:4 and
r ¼ 0:5), recall is around 40 and 50 percent with high preci-
sion, which is expected: the model predicts enough
instance-level positives to satisfy the bag being positive.

Outside this range, at lower bag-level accuracies, the pic-
ture is different. As r increases, more instances are pre-
dicted as positive instances and the instance-level recall is
likely to increase. However, the chance of missprediction
(especially in false positive bags) also increases and the pre-
cision decreases. However, at some point (r ¼ 0:9), where
there is a stringent constraint for classifying a bag as posi-
tive, the number of false negative bags tends to increase.
Consequently, the number of positive instances shrinks,
and the precision is enhanced.

Finally, visualizations of some example recognition
results are provided in Fig. 14.

6 CONCLUSION

We proposed a novel graphical framework for both binary
and multiclass multi-instance learning based on Markov
networks and latent max-margin discriminative training.
This framework is flexible and can model any cardinality-
based multi-instance assumptions. Thus, it is more robust
to the amount of labeling ambiguity (i.e. true positive
instances) in the bags. Specifically, it can be helpful in vision
applications which exhibit imperfect annotation or ambigu-
ous feature representations. Further, it can be used to model
visual recognition problems with intrinsic cardinality rela-
tions (e.g., group activity recognition).

The experiments showed that learning and encoding the
degree of ambiguity in the classifier can influence the accu-
racy of classification. We used the proposed framework for

binary classification of cyclists with and without helmet.
We also evaluated the performance of the multiclass models
on the collective activity recognition problem. These are
challenging problems, where the traditional supervised
learning and standard MI assumptions fail. However, the
extended ratio-based models enhance classification perfor-
mance by encoding more general and robust MI assump-
tions and mining the degree of ambiguity.

The proposed graphical framework is flexible and can
be easily extended or modified. For example, it can be
modified for multi-label multi-instance learning, where a
bag can take more than one label. Also, the model can be
extended by defining new potential functions. For exam-
ple, pairwise potential functions could be defined over
neighbouring instance labels to model spatial or temporal
relations between the instances. Finally, this framework
can be adapted for individual classification from group
statistics with applications in privacy-preserving data
mining [20], [50], [51].
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